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Abstract: In a 2m−p design of resolution IV, some two-factor interactions (2fi’s)

may be important and should be estimated without confounding with other 2fi’s.

Four classes of compromise plans that specify certain 2fi’s to be important have

been discussed in the literature. Compromise plans are said to be clear if they

are of resolution IV and all the specified 2fi’s are clear. A 2fi is clear if it is not

aliased with any main effect or any other 2fi. Clear compromise plans allow joint

estimation of all main effects and these clear 2fi’s under the weak assumption that

all three-factor and higher order interactions are negligible. In this paper, we study

the existence and characteristics of clear compromise plans of classes one to four,

and give a catalog of clear compromise plans of 32 and 64 runs.
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1. Introduction

Regular two-level fractional factorial designs are useful for identifying im-

portant factors in many scientific investigations. Such designs are commonly

referred to as 2m−p designs, which have m two-level factors, with 2m−p runs. A

2m−p design is determined by its defining contrast subgroup, which consists of

2p − 1 defining words. The number of letters in a word is its length. The length

of the shortest word in the defining contrast subgroup is called the resolution

of a design (Box and Hunter (1961)). For a design of resolution at least V, all

main effects and two-factor interactions (2fi’s) are estimable if all three-factor

and higher order interactions are negligible. However, such designs often require

more runs than one can afford. Thus resolution IV designs are often used for

estimating main effects and some 2fi’s.

A compromise plan allows estimation of all main effects and some specified

2fi’s, provided that all other effects are negligible. Addelman (1962) studied

three classes of compromise plans and Sun (1993) considered a fourth class. To

describe these designs, suppose that the m factors are divided into two groups,

G1 of size m1 and G2 of size m2 = m − m1. Let G1 × G1 be the set of 2fi’s
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among the factors in G1, G2 × G2 the set of 2fi’s among the factors in G2, and

G1 ×G2 the set of 2fi’s between the factors in G1 and those in G2. Then the sets

of specified 2fi’s to be estimated in compromise plans of classes one to four are

given respectively by: (1) G1 × G1, (2) G1 × G1 and G2 × G2, (3) G1 × G1 and

G1 × G2, and (4) G1 × G2.

For some applications, however, the assumption that all other effects are

negligible for a compromise plan may be too strong to be justified. Now consider

compromise plans of resolution IV. If the 2fi’s specified by a compromise plan of

resolution IV are clear, then this design allows estimation of all main effects and

these 2fi’s under the weaker assumption that all three-factor and higher order

interactions are negligible. We call these designs clear compromise plans, because

the specified 2fi’s are clear. A 2fi is said to be clear, if it is not aliased with any

main effect or any other 2fi (Wu and Chen (1992) and Wu and Hamada (2000)).

In this paper, we study the existence and characteristics of clear compromise

plans of classes one to four, and give a catalog of clear compromise plans of 32

and 64 runs.

2. Some Theoretical Results

Let k = m− p and M(k) be the maximum value of m for which there exists

a 2m−p design of resolution at least V. For example, M(5) = 6 and M(6) = 8

(Draper and Lin (1990)). For m ≥ M(k) + 1, Chen and Hedayat (1998) showed

that there exists a 2m−p design of resolution IV that has clear 2fi’s if and only

if m ≤ 2k−2 + 1. Thus we only need consider 2m−p deigns of resolution IV with

M(k) + 1 ≤ m ≤ 2k−2 + 1 for studying clear compromise plans. Note that there

are at least four factors (m ≥ 4) in a resolution IV design because it must have

a word of length 4. Then we have 4 ≤ m ≤ 2k−2 + 1, and thus k ≥ 4. Since

M(4) = 5, the inequalities M(k) + 1 ≤ m ≤ 2k−2 + 1 do not hold for k = 4.

Therefore we only need consider k ≥ 5.

The following lemma will be used to show that there is no clear compromise

plan of class two. Throughout this paper, the term “distinct 2fi’s” refers to those

2fi’s that are not aliased with each other.

Lemma 1. For a 2m−p design of resolution IV, if all 2fi’s in G1 ×G1 are clear,

then all 2fi’s in G1 × G2 are distinct.

Proof. If there exist two 2fi’s in G1×G2 that are aliased with each other, then we

have aibu = ajbv for some ai, aj in G1 and some bu, bv in G2. Thus aiaj = bubv,

which implies that aiaj is not clear. This contradicts the assumption.

Corollary 1. There exists no 2m−p clear compromise plan of class two.
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Proof. If there exists a clear compromise plan of class two, all its 2fi’s in G1×G1

and G2 × G2 are clear. Then there exist two 2fi’s in G1 × G2 that are aliased

with each other. This contradicts the result of Lemma 1.

Corollary 2. For a 2m−p design of resolution IV, if all 2fi’s in G1 × G1 are

clear, there are at least m1m2 − m2(m2 − 1)/2 additional clear 2fi’s.

Proof. By Lemma 1, all 2fi’s in G1 × G2 are distinct. Thus any two 2fi’s in

G1 × G2 that are not clear must be aliased with two distinct 2fi’s in G2 × G2.

Since there are at most m2(m2 − 1)/2 distinct 2fi’s in G2 ×G2, there are at least

m1m2 − m2(m2 − 1)/2 clear 2fi’s in G1 × G2.

In the proof of Lemma 2 and later, we use the term “columns” (or “column”)

in the sense of Chen, Sun and Wu (1993).

Lemma 2. For a 2m−p clear compromise plan d of class one, m1 ≤ M(k)− 2 ≤

m − 3.

Proof. Since design d is of resolution IV, there exists a word of length 4 in

the defining contrast subgroup. Since all the 2fi’s in G1 × G1 are clear, any two

factors in G1 cannot both occur in a defining word of length 4, implying that a

word of length 4 must contain at least three factors from G2. Thus m2 ≥ 3, and

we can choose two factors, say b1 and b2, from G2. Let G1 = {a1, . . . , am1
} and

consider a new design d1 that consists of the m1 +2 columns a1, . . . , am1
, b1, and

b2. With at least three factors from G2, any word of length 4 for design d cannot

occur in the defining contrast subgroup of design d1, which is a subset of the

defining contrast subgroup of design d. Thus d1 is of resolution at least V. Then

by the definition of M(k), m1 +2 ≤ M(k), or m1 ≤ M(k)− 2. Also, since design

d is of resolution IV, we have m ≥ M(k) + 1. Thus m1 ≤ M(k) − 2 ≤ m − 3.

The following three theorems provide upper bounds on m1 for clear compro-

mise plans of classes one, three and four, respectively. (For class four, we assume

m1 ≤ m2; otherwise, the bound is on min (m1,m2).)

Theorem 1. For a 2m−p clear compromise plan of class one, we have

m1 ≤ min{M(k) − 2,m − 1/2 − (1/2)(4m2 + 4m − 2k+3 + 9)1/2}

if 4m2 + 4m − 2k+3 + 9 ≥ 0, and m1 ≤ M(k) − 2 if 4m2 + 4m − 2k+3 + 9 < 0.

Proof. It follows from Lemma 1 that all the main effects and 2fi’s in G1×G1 and

G1×G2 are distinct. Thus they correspond to m+m1(m1−1)/2+m1m2 distinct

alias sets of a saturated design with 2m−p = 2k runs and 2k − 1 columns. Thus

m + m1(m1 − 1)/2 + m1m2 ≤ 2k − 1. Since m2 = m −m1, we have m2
1 − (2m −

1)m1 +2k+1 − 2m− 2 ≥ 0. Thus, m1 ≤ m− 1/2− (1/2)(4m2 +4m− 2k+3 +9)1/2
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if 4m2 + 4m − 2k+3 + 9 ≥ 0, since m1 ≤ m − 3 by Lemma 2. Theorem 1 then

follows from Lemma 2.

Theorem 2. For a 2m−p clear compromise plan of class three, we have

m1 ≤ min{M(k) − 3,m − 3/2 − (1/2)(4m2 + 4m − 2k+3 + 9)1/2}

if 4m2 + 4m − 2k+3 + 9 ≥ 0, and m1 ≤ M(k) − 3 if 4m2 + 4m − 2k+3 + 9 < 0.

Proof. The results in Theorem 2 follow from Theorem 1 by observing that, for

a clear compromise plan of class three, moving one factor from G2 to G1 gives a

clear compromise plan of class one with one more factor in G1.

Theorem 3. For a 2m−p clear compromise plan d of class four, if m1 ≤ m2,

then m1 ≤ m/2 − (1/2)(m2 + 8m− 2k+2 − 4)1/2 if m2 + 8m − 2k+2 − 4 ≥ 0, and

m1 ≤ m/2 if m2 + 8m − 2k+2 − 4 < 0.

Proof. Let G1 = {a1, . . . , am1
} and G2 = {b1, . . . , bm2

}. Since design d is of res-

olution IV and all 2fi’s in G1 ×G2 are clear, a1a2, a1a3, . . . , a1am1
, b1b2, b1b3, . . .,

b1bm are (m1 − 1) + (m2 − 1) distinct 2fi’s. Also note that all the main effects

and 2fi’s in G1 × G2 are clear. Thus all these main effects and 2fi’s are dis-

tinct, and hence correspond to m + m1m2 + (m1 − 1) + (m2 − 1) distinct alias

sets. The rest of the proof follows from the proof of Theorem 1, leading to

m2
1 − mm1 + 2k − 2m + 1 ≥ 0. Then the results in Theorem 3 follow by noting

that m1 ≤ m2.

The following three propositions give the exact upper bounds on m1, Max

(m1), for the special case of m = 2k−2 + 1 for clear compromise plans of classes

one, three and four, respectively.

Proposition 1. For a 2m−p clear compromise plan of class one with m =

2k−2 + 1, we have Max(m1) = 3.

Proof. Let f(m1) = m2
1 − (2m − 1)m1 + 2k+1 − 2m − 2. It follows from the

proof of Theorem 1 that f(m1) ≥ 0. Since f ′(m1) = 2m1 − (2m − 1) < 0, it

follows that f(m1) is decreasing for m1. For m = 2k−2 + 1, we have f(3) = 2

and f(4) = 8 − 2k−1 < 0 for k ≥ 5. Hence we must have m1 ≤ 3 for f(m1) ≥ 0

to hold. At the end of this section, we use the designs constructed by Tang,

Ma, Ingram and Wang (2002) to obtain clear compromise plans of class one with

m = 2k−2 + 1 and m1 = 3. Thus Max(m1) = 3.

Proposition 2 below follows from Proposition 1, the observation in the proof

of Theorem 2, and the designs discussed at the end of this section. The proofs

of Propositions 3 and 4 are similar to the proof of Proposition 1, and are thus

omitted.
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Proposition 2. For a 2m−p clear compromise plan of class three with m =

2k−2 + 1, we have Max(m1) = 2.

Proposition 3. For a 2m−p clear compromise plan of class four with m =

2k−2 + 1, if m1 ≤ m2 then Max(m1) = 2.

Proposition 4. For a 2m−p clear compromise plan of class four with k ≥ 6 and

m = 2k−j + 2j − 4, where 3 ≤ j ≤ k/2, if m1 ≤ m2 then Max(m1) = 2j − 2.

As an example for Proposition 4, for k = 6 and j = 3, we have m =

2k−j + 2j − 4 = 12 and Max(m1) = 2j − 2 = 6.

Summarized below are the clear compromise plans that are used to establish

the exact upper bounds on m1 in Propositions 1 to 4. These designs are obtained

from Tang, Ma, Ingram and Wang (2002).

(1) For m = 2k−2 + 1, Tang et al. (2002) constructed resolution IV designs with

G1 = {a1, a2} and G2 = {b1, . . . , bm−2} such that all 2fi’s in G1 × G1 and

G1 ×G2 are clear. These designs are clear compromise plans of classes three

and four with m1 = 2, and can be used to prove Propositions 2 and 3. If

we move any one factor, say bj, from G2 to G1, we obtain clear compromise

plans of class one with G1 = {a1, a2, bj}, which are used to prove Proposition

1.

(2) For m = 2k−j +2j − 4 and k ≥ 6, where 3 ≤ j ≤ k/2, Tang et al. (2002) con-

structed resolution IV designs with G1 = {a1, . . . , am1
}, G2 = {b1, . . . , bm2

},

m1 = 2j − 2, and m2 = 2k−j − 2, such that all the 2fi’s in G1 × G2 are clear.

These designs are clear compromise plans of class four with m1 = 2j −2, and

can be used to prove Proposition 4.

3. A Catalog of Clear Compromise Plans of 32 and 64 Runs

As noted in Section 2, for clear compromise plans, we only need consider

resolution IV deigns with k ≥ 5 and M(k) + 1 ≤ m ≤ 2k−2 + 1. For example,

this requires that 7 ≤ m ≤ 9 for k = 5 (32-run designs), and that 9 ≤ m ≤ 17

for k = 6 (64-run designs). Chen, Sun and Wu (1993) gave a complete catalog

of all non-isomorphic designs of 16, 32 and 64 runs. (Two designs are defined to

be isomorphic if one can be obtained from the other by permuting the columns,

switching the signs, or a combination of the above.) Thus we can use that catalog

to search for 32- and 64-run clear compromise plans of classes one, three and four.

The resulting designs are given in Tables 1 to 3. (Recall that clear compromise

plans of class two do not exist, as concluded in Corollary 1.)

In these tables, “parent design” is the design from Chen, Sun and Wu (1993)

that gives the listed clear compromise plan, and “m1” is the maximum number

of factors in G1 for the parent design (except for the design (11-5.1) in Table 3,

where Max(m1) = 5). Note that the clear compromise plans in Tables 1 and 2
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are also of classes one and four. Clear compromise plans of class one can also

be obtained from Tables 1 and 2 by moving any one factor in G2 to G1. Many

other clear compromise plans can be obtained from Tables 1 and 2 by moving

one or more factors from G1 to G2, and from Tables 1 to 3 by dropping one or

more factors in G1∪G2. For example, clear compromise plans with 12 ≤ m ≤ 16

are not included in Table 2, but can be obtained from those with 17 factors by

dropping 17 − m factors in G2.

Table 1. 32-run clear compromise plans of class three.

m Parent design m1 Columns in G1 Columns in G2

7 7-2.1 3 (8, 16, 27) (1, 2, 4, 7)

9 9-4.2 2 (16, 30) (1, 2, 4, 7, 8, 11, 13)

Table 2. 64-run clear compromise plans of class three.

m Parent design m1 Columns in G1 Columns in G2

9 9-3.1 5 (8, 16, 27, 32, 45) (1, 2, 4, 7)

10 10-4.3 4 (16, 29, 32, 51) (1, 2, 4, 7, 8, 11)

11 11-5.6 3 (29, 32, 62) (1, 2, 4, 7, 8, 11, 16, 19)

17 17-11.6 2 (32, 63) (1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21,

22, 25, 26, 28)

Table 3. 64-run clear compromise plans of class four.

m Parent design m1 Columns in G1 Columns in G2

11 11-5.1 4 (16, 29, 32, 45) (1, 2, 4, 7, 8, 11, 51)

11 11-5.10 4 (16, 30, 32, 46) (1, 2, 4, 7, 8, 11, 13)

12 12-6.1 6 (1, 2, 4, 7, 8, 11) (16, 29, 32, 45, 51, 62)

To illustrate how to use these tables, we consider using a 32-run design to

study seven factors A, B, C, D, E, F and G, with all the main effects and 2fi’s

among factors A, B, C and D to be estimated. The design (7-2.1) in Table 1

can be used, as long as we assign any three factors from A, B, C and D to the

columns in G1. We now consider using a 64-run design to study nine factors

A, B, C, D, E, F , G, H and J . To estimate all the main effects and the 2fi’s

that contain at least one of factors A, B, C and D, without confounding with

other 2fi’s, we can use the design (9-3.1) with m = 9 and m1 = 5 in Table 2, by

assigning factors A, B, C and D to any four columns in G1.

In the above tables, the designs (7-2.1), (9-3.1), (11-5.1) and (12-6.1) are the

only minimum aberration (MA) designs. In fact, most of the MA designs given

by Chen, Sun and Wu (1993) do not give clear compromise plans with Max(m1).
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The exceptions are the following: (1) the 32-run MA designs with m = 7 and
8, and the 64-run MA design with m = 9, which give clear compromise plans of
classes one, three, and four with Max(m1); and (2) the 64-run MA designs with
m = 11 and 12, which give clear compromise plans of class four with Max(m1).
In all these cases, the MA designs are also designs with maximum number of
clear 2fi’s (called MaxC2 designs by Wu and Wu (2002)). On the other hand, for
32-run designs with m = 9 and 64-run designs with 14 ≤ m ≤ 17, there are also
MaxC2 designs in Chen, Sun and Wu (1993) that give clear compromise plans
of classes one, three, and four with Max(m1). Thus, clear compromise plans are
more related to MaxC2 designs than to MA designs.
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