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Abstract: Recently, research has centered on developing new approaches, such as supervised machine
learning techniques, that can compute the mechanical characteristics of materials without investing
much effort, time, or money in experimentation. To predict the 28-day compressive strength of steel
fiber–reinforced concrete (SFRC), machine learning techniques, i.e., individual and ensemble models,
were considered. For this study, two ensemble approaches (SVR AdaBoost and SVR bagging) and one
individual technique (support vector regression (SVR)) were used. Coefficient of determination (R2),
statistical assessment, and k-fold cross validation were carried out to scrutinize the efficiency of each
approach used. In addition, a sensitivity technique was used to assess the influence of parameters
on the prediction results. It was discovered that all of the approaches used performed better in
terms of forecasting the outcomes. The SVR AdaBoost method was the most precise, with R2 = 0.96,
as opposed to SVR bagging and support vector regression, which had R2 values of 0.87 and 0.81,
respectively. Furthermore, based on the lowered error values (MAE = 4.4 MPa, RMSE = 8 MPa),
statistical and k-fold cross validation tests verified the optimum performance of SVR AdaBoost. The
forecast performance of the SVR bagging models, on the other hand, was equally satisfactory. In order
to predict the mechanical characteristics of other construction materials, these ensemble machine
learning approaches can be applied.

Keywords: concrete; steel fiber; steel fiber–reinforced concrete; compressive strength; mechanical
characteristics; construction materials

1. Introduction

The bridging effect of discontinuous fibers in fiber-reinforced concrete (FRC) can
enhance its strength characteristics. Consequently, incorporation of steel fiber (SF) improves
concrete’s compressive strength as well as its toughness and fracture resistance. Concrete’s
durability is improved by adding the proper quantity of steel fiber (0–1.5%) [1]. Different
types of fibers, i.e., both natural and artificial, are utilized for improving the mechanical
characteristics and crack resistance behavior of concrete and cementitious materials [2–9].
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Several researchers have carried out studies and presented models for the mechanical
characteristics of regular concrete based on a variety of data; however, SFRC contains more
factors that require prediction than normal concrete, i.e., the type of fiber, percentage of
volume, and the aspect ratio, and creating suitable predictive models is still relatively new.
As a consequence, the typical linear and nonlinear regression models struggle to evaluate
the compressive strength of SFRC. The difficulty in forecasting the strength of SFRC can be
solved by using machine learning approaches [10–19].

Machine learning techniques are broadly utilized in the computer science and artificial
intelligence domains, and their influence on engineering is undeniable. Machine learning
techniques have gained attention in civil engineering, mainly for their prediction of the
mechanical properties of concrete. These practices can be used to predict outcomes with
a high degree of precision. Many studies have been undertaken using machine learning
approaches to forecast the strength properties of concrete and its structural elements as
well [10–23]. Two machine learning approaches, the individual and ensemble approaches,
were employed by Ahmad et al. to forecast concrete compressive strength [24]. Su et al.
used different machine learning algorithms to estimate the strength of the link between
concrete and fiber-reinforced polymers [25]. Nguyen et al. employed a machine learning
approach to assess the compressive characteristics of geo-polymer concrete [26]. Never-
theless, further advances in this field are required to understand and implement these
techniques in civil engineering through the use of other machine learning methodologies.
The collection of data for the development of models that account for numerous factors
such as type of fiber, volume%, and aspect ratio (i.e., the length and diameter of the fiber) is
not easy, and there are currently no published studies that define an efficient method for
intensity prediction in SFRC. As a result, a machine learning model that predicts the com-
pressive strength of SFRC is developed in this study, and the most appropriate techniques
are addressed via a comparison analysis.

There has been a detailed evaluation of the use of ML approaches to predict concrete’s
mechanical characteristics [27]. In addition, a number of studies have been conducted to pre-
dict the mechanical characteristics of different types of concrete, such as high-performance
concrete (HPC) [28], self-healing concrete [29], recycled aggregate concrete (RCA) [30],
phase change materials–integrated concrete [31], etc. Steel fiber–reinforced concrete is
widely used in civil engineering applications. Therefore, this study considered steel fiber–
reinforced concrete (SFRC) with compressive strengths of 26 MPa to 99 MPa. Additionally,
the importance of the raw materials was not considered in the datasets on compressive
strength in previous studies, and this factor requires evaluation. Therefore, the effects
of the input parameters (raw materials) on the compressive strength are studied using
sensitivity analysis. However, casting specimens in the lab and curing and evaluating
them is a time-consuming and labor-intensive process. Employing innovative approaches
such as machine learning techniques to evaluate the mechanical properties of SFRC can
address such problems while also reducing experimentation expenses. To estimate the
28-day compressive strength of SFRC, both individual (SVM) and EML (AdaBoost and
bagging) approaches were used. The coefficient correlation (R2) value was used to validate
the quality of each model. To compare the outcomes of each method, the statistical error,
namely the mean-absolute error (MSE), root-mean-square error (RMSE), and k-fold cross
validation tests were performed. Sensitivity analysis was used to examine the contribution
of the model parameters to the outcome predictions. Scholars working in the civil engineer-
ing field could benefit from this study since it allows them to predict strength attributes
without having to spend time in the lab.

2. Data Description

The information was gathered from 17 publications [32–48] as shown in Table S1. Since
the goal of this study is to develop a basic machine learning model for SFRC and forecast
its mechanical parameters, this dataset was constructed entirely using data from hook-end
steel fiber–concrete. Despite the fact that the dataset had a large number of variables, only
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those that were shown to be fundamentally influenced were chosen and preprocessed. As
a result, the dataset has a total of t10 features, including input data and output data. The
following 10 factors were considered for the forecasting of SFRC compressive strength,
since they are the most fundamental mechanical characteristics of SFRC, and each of these
variables impact the compressive strength of SFRC.

Water and Cement: The ratio of water to cement (W/C) has a big impact on concrete
strength. According to Abbass et al., when the W/C ratio rises, the compressive strength
drops [44]. Similarly, Reddy et al. performed tests on self-consolidating concrete based on
the W/C ratio and concluded that it had a significant impact [49]. Nili et al. found that the
water–cement ratio was a factor influencing SFRC compressive strength, and it was chosen
as a variable [50].

Sand and Aggregate: The impact of the sand and aggregate ratio (s/a) on the strength
properties of SFRC has been identified as a critical element. Kim et al. observed that
increasing the s/a ratio caused an increase in SFRC’s compressive strength [51]. Chitlange
et al. found a significant variation in compressive strength based on the s/a ratio [52]. As a
result, the sand and aggregate content was chosen as a key variable in the development of
the ML models.

Superplasticizer: A superplasticizer is an additive commonly used in the manufacture
of high-strength concrete. Khan et al. reported that the combination of superplasticizer
and pozzolanic ingredients can enhance concrete’s mechanical qualities [53]. Furthermore,
a superplasticizer is essential because concrete requires a larger water content, which
causes bleeding. Aruntas et al. found that when the superplasticizer concentration rises
to 1.5%, the workability and compressive strength increase [54]. As a result, superplas-
ticizer was chosen as a feature in the ML models to quantify its direct effect on SFRC’s
compressive strength.

Silica fume: Many earlier researchers have shown the significant impact of silica fume
on concrete strength. According to Köksal et al., increasing the silica fume concentration
improves compressive strength [42]. Nili et al. found an enhancement in concrete compres-
sive strength with increased content of silica fume [55]. As a result, the concentration of
silica fume was discovered as an impact factor on the strength properties of SFRC and was
chosen as a characteristic.

Fly ash: It is a popular ingredient that can increase concrete performance in both states
i.e., fresh (workability) and hardened (strength), over time. According to R. Saravana
and A. Sumathi, incorporating fly ash into SFRC enhanced the compressive strength over
time [56]. The impact of fly ash and steel fibers on the strength qualities of pozzolana cement
concrete was explored by Muntadher, A.C. and Srivastava, V. [57]. Ashish, K.S. inspected
the effect of fly ash on concrete durability and found that the concrete’s compressive
strength was lower than predicted at first but steadily increased with time [58]. Using a
machine learning method, Mohammad, M.R. et al. evaluated the mechanical characteristics
of fly ash concrete [59]. Fly ash was chosen as a criterion because of its importance in
concrete characteristics.

Steel Fiber volume, length, and diameter: In prior investigations it was found that steel
fiber volume, length, and diameter had a significant influence on the concrete’s compressive
strength. Yazc et al. found that the fiber volume fraction increases compressive strength
with lower aspect ratios, while there was no significant development found in compressive
strength with higher aspect ratios [1]. Furthermore, the experimental investigation of
Köksal et al. revealed that the strength properties of SFRC improve as a consequence of
utilizing fiber volume fractions of up to 1% [42]. As a result, fiber volume, length, and
diameter must be considered as variables in the ML models.

To obtain the intended result, ML approaches require a range of input variables [60].
The information utilized to estimate SFRC’s compressive strength is obtained from the
literature. Only the findings for 28-day compressive strength were separated from the data
collected for further study. The models contained cement, water, sand, coarse aggregate,
superplasticizer, silica fume, fly ash, steel fiber, fiber length, and fiber diameter as inputs,
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with just one variable, i.e., compressive strength, as a resultant output. This study used
166 data points for the 28-day compressive strength prediction of SFRC (mix proportions).
The database includes normal strength and high-strength SFRC with compressive strengths
ranging from 26 MPa to 99 MPa. Table 1 displays the statistical analysis outcomes of
the input variables, i.e., mean, standard error, median, mode, standard deviation, range,
minimum, and maximum values. Furthermore, the relative frequency pattern distribution
of all input parameters is depicted in Figure 1.

Table 1. Statistical analysis of input and output variables.

Cement
(kg/m3)

Water
(kg/m3)

Sand
(kg/m3)

Coarse
Aggregate

(kg/m3)

Superplasticizer
(%)

Silica
Fume

%

Fly
Ash %

Steel
Fiber
(%)

Fiber
Length
(mm)

Fiber
Dia

(mm)

Compressive
Strength MPa

(28 Days)

Mean 445.8 170.8 783.7 940.7 0.9 6.0 1.4 0.8 40.5 0.6 61.3

Standard
Error 8.2 2.4 11.9 19.9 0.1 0.9 0.4 0.0 1.2 0.0 1.7

Median 400.0 157.8 743.0 1050.5 0.2 0.0 0.0 1.0 35.0 0.6 62.8

Mode 400.0 152.0 835.0 1047.0 0.0 0.0 0.0 0.5 60.0 0.8 29.1

Standard
Deviation 105.4 30.7 153.3 256.8 1.8 11.7 5.7 0.6 16.1 0.2 21.6

Range 400.0 137.0 768.0 1170.0 9.0 43.0 30.0 2.0 60.0 0.9 73.1

Minimum 280.0 133.0 582.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.1

Maximum 680.0 270.0 1350.0 1170.0 9.0 43.0 30.0 2.0 60.0 0.9 99.2

Count 166.0 166.0 166.0 166.0 166.0 166.0 166.0 166.0 166.0 166.0 166.0
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3. Research Strategy

The ML models were run with Python code using Anaconda software. The Anaconda
navigator is a desktop graphical user interface featured in the Anaconda program that
allows for the running of apps that provide guidance through the Conda packages, channels,
and environments without having to use command-line techniques. It is also a source for
Python and R programming languages for data science and machine learning applications,
with an emphasis on package development and maintenance. This work used three
techniques to estimate the compressive strength of SFRC, i.e., SVR, AdaBoost, and bagging.
Spyder (version: 4.3.5) was chosen from the Anaconda navigator for model execution.
The degree of accuracy was represented by the R2 value of the predicted result from all
models. R2 values typically range from 0 to 1, with a higher number suggesting greater
accuracy between the measured and predicted outcomes. Furthermore, statistical checks,
error evaluation (including MAE, RMSE), and k-fold cross-validation were done to assess
the performance of the models employed in this study. A sensitivity analysis was also
performed to identify the influence of all input variables. Figure 2 illustrates the research
strategy as a flowchart.
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4. Results and Discussions
4.1. Statistical Analysis Explanation

Figure 3 depicts the pattern of statistical analysis for the actual and predicted outcomes
of SFRC compressive strength after 28 days utilizing the SVR model. The SVR delivers
results that are within the permitted range and have a minimal difference between real
and expected results. The R2 = 0.81 demonstrates that the model performs well in terms
of calculating outcomes. Figure 4 shows the distribution of investigational and estimated
outcomes, and the SVR model’s errors. In the dispersal, the largest, lowermost, and average
values of error were 26.02, 0.53, and 7.03 MPa, respectively. It was discovered that 44% of
the erroneous values were less than 5 MPa, 28% were between 5 and 10 MPa, and 28% were
higher than 10 MPa. These statistics represent the level of agreement between the projected
and actual results.

Figures 5 and 6 depict the AdaBoost model’s outputs. Figure 5 displays the connection
between the genuine and predicted outcomes, with R2 = 0.96, which is greater than that
of SVR model, implying that the AdaBoost approach performs better than SVR. Figure 6
depicts the AdaBoost model’s distribution of actual and projected values as well as errors.
The distribution’s highest, lowest and average values of the errors were 11.80, 0.005, and
3.10 MPa, respectively. According to the findings, 80% of the erroneous readings were less
than 5 MPa, 12% were in the range of 5–10 MPa, and 8% were more than 10 MPa. The
AdaBoost model can more effectively predict SFRC’s compressive strength based on the R2

and error distribution of the SVM and AdaBoost models.
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Figure 5. Connection between experimental and estimated results for SVR AdaBoost model.
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The connection of the actual and expected outcomes for the model of SVR bagging
is shown in Figure 7. The SVR bagging model has R2 = 0.87, showing that this model is
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more precise than the SVR but less precise than SVR AdaBoost models. Figure 8 also shows
the SVR bagging distribution for the actual and projected values and errors. The values
16.3, 0.53, and 6.5 MPa were the greatest, lowest, and average errors, respectively. It was
discovered that 52% of the erroneous values were less than 5 MPa, 28% were between 5 Mpa
and 10 MPa, and 20% were larger than 10 MPa. This investigation demonstrated that the
SVR AdaBoost model had superior precision compared with the SVR and SVR AdaBoost
models due to its lower error and higher R2 readings. In addition, the ML techniques,
i.e., SVR AdaBoost and SVR bagging, used the sub-models to obtain the best assessments
that yielded nearly perfect outcomes. Wang et al. [61] reported that AdaBoost machine
learning approaches better predict the compressive strength of geopolymer composites.
Zhu et al. [62] used machine learning to forecast the splitting tensile strength (STS) of
concrete containing recycled aggregate (RA) and revealed that the precision level of the
bagging model was better. Ahmad et al. [63] studied boosting, and the AdaBoost ML
approaches to predict the compressive strength of high-calcium fly-ash-based geopolymer.
The AdaBoost and bagging models yielded better results. As a result, this study found that
the ML methods (SVR AdaBoost and SVR bagging) were more accurate than the individual
strategy in predicting outcomes (SVR).
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4.2. Cross-Validation Using the K-Fold Scale

To assess the legitimacy of the model during execution, the k-fold cross-validation
technique was utilized. This technique is regularly employed to check the correctness of the
model in which the data set spread and split into 10 groups [60–65]. One group is used to
verify the model, while the other 9 are utilized for training; 70% of the data set was utilized
in the training process of the models, while the remaining 30% of the data were used for
testing and validation of the models. If the R2 value is high and the errors, i.e., the MAE
and RMSE values, are low, then the model is considered more accurate. To achieve a decent
outcome, the technique must be performed 10 times. The model’s high accuracy is due to
this complete methodology. In addition, as shown in Table 2, all models were subjected
to statistical analysis of errors, namely MSE and RMSE. The response of the models to the
estimate was evaluated by statistical analysis, employing Equations (1) and (2), taken from
the literature [66]:

MAE =
1
n

n

∑
i=1
|xi − x| (1)

RMSE =

√√√√
∑

(
ypred − yre f

)2

n
(2)

where n = the total number of sampled data, x, yre f = reference values of the data sample,
and xi, ypred = model-predicted values.

Figures 9–11 show the distributions of MAE, RMSE, and R2 for the k-fold cross-
validation of models SVR, SVR AdaBoost, and SVR bagging, respectively. As shown in
Figure 9, the SVR model’s best, lowest, and average R2 values are 0.80, 0.55, and 0.69,
respectively. The greatest, lowermost, and average R2 values for the AdaBoost model were
0.90, 0.60, and 0.76, respectively, as illustrated in Figure 10. The greatest, least, and R2

average values for the bagging model were 0.92, 0.61, and 0.79, respectively, as presented
in Figure 11. When the error values for the SVR model were compared, the average MAE
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and RMSE were 9.04 and 13.62, respectively. The AdaBoost model had average MAE and
RMSE values of 8.18 and 11.63, respectively, whereas the bagging model had average MAE
and RMSE values of 6.51 and 8.39, respectively. The AdaBoost model with the lowermost
error and the highest R2 value performed the best in terms of predicting outcomes. Table 3
shows the k-fold analysis findings for the utilized models, including the MAE, RMSE, and
R2 values.

Table 2. Statistical analysis of the approaches used.

Models MAE (MPa) RMSE (MPa) R2

Support vector
regression 7.0 9.1 0.81

SVR AdaBoost 4.4 8.0 0.96
SVR bagging 6.2 7.6 0.87
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Figure 10. K-fold cross-validation representation for the AdaBoost model.



Materials 2022, 15, 4209 12 of 18

Materials 2022, 15, x FOR PEER REVIEW 12 of 18 
 

 

 

Figure 10. K-fold cross-validation representation for the AdaBoost model. 

 

Figure 11. K-fold cross-validation representation for bagging model. 

4.3. Sensitivity Analysis 

The goal of this study was to determine how input factors affect the forecasting of 

SFRC compressive strength. The input factors showed a significant impact on the pre-

dicted result [67]. Figure 12 depicts the impact of input variables on the prediction of 

SFRC’s compressive strength. The investigation found that silica fume was the utmost 

essential element, accounting for 21.9% of the total, along with cement (16.2%) and super 

plasticizer (16.4%). The other input factors had a smaller impact on the prediction of the 

compressive strength of SFRC, with coarse aggregate accounting for 13%, water 15.2%, 

and sand 6%. The number of input factors and data points utilized in the design of the 

models were proportional to the results of the sensitivity analysis. The influence of input 

variables on the model output was checked using Equations (3) and (4). As can be seen in 

Figure 12, cement, silica fume, water and superplasticizer had the greatest effect on the 

compressive strength. This is obvious as these are the main factors contributing to the 

strength development of SFRC, with cement and silica fume especially increasing the 

compressive strength due to their hydration and pozzolanic activity. Similarly, water and 

0.00

0.20

0.40

0.60

0.80

1.00

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

V
al

u
es

 i
n
 l

in
e

V
al

u
es

 i
n
 b

ar
s

K-fold Validation

SVR AdaBoost 

MAE RMSE R2

0.00

0.20

0.40

0.60

0.80

1.00

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

V
al

u
es

 i
n
 l

in
e

V
al

u
es

 i
n
 b

ar
s

K-fold Validation

SVR Bagging
MAE RMSE R2

Figure 11. K-fold cross-validation representation for bagging model.

Table 3. K-fold cross-validation results.

K-Fold
SVR SVR AdaBoost SVR Bagging

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

1 3.02 3.11 0.78 3.62 8.29 0.91 6.79 8.84 0.72
2 3.43 4.10 0.75 3.43 4.29 0.94 4.81 5.28 0.82
3 9.49 11.80 0.30 8.24 9.65 0.70 11.15 14.15 0.48
4 2.72 4.73 0.79 3.49 4.29 0.94 4.14 5.93 0.87
5 12.69 14.10 0.28 4.58 7.89 0.87 5.93 7.31 0.75
6 4.36 6.76 0.77 7.82 8.76 0.79 4.88 6.88 0.83
7 7.73 10.50 0.60 9.40 10.70 0.69 8.72 11.46 0.62
8 2.95 4.07 0.81 4.79 5.83 0.81 4.66 5.45 0.83
9 3.52 5.52 0.77 3.23 4.90 0.94 4.83 5.53 0.81

10 9.76 11.17 0.30 2.46 3.49 0.96 5.16 7.46 0.79

4.3. Sensitivity Analysis

The goal of this study was to determine how input factors affect the forecasting of
SFRC compressive strength. The input factors showed a significant impact on the predicted
result [67]. Figure 12 depicts the impact of input variables on the prediction of SFRC’s
compressive strength. The investigation found that silica fume was the utmost essential
element, accounting for 21.9% of the total, along with cement (16.2%) and super plasticizer
(16.4%). The other input factors had a smaller impact on the prediction of the compressive
strength of SFRC, with coarse aggregate accounting for 13%, water 15.2%, and sand 6%.
The number of input factors and data points utilized in the design of the models were
proportional to the results of the sensitivity analysis. The influence of input variables on the
model output was checked using Equations (3) and (4). As can be seen in Figure 12, cement,
silica fume, water and superplasticizer had the greatest effect on the compressive strength.
This is obvious as these are the main factors contributing to the strength development of
SFRC, with cement and silica fume especially increasing the compressive strength due to
their hydration and pozzolanic activity. Similarly, water and superplasticizer are also main
factors as a decreased w/c ratio results in increased compressive strength. Similarly, coarse
aggregate, steel fiber volume, and length also contribute to the strength, as explained in
Section 2.

Ni = fmax(xi)− fmin(xi) (3)
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Si =
Ni

∑n
j−i Nj

(4)
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Figure 12. The input variable contribution to the forecast. Cement, water, superplasticizer, silica
fume, coarse aggregate, sand, Vf (volume factor), fiber length, and fiber diameter.

The highest and lowest projected outputs over the ith output are represented by
fmax(xi) and fmin(xi), respectively.

5. Discussion

This research work aimed to determine how ML methods can be utilized to predict
the compressive strength of SFRC. Learning rates and other features that specifically affect
ensemble approaches can be used as tuning parameters for the model used in the ensemble
techniques. Boosting ensemble models (20 each) with 10, 20, 30, . . . , 200 component
sub-models were developed for base learners in this work, and correlation with high
coefficient values was utilized to identify the best model. The randomization technique
further revealed the statistical importance. The test was carried out by (i) permuting the
data set’s activity values repeatedly, (ii) generating models from the permuted values,
and (iii) comparing the resulting scores to the score of the original model derived from
non-randomized activity values. If the original model is statistically significant, the score
from the permuted data should be significantly higher. Three machine learning approaches
were considered: one individual, i.e., SVR, and two ensemble, i.e., SVR AdaBoost and
SVR bagging. The prediction performance of each approach was evaluated to see which
approach is the most precise in prediction. When compared, the SVR and SVR bagging
models yielded R2 values of 0.81 and 0.87, respectively. The SVR AdaBoost outcome was
more exact, with an R2 value of 0.96. To confirm the efficiency of all models, statistical
analysis and the k-fold cross-validation technique were applied. The models work better
with minimal error levels. The ML techniques frequently take advantage of the vulnerable
intern by developing sub-models trained on data and maximized to enhance the value of R2.
Figures 13 and 14 display the range of R2 values for the sub-models, i.e., the SVR AdaBoost
and SVR bagging approaches. The peak, lowermost, and average R2 values of the AdaBoost
sub-models were 0.96, 0.63, and 0.79, respectively. For the bagging sub-models, the largest,
least, and average R2 values were 0.87, 0.44, and 0.68, respectively. These outcomes indicate
that SVR AdaBoost is more accurate than the bagging sub-models. Sensitivity analysis
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was also carried out to determine how each input parameter affected the SFRC’s predicted
compressive strength. The sensitivity analysis looked at how much each of the 10 input
factors influenced the expected outcome.
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Figure 13. The coefficient of correlation (R2) values of the SVR AdaBoost sub-model.
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6. Conclusions

This research aimed to practice individual and ensembled ML approaches to estimate
the 28-day compressive strength of SFRC. To predict the outcomes, the researchers used
support vector regression (SVR), AdaBoost, and bagging models. The following are the
findings of this investigation:

• Individual approaches were less accurate than EML procedures in forecasting SFRC’s
compressive strength, while the SVR bagging model displayed the highest accuracy.

• The SVR bagging model outperformed the SVR AdaBoost ensembled machine learning
technique in the forecasting of the 28-day compressive strength of SFRC.
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• The SVR, SVR AdaBoost, and SVR bagging models have coefficient of determination
(R2) values of 0.81, 0.96, and 0.87, respectively. All of the models’ outputs are within
acceptable bounds, with little variance from the exact results.

• The models’ performances were demonstrated by the k-fold cross-validation test and
statistical analysis, which revealed that the SVR bagging model outperformed the
other models investigated in terms of prediction.

• To determine how much the input parameters mattered, a sensitivity analysis was
utilized, and it was discovered that cement, water, silica fume, sand, superplasticizer,
coarse aggregate, Vf, fiber length, and fiber diameter contributed 16.2%, 15.2%, 21.9%,
6%, 16.4%, 13%, 8.7%, 2.6%, and 0.6%, respectively, to the outcome predictions.

• The unique ensemble machine learning algorithms, especially that of the SVR bagging
model, can effectively estimate concrete strength qualities without the requirement for
prolonged casting and testing process.

However, other prediction approaches [68–72], such as density functional theory can
be used to understand atomistic details of crack and structural failure (which can be fed
directly into machine learning approaches instead of just obtaining data from the literature).
These approaches can reveal mechanisms for the strength of structures in a more unbiased
way, which should be studied in future. In addition, this research was also limited to
the prediction of compressive strength at 28 days with 10 input parameters and did not
consider specimen size and the curing age of concrete. Indeed, proper database and testing
must be applied as these are vital elements for engineering applications. This study was
based on a wide range of data sets with nine input variables; however, the database and
more input parameters, such as specimen size and curing age, among others, need to be
generated in future for a better response from the employed models.
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