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Abstract—In this paper, we address the problem of video classification

from a set of compressed features. In particular, the properties of

linear random projections in the framework of compressive sensing are

exploited to reduce the task of classifying a given video sequence into a

problem of sparse reconstruction, based on feature vectors consisting of

measurements lying in a low-dimensional compressed domain. This can

be of great importance in decision systems with limited power, processing,

and bandwidth resources, since the classification is performed without

handling the original high-resolution video data, but working directly

with the set of compressed measurements. The experimental evaluation

verifies the efficiency of the proposed scheme and illustrates that the

compressed measurements in conjunction with an appropriate decision

rule result in an effective video classification scheme, which meets the

constraints of systems with limited resources.

I. INTRODUCTION

Modern high-resolution sensing devices, with signal processing and

communication capabilities largely based on the seminal Shannon and

Nyquist studies, have enabled the acquisition, storage, and transmis-

sion of ever increasing amounts of data. Apart from reconstructing

the original signal, several tasks such as detection and classification

are also of paramount importance in signal processing applications.

Focusing on the classification task, the problem consists in finding the

correct class of the sensed signal among a set of candidate classes.

An area which could benefit significantly by the introduction

of efficient computational models is video classification. With the

advent of digital TV and the availability of large digital video

databases, it is desirable to classify and retrieve high-resolution video

content automatically. Moreover, in a remote sensing application, the

potentially limited power, storage, and bandwidth resources require

the efficient representation of the video content in a precise and

compact way for further decision making. A characteristic example

in the later case is the design of unmanned aerial vehicles (UAVs)

and terrestrial sensor networks, which have been increasingly used

in surveillance and reconnaissance applications, where the captured

video is exploited to classify a target of interest.

Techniques like principal component analysis (PCA), independent

component analysis (ICA) and linear discriminant analysis (LDA) [1]

have been employed widely in the framework of signal classification.

At the core of these methods is the extraction of the salient infor-

mation content in a low-dimensional space resulting in an improved

classification performance. The framework of compressive sensing

(CS) [2], acting simultaneously as a sensing and compression pro-

tocol, is based on non-adaptive linear incoherent projections for the

representation and reconstruction of sparse signals. Furthermore, in

contrast to reconstructing the original signal, the task of classification

requires fewer compressed measurements, which have been shown to

preserve the meaningful information of the acquired signal [3]. In this

paper, our goal is to address the problem of video classification by

working directly in the compressed measurements domain. Among

several other applications, the use of sparse representations and/or

compressed measurements have been also exploited successfully for

signal/image classification [4], [5], [6] and face recognition [7], [8],

revealing the advantages of this framework.

The effectiveness of a video classification system is determined

by two factors, namely, i) the extracted feature vector (or signature),

and ii) the selected classifier. Conventional approaches require full

resolution video data for the generation of descriptors, such as, color

histograms, optical flow vectors and shape features, while several

techniques are employed for classification, such as, support vector

machines (SVM), hidden Markov models (HMM), and Bayesian

methods based on maximum a posteriori (MAP) estimation. However,

the above procedures can be highly inefficient in the case of limited-

resource sensing systems. In particular, the onboard processing of

a high-resolution video for the generation of the associated features

may be computationally and power demanding placing significant

burden on the encoder’s hardware, while on the other hand, a large

bandwidth is required to transmit full-resolution data at a base station

for further processing and classification.

In the present work, we address the above drawbacks by intro-

ducing a CS-based video classification approach working directly in

the compressed domain. More specifically, we consider the futuristic

scenario of a sensing system equipped with a single-pixel camera [9],

having the ability to estimate the correct class without demanding

the acquisition of the video data at full resolution. Instead, a suitable

feature vector, associated with the captured video sequence, along

with an appropriate decision rule, are expressed directly in terms of

the compressed measurements.

The paper is organized as follows: in Section II, the standard

CS-based signal model and classification framework are reviewed in

brief. Section III describes in detail the proposed compressive video

classification system, followed by an experimental evaluation of the

classification accuracy in Section IV. Finally, conclusions and further

extensions are outlined in Section V.

II. CS-BASED VIDEO ACQUISITION MODEL

Let V = {x1, . . . ,xR} be a video sequence consisting of R
frames xj , j = 1, . . . , R. For convenience, in the following we

consider that each frame is expressed as a column vector, xj ∈ R
N .

Then, a vector of compressed measurements gj , j = 1, . . . , R is

generated for each frame using a suitable measurement matrix Φ

(for simplicity we use the same matrix for each frame) as follows,

gj = Φxj , (1)

where Φ ∈ R
M×N is a random measurement matrix with M < N .

Common choices for Φ are random matrices with independent and

identically distributed (i.i.d.) Gaussian or Bernoulli entries, whose

columns are normalized to unit ℓ2-norm. In a decision system with

limited resources, some additional requirements should be posed on

the choice of the desired matrix Φ, such as the use of minimal number



of compressed measurements, and the fast and memory efficient com-

putation along with a “hardware-friendly” implementation. A class

of matrices satisfying these requirements, the so-called structurally

random matrices, was introduced recently [10]. The block Walsh-

Hadamard (BWHT) operator is a typical member of this family and

is used in the subsequent evaluation.

The random projections of the frames onto the rows of Φ result

in a low-dimensional representation of the original video sequence,

V
Φ

7−→ {g1, . . . ,gR} . (2)

Notice that with the use of a single-pixel camera the generation

of CS measurements does not require the acquisition of frames at

full resolution, thus reducing significantly the processing and storage

expenses of the sensing device.

In the framework of compressive video classification (CVC), we

consider that the given video sequence belongs to the class c,

where c ∈ {1, . . . , C}. Following a supervised learning approach,

a set of training video samples is obtained for each class, Tc =
{Vc

1, . . . ,V
c
Q}. For simplicity, we consider that the number of train-

ing samples Q is equal for all the classes. Let also T = {T1, . . . , TC}
denote the overall set of training samples. The CVC problem is stated

as follows: Given a low-dimensional signature of the acquired video

sequence, a training dictionary D, and a measurement matrix Φ,

estimate the correct class c ∈ {1, . . . , C}.

III. PROPOSED CVC SYSTEM

A typical classification system consists of two main phases,

namely, a feature extraction phase, where a more compact represen-

tation of the original information is generated in a low-dimensional

space, with the goal of preserving a high discriminative power, and a

classification phase, where the extracted feature vector of the given

signal is compared with the corresponding features of the training

samples by means of a suitable similarity criterion resulting in the

estimated class. In the following sections, the main characteristics of

the two phases are introduced in detail for the proposed CVC system,

which is depicted in Figure 1.

A. Feature extraction

When working directly in the CS domain, a suitable signature for a

given video sequence is given by (2). However, under the assumption

of limited transmission bandwidth, even this representation of reduced

dimensionality may be prohibitive for a large number of frames. A

further reduction of the transmission cost can be achieved via the

fusion of the set of measurement vectors in a single CS feature vector.

More specifically, in the following we consider that a feature vector

(or signature) is assigned to a given video sequence V as follows,

V 7−→ fCS =
1

R

R∑

j=1

gj . (3)

Using the above mapping for the database of training samples T ,

the following training dictionary is formed,

D = [f1CS,1, . . . , f
1

CS,Q, · · · , f
C
CS,1, . . . , f

C
CS,Q] , (4)

where f cCS,l ∈ R
M denotes the feature vector for the l-th training

video of the class c. Similarly, let fCS,query denote the corresponding

feature vector of the query video sequence.

B. Classification methods

Following the feature extraction step, the classification phase is

performed by means of an appropriate decision rule. In the following,

two categories of decision criteria are employed: the first exploits

directly the feature vectors containing the average CS measurements,

while the second is based on the solution of a convex optimization

problem for the recovery of a sparse class-indicator vector.

Regarding the former category, the simplest decision rule for

estimating the optimal class is given by the nearest-neighbor (NN)

criterion defined by

c∗ = arg min
c∈{1,...,C}, ∀ l

‖fCS,query − f
c
CS,l‖

2

2 . (5)

The second classification scheme, which will be employed in the

subsequent evaluation, is the widely used support vector machine

(SVM), originally designed for binary classification. In our case,

the multi-class SVM version is used. More specifically, let D =
{f cCS,l, c}l=1,...,Q, c=1,...,C denote the labeled training data. A way

to solve the problem of multi-class classification is to follow a one-

against-one approach, where an SVM is constructed for every pair of

classes by training it to discriminate them. The number of SVMs to

be trained in this approach is equal to C(C−1)/2. Let also (i, j) be

a pair of classes and dij(y) the associated discriminant function [11].

Then, given the query feature vector fCS,query , if dij(fCS,query) > 0
a vote is assigned to the i-th class, otherwise the vote is given to

the j-th class. The process is repeated for each pair of classes and

finally, the class with the maximum number of votes is assigned to

the query fCS,query . When there are multiple classes with the same

maximum number of votes, the class with the maximum value of the

total magnitude of discriminant functions (TMDF) is assigned to the

query, where the TMDF for the class i is given by

TMDFi(y) =
C∑

j=1, j 6=i

|dij(y)| . (6)

Regarding the later category of classification methods, an alter-

native way to estimate the class of the query video is obtained by

reformulating the classification problem as a problem of recovering an

appropriate sparse vector. More specifically, a class-indicator vector

α is introduced, where

α = [α1

1, . . . , α
1

Q, . . . , α
i
1, . . . , α

i
Q, . . . , α

C
1 , . . . , α

C
Q] ∈ R

CQ .

If the query video belongs to the i-th class, in the ideal case we expect

that its feature vector fCS,query will be similar to the corresponding

training data of the i-th class, or equivalently to the corresponding

columns of the training dictionary D (cf. (4)). Accordingly, the class-

indicator vector has the following Q-sparse structure

α = [0, . . . , 0, αi
1, . . . , α

i
Q, 0, . . . , 0] , (7)

with the non-zero components corresponding to the Q indices of

the i-th class. Thus, the CVC problem is reduced to a problem of

recovering the sparse support of α, which is expressed as the solution

of a convex optimization problem as follows,

α
∗ = arg min

α∈RCQ

‖α‖1 , s.t. ‖fCS,query −Dα‖2 < ǫ . (8)

Numerous algorithms have been proposed for the solution of (8).

Although the choice of the reconstruction algorithm affects the

classification performance, an exhaustive comparison of several CS

methods is beyond the scope of this study. Motivated by its simple



Figure 1. Feature extraction and classification during the training and runtime phases of the proposed CVC architecture.

and fast implementation, the orthogonal matching pursuit (OMP)

algorithm1 [12] is used in the subsequent evaluation.

Notice that in practice, especially in noisy conditions, the recovered

class-indicator vector is not exactly Q-sparse. In this case, an addi-

tional step is applied to obtain the final class estimate by enforcing

the Q-sparsity of α∗ as follows,

c∗ = arg min
c=1,...,C

‖fCS,query −Dδc(α
∗)‖2 , (9)

where δc(α) denotes the block-Kronecker operator, which sets to

zero all the components of α except for these corresponding to the

Q indices of the i-th class, as shown in (7).

We emphasize once again that, in contrast to the standard ap-

proaches for video classification, the proposed one is based explicitly

on the available information in a low-dimensional CS measurements

domain, without requiring the acquisition of video frames at full

resolution, neither for the training nor for the classification phase.

As a result, the significantly reduced processing, storage and trans-

mission costs satisfy the constraints of a decision system with limited

resources, which is the main motivation for this study.

IV. EXPERIMENTAL EVALUATION

In the following, the performance of the proposed CVC method is

evaluated and compared with the classification accuracy when using

the raw intensity values of the original full-resolution frames. In par-

ticular, our database consists of 8 classes from the UCF50 dataset 2,

namely, “Basketball”, “Billiards”, “Playing guitar”, “Playing piano”,

“Rowing”, “Rock climbing indoor”, “Tennis swing” and “Skiing”.

This dataset includes videos categorized in classes corresponding

to different actions and is particularly challenging due to large

variations in camera motion, object appearance and pose, as well as

the illumination conditions. Each class consists of 50 video sequences

with 50 frames per sequence. A preprocessing step is applied on each

frame, by converting into grayscale and downsampling at 128× 128
pixels. For each class, we run 50 Monte-Carlo runs, where in each

run a different separation of the 50 videos in K training and

50 − K testing samples is generated, with K ∈ {12, 24, 36}. The

classification accuracy is expressed in terms of the average success

rate, which is defined by

success rate =
number of correctly classified sequences

total number of query sequences
. (10)

1Matlab code: http://www.di.ens.fr/willow/SPAMS/
2http://www.computervisiononline.com/dataset/ucf50-action-recognition-

realistic-videos

In addition, a distinct block Walsh-Hadamard (BWHT) measurement

matrix Φ is used in each run, while the sampling ratio M/N varies

in [0.01, 0.20].

Figures 2(a), 2(b) and 2(c) show the overall success rate averaged

over the 50 Monte-Carlo runs and the 8 classes, as a function of

the sampling ratio M/N . The constant dashed lines correspond to

the classification accuracy when the intensity of the full-resolution

frames is used to generate the feature vectors, which is independent

from the sampling ratio. Moreover, as mentioned in Section III, three

classification methods are compared, namely, the NN, the multi-

class SVM, and the sparse reconstruction using the OMP. As it was

expected, the classification accuracy increases as the sampling ratio

and the number of training samples increase.

Regarding the classification efficiency of the low-dimensional

compressed features, when compared with the full-resolution ones,

the proposed CVC approach achieves comparable or even superior

classification accuracy even for small sampling ratios. In addition,

we observe that the performance of the NN method is very close

to the performance of the OMP, which is another indication that,

according to the restricted isometry property [2] imposed in the theory

of CS, the low-dimensional random projections via an appropriate

measurement matrix Φ preserve with high-probability the distances

in the original signal space. Finally, in all cases the pairwise voting

approach employed by the multi-class SVM appears to be more robust

in misclassification errors, resulting in a superior performance when

compared with the NN and the OMP, which rather resemble to an

one-against-all comparison among the different classes.

Furthermore, Table I shows the confusion matrix between the 8
classes for M/N = 20% and 36 training samples per class using the

multi-class SVM. We observe that in most cases the classification

accuracy is relatively high. For example Rowing achieved 100%

classification accuracy, while Basketball and Rock climbing where

also correctly classified in most cases. Meanwhile in other classes

such as Billiards and Tennis are more challenging. One reason for this

type of confusion can be attributed to the lack of color information

and the use of the luminance component only.

V. CONCLUSIONS AND EXTENSIONS

In the present work, a compressive video classification method is

introduced. More specifically, the design of the proposed CVC system

is primarily based on the assumption of limited resources, where the

video data are captured directly in the CS domain using a single-

pixel camera. A supervised learning approach is followed, where each
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Figure 2. Total mean success rate as a function of the sampling ratio, for 8 classes and three methods (NN, SVM, OMP) using CS and raw intensity features.

Table I
CONFUSION MATRIX FOR THE SVM METHOD WITH M/N = 20% AND 36

TRAINING SAMPLES.
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Basketball 90.00 4.29 0 4.29 0 0 1.43 0

Billiards 11.43 60.00 0 11.43 0 1.43 12.86 2.86

Guitar 2.86 4.29 84.29 2.86 0 0 5.71 0

Piano 2.86 28.57 0 60.00 0 0 5.71 2.86

Rock climbing 1.43 0 0 1.43 97.14 0 0 0

Rowing 0 0 0 0 0 100.00 0 0

Skiing 5.71 12.86 5.71 2.86 0 0 72.86 0

Tennis 0 2.86 7.14 27.14 0 0 0 62.86

column of the training dictionary is formed by simply averaging the

CS measurement vectors over all the frames of a given training video

sequence. Finally, the estimated class is obtained by means of typical

classification methods, namely, the NN and the multi-class SVM.

An alternative way is also tested, where the classification problem is

reduced to a problem of reconstructing a sparse class-indicator vector

as the solution of a convex optimization problem. The experimental

results revealed that the classification performance is robust to the

number of samples captures, where even at very low sampling rates

at the order of 1%, significantly smaller than the rates required for

solving the problem of sparse reconstruction. Moreover, it was shown

that even the simple NN algorithm was quite efficient, achieving

a classification accuracy very close to the accuracy of a CS-based

sparse reconstruction approach using the OMP.

In the current implementation we do not exploit the sparsity of

the original video data in an appropriate transform domain (DCT,

DWT), which is at the core of the CS framework. As a direct

extension, we expect that the sparsification of the original data before

their embedding in the low-dimensional CS domain can enhance

the discriminative power of the generated features, and consequently

the classification accuracy. This can be done by employing standard

linear dimensionality reduction methods, such as the PCA, adapted

to the constraint that we work directly with the CS measurements

without having access to the original information. Moreover, the

generation of CS features using the color information can also

increase the classification margin among the several classes. Finally,

the property of common sparse support of the class-indicator vector

for the video sequences belonging to the same class can be exploited

in the framework of group sparse reconstruction, which has been

shown recently to achieve a superior reconstruction performance in

comparison to the single sparse reconstruction.
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