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Abstract

The aim of this paper is to give a survey on several well-known compromise
values in cooperative game theory and its applications.
Special attention is paid to the 7-value for TU-games, the Raiffa-Kalai-
Smorodinsky solution for bargaining problems, and the compromise value for NTU-

games.



1 Introduction

Since the introduction of cooperative games by von Neumann and Morgenstern in 1944,
the problem most extensively studied in cooperative game theory is how to divide the
total earnings of the grand coalition if all players cooperate.

Many solution concepts have been proposed to handle these problems. Well-known
examples are the core, the Shapley value and the nucleolus in games with transfer-
able utility (TU-games), the core and the Shapley NTU-value in non-transferable utility

games (NTU-games), and the Nash bargaining solution in cooperative bargaining theory.

The aim of this paper is to give a survey on a special type of solution concepts, called
compromise values. A compromise value is a solution concept which assigns to each game
a value that is based on two vectors, the so-called upper and lower values. Prominent
examples of compromise values are the r-value for TU-games, the compromise value for

NTU-games, and the Raiffa-Kalai-Smorodinsky solution for bargaining problems.

The paper is organized as follows. First, in section 2 we recall some basic definitions and
solution concepts in TU-games. Most attention is paid to the 7-value introduced by Tijs
(1981). The 7-value plays a central role in section 3, where we discus several properties
and axiomatic characterizations of the r-value.

In section 4 we consider bargaining problems. Particularly, we are interested in the
Raiffa-Kalai-Smorodinsky solution introduced by Raiffa (1953) and characterized by
Kalai and Smorodinsky in 1975.

Section 5 is devoted to compromise values in NTU-games. We discuss two extensions of
the 7-value to NTU-games introduced by Borm et al. (1992), namely the compromise
value and the NTU 7-value.

In section 6 we consider compromise values in several applications of cooperative game
theory, and compare the outcomes with outcomes of other economic or game theoretic
solution concepts. We consider the following applications in economics and operations
research: cost allocation theory, airport games, bankruptcy problems, big boss games,
exchange markets, weighted graph games and sequencing games.

Finally, we conclude this paper in section 7 with some remarks and open problems.



2 TU-games

In this section we examine compromise values for TU-games. We start with some basic

definitions.

A transferable utility game or TU-game is an ordered pair (N,v) where N is a finite
set of players and v : 2V — R is a map assigning to cach coalition S € 2V a real number
v(S), called the worth of S, and where v(@) := 0.

Often a TU-game (N, v) will be identified with the function v. The class of all TU-games
with player set N is denoted by GV, and by G we denote the class of all TU-games.

A TU-game v is called conver if for all coalitions S, T € 2V

o(S)+v(T) < v(SUT)+v(SNT).

One of the main topics dealt with in cooperative game theory is, given a game v, to
divide the amount v(N) between the players if the grand coalition N is formed.

A payoff vector is a vector x € RN which is efficient, i.e., Yien T = v(N). Here z;
represents the payoff to player i € N. A payoff vector z € R" is called an imputation if
x; > v({i}) for all : € N. The set of all imputations of the game v is denoted by [(v).

The core of vis the set

C(v) = {z € I(v) | 3z > v(S) for all S € 2"}.

€S

If z € C(v), then no coalition S # N has an incentive to split off if z is the proposed
payoll vector, because the total amount z(S) := ¥ ,cs 7, allocated to S is not smaller
than the amount v(S) which they can obtain by forming a subcoalition.

The core of a game can be empty, but it is shown by Shapley (1971) that if v is convex,
then C(v) # 0. Games with a non-empty core are called balanced. The class of balanced

TU-games with player set N is denoted by BV.

Since the introduction of TU-games in von Neumann and Morgenstern (1944) many
solution concepts have been proposed to allocate the amount v(N) in a fair way between
the players. Formally, a solution concept on a class A C (i is a map which assigns to each

TU-game (N,v) € A a vector in RV or a set of vectors in RY. The imputation set and
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the core are examples of (multivalued) solution concepts. Also many one-point solution
concepts, which assign Lo a game v a unique vector, have been proposed. A one-point
solution concept is also called a rule or a value. The most well-known values are the
Shapley value introduced by Shapley (1953) and the nucleolus introduced by Schmeidler
(1969).

The Shapley value ®(v) € RN of a game v € GV is a weighted average of the marginal

contributions of players to coalitions. Formally, the Shapley value of v is defined by

(S = DN -1 - |S])!
IN|!

(v(SuU {i}) —v(S)) forallie N.

The nucleolus is defined on the class of games with non-empty imputation set. Let
v € GN with I(v) # 0 and let € RY and § € 2V, The ercess of S w.r.l. z, E¥(S,z),

is defined as

E*(S,z) := v(S) — z(S).

E*(S, z) measures the complaint of coalition S against z.

Let ©(z) be the 2I¥|-tuple whose components are the excesses E¥(S,z), § C N, arranged
in a nonincreasing order, i.e., ©,(z) > 0,(z) whenever 1 <1 < j < 2V, ©(z) is the
excess vector (complaint vector) of z. The nucleolus of v, n(v), is the set of all imputations
z € I(v) satisfying

O(x) <1 O(y) for all y € I(v).!

So the nucleolus has the property that it minimizes the maximal complaint. Schmeidler

(1969) proved that the nucleolus of a game always consists of one point.
A third value for TU-games is the T-value introduced by Tijs (1981) for quasi-balanced

games. The 7-value of a game is a compromise between an upper and a lower value for
the game. Let v € GN be a TU-game. The vector M(v) € RV with coordinates

Mi(v) := v(N) — v(N '\ {i})

N
<, denotes the lexicografic order on R? .



is called the upper value of v. M;(v) can be regarded as the maximal payoff player i can
expect to get: if he claims more, then it is advantageous for the other players to exclude
him from the grand coalition. M;(v) is also called the utopia payoff for player i.

Let i € N and S € 2V with i € S. We calculate what remains for player i if S forms
and all other players in S obtain their utopia payoff. The remainder of i € S, R¥(S,1),
is defined by

R(S,i):=v(S)— 3 M;v).
JES(3)

The vector m(v) € R" with coordinates
m;(v) = max R"(S,1)

is called the lower value of v. m;(v) denotes the minimal right of player i: he can
guarantee himselfl this payoff by offering the members of a suitable coalition S, for which
the maximum is achieved, their utopia payoff and then m;(v) remains for himself.

A game v € GV is called quasi-balanced iff

m(v) < M(v) and Y mi(v) < v(N) < 3 Mi(v).
ieN iEN

The class of all quasi-balanced games with player set N is denoted by QBY. That
BN c QB follows from the following theorem proved by Tijs and Lipperts (1982).

Theorem 2.1. Let v € BV, Then for all z € C(v), we have

m(v) <x < M(v).

For a game v € QB" the 7-value of v, denoted by 7(v), is the unique payoff vector on

the line segment in R™ with end points m(v) and M(v). Thus,

T(v) := m(v) + a(M(v) — m(v)),



where a is such that 3 ;e n 7i(v) = v(N).

Example 2.2. Let (N,v) be the 3-person game with N := {1,2,3} and
w({1}) = v({2}) =0, v({3}) = v({1,2}) = 100,
v({1,3}) = 200, v({2,3}) = 300, v(N) = 400.
Then M(v) = (100,200, 300),
ma(v) = max{u({1}), v({1,2) — My(u), v({1,3}) — Ms(v), v(N) = My() — Ma(v)} =
max{0,—100,-100,—100} = 0, m3(v) = 0, and mz(v) = 100.
It follows that
(v) = (0,0, 100) + (100, 200, 200),
where a is such that 3;en 7i(v) = 400. llence, a = £ and 7(v) = (60, 120, 220).

Note that for this game ®(v) = (66%,1162,2162) and n(v) = (50, 125, 225).
One easily verifies that in this case the 7-value, the Shapley value and the nucleolus all

belong to the core.

Theorem 2.1 illustrates that the 7-value of a balanced game is a compromise between
an upper and lower bound for the core. Tijs (1981) gives several classes of TU-games
for which these bounds are sharp, e.g. the class of convex games. A compromise value
based on sharp bounds for the core is the g-value introduced in Bondareva (1988), and
Bondareva and Driessen (1990). For convex games the T-value and the S-value coincide.
Another value for TU-games which is based on lower and upper values is discussed by
van Heumen (1984), who uses a (less sharp) upper bound for the core proposed by Milnor
(1952). Also van den Brink (1989) considers values for games which are based on upper
and lower vectors.

A value for transferable cost games that is based on upper and lower bounds for the
core, is the so-called alternate cost avoided (ACA) method. This method, proposed in
the 1930’s by a consultant of the Tennessce Valley Authority (TVA), will be further
studied in section 6.

Driessen and Tijs (1983) provided an alternative approach of calculating the r-value
of quasi-balanced games by introducing the gap [unction.
Let v € GN. The gap function of v, g* : 2V — R", is defined by

g*(S) := Y Mi(v) — v(S) for all S €2V,

1ES



The gap ¢"(S) of coalition S is the difference between the sum of the utopia payoffs
of the players in § and the worth of coalition S. The concession vector A(v) € R is
defined by

Ai(v) == ér;}snsg"(S) for all 1 € N.

The interest of g¥ and the vector A(v) follows from the next theorem.
Theorem 2.3. (Driessen and Tijs (1983))

(i) A(v) = M(v) — m(v) for every v € GV
(i) @BY = {v e GV | g" > 0, Tien Ai(v) > ¢*(N)}
(iii) If v € QBN and g*(N) = 0, then 7(v) = M (v)
(iv) If v € QBN and g*(N) > 0, then 7(v) = M(v) — g*(N)(Tien Ai(v)) ' A(v).

Using gap functions Driessen and Tijs introduced several interesting classes of quasi-
balanced games for which the r-value is easy to compute. Here we only mention the
class of semi-convex games and the class of 1-convex games. For further classes the
reader is referred to Driessen (1988).

A game v € QB" is called semi-convez if g*({i}) = mins.ics ¢*(S) for all i € N. Note
that a game v € QB" is semi-convex if and only if m;(v) = v({i}) for all i € N. Hence,
for semi-convex games the r-value can easily be determined. It is easy to show that

convex games are semi-convex.

Further, a game v € QB is called I-convez if g*(N) = mingcy g*(S).
Theorem 2.4. (Driessen and Tijs (1983)) If v € QB" is 1-convex, then the 7-value and

the nucleolus of v both coincide with the barycenter of the core.

Note the resemblance with the result of Shapley (1971) who showed that for convex

games the Shapley value coincides with the barycenter of the core.

Furthermore, Driessen and Tijs (1992) extended the 7-value to TU-games with coali-
tion structures. A coalition structure in a TU-game is defined to be a partition of the
player set. In games with coalition structures it is assumed that instead of the formation

of the grand coaltion N, the coalitions in the coalition structure will be formed. Hence,



in these games payoff vectors should describe possible divisions of the worth of each
coalition in the coalition structure between the members of this coalition. Roughly, the
idea behind the 7-value for games with coalition structures is simply to compute sepa-
rately for each coalition in the coalition structure the r-value in the subgame induced
by this coalition.

We conclude this section with the remark that Tijs and Driessen (1986a) provided an
extension of the 7-value from the class of quasi-balanced games to the class of games
with a non-empty imputation set, which is based on the principle of imposing taxes on
the formation of non-trivial subcoalitions in a multiplicative way. For more details we
refer to Tijs and Driessen (1986a) and Driessen (1988). The idea behind this extension
plays a role in the paper on linear production games where non-balanced control games
are allowed (cf. Curiel et al. (1988)).

3 Properties and characterizations of the 7-value

In this section we investigate several properties of the r-value on the class of quasi-

balanced games. We start with some basic properties.

Proposition 3.1. The 7-value satisifes the following properties on QBV,
(1) efficiency: Lien i(v) = v(N) for all v € QBN.
(2) individual rationality: 7,(v) > v({i}) for all v € QB" and all i € N.

(3) the dummy player property: 7;(v) = v({i}) for all v € QBN and all dummy players
iin v, i.e., players i € N such that »(SU {i}) = »(S) + v({:}) for all S C N\ {:}.

(4) symmetry: 7;(v) = 7;(v) for all v € QBN and all symmetric players i and j in the
game v, i.e., players i and j such that v(SU{i}) = v(SU{j}) forall S c N\ {i,;}.

(5) covariance: for all v and all w in @QB" with w = kv + a for some k € (0,00)
and a € RY we have f(w) = kf(v) + a. (Here the game kv + a is defined by
(kv + a)(S) := kv(S) +a(S) for all S € 2V).

Shapley (1953) showed that the Shapley value is the unique value on GV which satisfies



the properties (1), (3), (4) and, in addition, addilivily, which mecans that the Shapley
value of the sum of two games with the same player set is the sum of the Shapley values.
However, the Shapley value does not satisfy the individual rationality property. Other
characterizations of the Shapley value can be found in e.g. Young (1985a), Hart and
Mas-Colell (1989).

On the class of games with non-empty imputation set the nucleolus satisfies all properties
mentioned above except additivty. Moreover, the nucleolus is stable, i.e., the nucleolus
of a game belongs to the core, whenever the core is non-empty. The 7-value and the
Shapley value do not satisfy stability. Characterizations of the nucleolus are provided
by Snijders (1991), and by Potters (1991).

The rest of this section is devoted to characterizations of the 7-value. First, theorem 3.2

considers several additional properties of the r-value.

Theorem 3.2. The 7-value satisfies the following properties on QBN

(6) dummy out property: if v € QBN and D C N is the set of dummy players in v,

then 7(vm\p) = 7(v)imp- ?

(7) complementary monotonicity: if v,w € @BV are such that v(T") < w(T) for some
Te2N, T#N,and v(S)=w(S)forall § € 2V, S # T, then 7;(v) > m(w) for
allze N\T.

(8) restricted proportionality: 7(v) is proportional to M(v) if m;(v) = 0 for all i € N.
(9) minimal right property: v(v) = m(v) + r(v — m(v)) for all v € QBV.

The dummy out property and the complementary monotonicity property for the 7-value
are proved in Tijs and Driessen (1986b) and Driessen (1985). Complementary mono-
tonicity of the r-value means that if a game v is changed to a game w by increasing only
the worth of one coalition T # N then, according to the 7-value, no player outside T
does profit from this deviation. The reader can easily verify that also the Shapley value
satisfies the complementary monotonicity property. However, the nucleolus fails to have
this property. For a detailed survey of monotonicity properties of the Shapley value, the
nucleolus, and the 7-value the reader is referred to Driessen (1985), Otten (1990), and
Sagonti (1991).

The restricted proportionality property and the minimal right property are proved in

2y n\p denotes the restriction of v to N\ D.



Tijs (1987) to provide the following characterization of the 7-value.

Theorem 3.3. (Tijs (1987)) The 7-value is the unique value on QB" which satis-
fies efficiency, restricted proportionality and the minimal right property.

Recently, another characterization of the r-value on QBN was provided by Calvo et
al. (1993). In this characterization three additional properties of the r-value play a
role. Namely, bounded aspirations, convexity, and restricted linearity. It turns out that
together with efficiency and covariance these three properties characterize the r-value

on @QBY. For more details on this characterization the reader is referred to Calvo et al.
(1993).

The characterizations of Tijs (1987) and Calvo et al. (1993) are characterizations of
the 7-value on a fixed player set N. Recently, Driessen provided a characterization of
the 7-value on a set of games with a variable number of players, using an axiom of
consistency. For more details on this characterization the reader is referred to Driessen

(1993).

4 Bargaining problems

Also in bargaining theory a well-known compromise solution appears, i.e., the
Raiffa-Kalai-Smorodinsky solution, or shortly, RKS-solution (Raiffa (1953), Kalai and
Smorodinsky (1975)). This solution concept plays a central role in this section.

We start with some basic definitions.

A bargaining problem for N is a pair (C,d) where § # C ¢ R", and d € R" are such
that

(i) C is closed, convex and comprehensive, ie., if z € C and y € RY are such that
y<zthenyeC

(ii) Cq:= {z € C | > d} is bounded
(iii) there is an z° € C' with 2% > d.

By BP" we denote the class of all bargaining problems for N.
The interpretation of a bargaining problem (C,d) is as follows. The players in N try to



reach an agreement on some outcome z € C, yielding utility z; for player i € N. If the
players in N do not reach an agreement, then the disagreement outcome d results with
utility d; for player i € N. Condition (iii) implies that the players will have an incentive
to reach an agreement. The problem of interest is on which outcome should the players
in N agree? Many solutions to handle this problem have been proposed.

A bargaining solution on BPN is a map f : BPY — R" such that f(C,d) € C for all
(C,d) € BPYN. The most well-known bargaining solution is the Nash bargaining solu-
tion introduced by Nash (1950). The Nash (bargaining) solution of a bargaining problem
(C,d) € BPN, denoted N(C,d), is the unique point in Cy; where the function

z— [[(zi—di)
iEN

is maximal.

An alternative bargaining solution, first proposed by Raiffa (1953), and axiomatically
characterized by Kalai and Smorodinsky (1975), is the RKS-solution. This solution is a
feasible compromise between the disagreement point and a utopia point.

Let (C,d) € BP"N be a bargaining problem and let i € N. The utopia point for player i
is the point

u;(C,d) := max{z; | z € Cq}.

The point u(C,d) := (u;(C, d));en is called the utopia point of (C,d). The RKS-solution
of (C,d), denoted by RKS(C,d), is defined as the unique weak Pareto optimal point of
C lying on the line through d and u(C,d). Here, a point z € C is called weak Pareto
optimal in (C,d) if there does not exist a point y € C with y > z. The set of all weak
Pareto optimal points in (C,d) is denoted by W Par(C,d).

Example 4.1. Let N := {1,2}. Consider the bargaining problem (C,d) on N given by

d := (0,0) and
C = {2=(z1,72) € RV |z,<4, 25, + 2, < 8}. See figure 1.

10



1 N(C,d) u(C,d)

RKS(C,d)N"

-;r.= (0,0) 4\

Figure 1.
From figure 1 it immediately follows that N(C,d) = (2,4) and u(C,d) = (4,4). Hence,
RKS(C,d) = (8/3,8/3).

Now we introduce some interesting properties for bargaining solutions.

(i) A bargaining solution f : BPN — RY is called Pareto optimal if for all (C,d) €
BPN we have f(C,d) € Par(C,d):={z € C |y € C,y > z implies y = z}.

(ii) A bargaining solution f : BPY — RY is called weak Pareto optimal if for all
(C,d) € BPN we have f(C,d) € W Par(C,d).

(iii) A bargaining solution f : BPNY — RY is called symmetric if for all (C,d) € BPN
with d; = d; for all i, € N and C such that (¢;)ien € C implies (cq(i))ien € C for
each permutation 7 of N, we have [;(C,d) = f;(C,d) for all i,5 € N.

(iv) A bargaining solution f : BPN — R" has the covariance with affine transfor-
mations property if for all (C,d) € BPN and all affine functions 4 : RV — RV
with A(z) = axz+ 8, = € R", for some a € l{f+ and 8 € R, we have
J(A(C), A(d)) = A(S(C,d)). (Here a * z := (a;z;)ien-)

(v) A bargaining solution f : BPN — RN satisfies independence of irrelevant aller-
natives if for all (C,d), (D,d) € BPN with C C D and f(D,d) € C we have
f(C,d) = f(D,d).

11



(vi) A bargaining solution f : BPY — R" has the (restricted) monotonicity property
if for all (C,d), (D,d) € BPN with C C D and u(C,d) = u(D,d) we have
f(C,d) < f(D,d).

Nash (1950) proved that, in case |N| = 2, the Nash solution is the unique bargaining so-
lution which satisfies the properties (i) (or (ii)), (iii)-(v). Later, this result was extended
to bargaining problems with more than two players.

The main axiom in this characterization is the axiom of independence of irrelevant al-
ternatives, to which much criticism was raised (see, for example Luce and Raiffa (1957),
and Kalai and Smorodinsky (1975)). As an alternative for the independence of irrele-
vant alternatives axiom, Kalai and Smorodinsky (1975) suggested a monotonicity axiom,
which is very much related to the (restricted) monotonicity property (cf. Peters (1992)).
The replacement of the independence of irrelevant alternatives axiom by the (restricted)

monotonicity property leads to

Theorem 4.2. (cf. Kalai and Smorodinsky (1975)) The RKS-solution is the unique
bargaining solution on the class of two player bargaining problems which satisfies the

properties (i) (or (ii)), and (iii), (iv) and (vi).

An alternative characterization of the RKS-solution using a reduced game property was
obtained by Peters et al. (1991). In this paper also the RKS-solution is implemented
by the unique subgame perfect equilibrium of a non-cooperative game in extensive form.
Another non-cooperative game leading to the RKS-solution was developed earlier in

Moulin (1984).

In the next section we will see that, by weakening some of the properties which charac-
terize the RKS-solution for two player bargaining problems, one can obtain an extension

of theorem 4.2 to a class of NTU-games.
5 NTU-games

In this section we consider the more general class of NTU-games introduced by Aumann
and Peleg (1960).

12



A non-transferable utility game or NTU-game is a pair (N, V), where N is a finite set of
players and V' is a map assigning to each coalition S € 2V \ {0} a subset V(S) of R of
attainable payoff vectors. We assume that for each i € N there exists a real number v(z)
such that V({i}) = {z € R | z < v(i)}. Further, we assume that for each S € 2V \ {#}
the following properties hold

(i) V(S) is a non-empty, closed and comprehensive subset of RS
(ii) V(S)Nn {z € R® | z; > v(i) for all i € S} is bounded.
Similar to TU-games we will identify an NTU-game (N, V) often with V.

The next two examples illustrate that the class of NTU-games comprises the class of

TU-games and the class of bargaining problems.

Example 5.1. Let (N,v) be a TU-game. (N,v) gives rise to an NTU-game (N, V),
where for each S € 2V \ {0}

V(5) = {z € R® | 2(8) < v(5)}.

Example 5.2. Each bargaining problem (C,d) for N corresponds to an NTU-game
(N,V), where

¢
{z € R® |z < (di)ies} forall $€2V\ {0,N}.

V(N) :
V(S) :

In Borm et al. (1992) the compromise value is introduced as an extension of the 7-value
to a subclass of NTU-games. Similar to the 7-value for quasi-balanced TU-games the

compromise value is based on upper and lower bounds for the core of an NTU-game.
Let (N, V) be an NTU-game. For each S € 2V \ {#}, let

dom(S) := {z € R® | z < y for some y € V(S5)}.
The elements of dom(S) are elements which are dominated by coalition S.

The core of (N, V), denoted C(V'), consists of all payoff vectors attainable for the grand

coalition N which are not dominated by any coalition S, i.e.,



C(V):= {z € V(N) | (z:)ies & dom(S) for all S € 2V {0}}.
Let i € N. The utopia payoff for player i, K;(V), is defined by
Ki(V) := sup{t € R | 3,cam» : (a,) € V(N),a ¢ dom(N \ {i}),a 2 (v(j))jem }-

By assumption (ii) in the definition of an NTU-game it follows that K;(V) < co. How-
ever, it might happen that K;(V) = —oo. We restrict ourselves to NTU-games (N, V)
for which K;(V) € R for all i € N. The vector K(V) := (Ki(V))ien is called the upper
value of V.

Let i € N and let S € 2" with i € S. The remainderof i € S is given by

pY(8,1) :=sup{t € R | 3, cgs\1) : (a,2) € V(S),a > (K;(V))jes\y }-
The minimal right of player i is denoted by
3 = v :
ki(V) == max p" (S,1),

and the vector k(V) := (k;(V));en is called the lower value for V. Again, we restrict
ourselves to NTU-games (N, V) for which k(V) € R,

Analogously to theorem 2.1 we have
Theorem 5.3. (Borm et al. (1992)) If (N,V) is an NTU-game with C(V) # 0, then

k(V)<z < K(V) forall z € C(V).

Moreover, we have
Theorem 5.4. (Borm et al. (1992))

(i) Let (N,v) be a TU-game with v(N \ {i}) > T;en i) v({s}) for all i € N and let
(V,V) be the corresponding NTU-game. Then K(V) = M(v) and k(V) = m(v).

(i) Let (C,d) be a bargaining problem for N, and let (N, V) be the corresponding
NTU-game. Then K(V) = u(C,d) and k(V) = d.
The compromise value is defined on the class of compromise admissible NTU-games. An

14



NTU-game (N, V) is called compromise admissible if
k(V) < K(V), and k(V) € V(N), K(V) & dom(N).

By CV we denote the class of all compromise admissible NTU-games with player set
N. From theorem 5.3 it immediately follows that V € CN if C(V) # 0. Further-
more, from theorem 5.4 it follows that N'T'U-games corresponding to bargaining situ-
ations are compromise admissible, and that for quasi-balanced TU-games (N, v) with
o(N\ {i}) 2 T,eny v({s}) for all 2 € N, the corresponding NTU-games are compro-
mise admissible.

For a compromise admissible N'T'U-game (N, V) the compromise value T(V) is defined
as the unique vector on the line segment between k(V) and K(V) which lies in V(NV)

and is nearest to the utopia value K(V), i.e.,

T(V) = k(V) + av(K(V) = k(V)),
where

ay = max{a € [0, 1] | (V) + a(K (V) — k(V)) € V(N)}.

The following corollary immediately follows from theorem 5.4.
Corollary 5.5. ((Borm et al. (1992))

(i) If v is a quasi-balanced TU-game satisfying v(N \ {i1}) > Tjen\i) v({7}) for all
i € N, and (N, V) is the corresponding NTU-game, then r(v) = T(V).

(i) If (C,d) is a bargaining problem for N, and (N, V) is the corresponding NTU-game,
then RKS(C,d) = T(V).

So the compromise value definitionally extends the r-value and the RKS-solution to
NTU-games. As theorem 5.6 and theorem 5.7 below show both the characterization of
the 7-value by Tijs (1987) (theorem 3.3) and the characterization of the two player RKS-
solution by Kalai and Smorodinsky (1975) (theorem 4.2) can be extended in order to
provide characterizations of the compromise value. Therefore we introduce the following
properties of values for NTU-games which are straightforward extensions of properties
for values for TU-games and solutions for bargaining problems.

Let f: CNY — R be a value on the set of compromise admissible games with player set

N.
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(i) fis called efficient if f(V) € V(N)\ dom(N) for all V € CV
(ii) fsatisfies the minimum right propertyif f(V) = k(V)+ f(V —k(V)) forall V € CV

(iii) f satisfies restricted proportionalityif f(V) is proportional to K(V) forall V € (5
with k&(V) =0

(iv) fis called symmetricif for all V € C¥ and alli,j € N with k;(V) = k;(V), Ki(V) =
K;(V), we have fi(V) = (V)

(v) f is monotonic if for all V,W € CN with k(V) = k(W),K(V) = K(W) and
V(N) € W(N) we have f(V) < f(W)

(vi) f satisfies covariance if for all V € CN, all a € Rf+ and all # € R" we have

flaxV+p8)=ax*f(V)+5.

Clearly, the compromise value satisfies all properties mentioned above.

It turns out that the first three properties characterize the compromise value on the set
oy < CN of all compromise admissible games (N, V) for which the boundary of the set
{z € V(N) |z = k(V)} contains no segments parallel to a coordinate hyperplane.

Theorem 5.6. (Borm et al. (1992)) The compromise value is the unique value on

T" which satisfies efficiency, restricted proportionality, and the minimum right property.

The properties (i), (iv)-(vi) characterize the compromise value on the smaller subclass
CN cT" of compromise admissible games (N, V) satisfying

(1) k(V) < K(V)

(2) (kwyy, Ki(V)) € V(N) for all i € N

(3) V(N) is convex.
Theorem 5.7. (Borm et al. (1992)) The compromise value is the unique value on CV

which satisfies efficiency, symmetry, monotonicity and covariance.

Besides the properties mentioned above, the compromise value also satisfies other stan-

dard properties, such as individual rationality and the dummy property. Additional
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properties of the compromise value such as the dummy out property and a complemen-
tary monotonicity property which is slightly different from the complementary mono-
tonicity property of the 7-value can be found in Otten (1990). Also an extension of the
compromise value to NTU-games with coalition structures can be found in Otten (1990).

Borm et al. (1992) provided another extension of the 7-value to NTU-games, namely
the NTU 7-value. The NTU r-value is based on the same ideas as the Shapley NTU-
value (Shapley (1969)). Given an NTU-game, Shapley considered so-called A-transfer
TU-games associated with this NTU-game. The Shapley NTU-value is obtained from
the Shapley value of these TU-games. Similarly, the N'T'U 7-value is obtained from the
7-value of quasi-balanced A-transfer games.

Let (N,V) be a NTU-game and let A € Ay := {z € RY | 2 > 0,T;enzi = 1}. Ais
called V-feasible if for all S € 2V \ {0}:

vA(S) :=sup{d_ Aizi | z € V(S5)} < oo.
i€s
So, a V-feasible A generates a TU-game (N,v,). This TU-game is called a A-transfer
game corresponding to (N, V). If for all V-feasible A € Ay the corresponding A- transfer

games are quasi-balanced, the game (N, V) is called T-admissible. For a r-admissible
NTU-game (N, V) the NT'U r-value, denoted by 7(V), is defined by

7(V):={z € V(N) | there is a V-feasible A € Ay such that 7(vy) = A * z}.

Note that the NTU r-value of an NTU-game not necessarily consists of one point, so
the name value is rather misleading here. The NTU r-value can even be empty for 7-
admissible games. In Borm et al. (1992) a class of r-admissible NTU-games is given for
which the NTU 7-value is nonempty.

If (N, v) is a quasi-balanced TU-game, then the corresponding NTU-game is T-admissible
and the NTU r-value of the this NTU-game coincides with the 7-value of v. Moreover,
for two player bargaining situations the NTU 7-value coincides with the Nash bargaining
solution.

An extension of the NTU r-value to NTU-games with coalition structures can be found
in Otten (1990).
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6 Applications

Cost allocation problems

In many real life situations the problem of allocating joint costs occurs. Examples are set-
ting fees for common facilities like communication networks, canals, airports etc. Other
examples are the allocation of joint costs among the divisions of a firm, and the alloca-
tion of costs among the users of a water supply system. A theoretical tool to analyse
this type of problems is provided by cooperative game theory.

To formulate a cost allocation problem in terms of cooperative game theory, it is mod-
elled as a cost game (N,c), where N represents the set of participants among which the
joint costs should be divided, and ¢ : 2V — R is the so-called (joint) cost function. For
any coalition S € 2V, ¢(S) denotes the minimal costs of designing a project only to serve
the purposes of the members of S.

Given a cost game (N, ¢), the cost allocation problem becomes how to allocate the joint
costs in a fair way.

For games corresponding to reward situations notions like impututation set, core etc. are
important. For games corresponding to cost situations these notions should be reversed.
The reverse-core of (N, c) is defined by

C(c) := {z € RV | 2(N) = ¢(N),z(S) < ¢(S) for all S € 2V}.

The reader easily verifies that z € C(c¢) if and only if —z € C(—¢).

We say that a cost game (N, ¢) is concave if and only if (N, —c) is convex. Similarly, the
notion of 7-value can be adjusted to cost games. We say that a cost game ¢ is reverse
quasi-balanced if —c is quasi-balanced. The reverse r-value, 77(c), of a cost game (N, ¢),
is defined as 77(¢) := —7(—¢) if —c is quasi-balanced.

Note that for a reversed quasi-balanced cost game (N,¢), 77(c) is the unique efficient

compromise between the two vectors M™(c) and m”(c) defined by

M(c) = Mc)forallie N

m(c) gmeré R°(S,i) for all i € N.

Tijs and Driessen (1986b) introduced the reverse 7-value for cost games using gap func-

tions.

18



An alternative cost allocation rule related to the reverse r-value is the so-called al-
ternate cost avoided method, or shortly the ACA-method. This method, proposed in the
1930’s by the Tennessee Valley Authority (TVA) (see Ransmeier (1942), Straffin and
Heaney (1981), Young (1985b)), is the unique efficient compromise on the line between
the vector M"(c) and the vector (c({i}))ien. Hence, the reverse 7-value of a cost game
¢ coincides with the ACA-method if the cost game is such that m!(c) = ¢({i}) for all
1€ N,ie.,if —cis semi-convex. Aoki (1989) analyses the reverse 7-value for cost games
with concave cost functions.

In Otten (1993) two characterizations of the ACA-method are provided, one on a class
of cost games with a fixed player set, and one on a class of cost games with a variable

player set using a reduced game property.

Airport games

A special type of cost allocation situations is related to airports. Consider the aircraft
landing fee problem of an airport with one runway. Suppose that the planes which are
to land are classified into m types. Let N; be the set of landings by planes of type j over
a fixed period of time. Then N := UL, N; is the set of all landings. Let n; := |N;| and

3=
The cost of building a runway depends on the largest plane for which the runway is

n:= 1y

designed. Let ¢; be the cost to make the runway suitable for landings by planes of type
j- We assume that

=ty £d3CTiii Sl

The cost function ¢ : 2V — R is defined by ¢(@) := 0 and for S € 2V \ {#}
oS)i=max{t; | 1<j<m,SNN; #0}.

Note that the game c is equal to ¢, where
ei= g(tk - t;,_,)uu._. N,

and for T € 2V, uj is the game defined by u3(S) = 1if TN S # @ and u3(S) = 0

otherwise.
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For the reverse T-value of the airport game we have (cf. Tijs and Driessen (1986b)) in

case n, = 2
77(c) = tm(D_nita)™'t; if i € N;.
k=1

So the reverse T-value assigns cost allocations proportional to the cost of a shortest run-
way needed by a player. The proof of this statement is based on the fact that airport
games are concave and so, the reverse 7-value coincides with the ACA-method. More-
over, we have that the marginal cost M[(c) of each player i € N equals zero. Hence,

77(c) is proportional to

(el{1}).- - - AN })) = (brsos s sliadis oo sBionas sl im b

In Littlechild and Owen (1973) and Dubey (1982) the Shapley value of airport games is
discussed and characterized. For the nucleolus of airport games the reader is referred to
Littlechild (1974), Littlechild and Owen (1977) and Owen (1982).

Bankruptcy problems

A bankruptcy problem is a pair (E,d) € R x R"Y, where d; > 0 for all { € N and
0 < E < ¥;endi. Here, E is the estate which has to be divided among the claimants,
and d; is the claim of claimant : € N. Several allocation rules for bankruptcy problems
have been proposed. An allocation rule is a function f which assigns to every bankruptcy
problem (E, d) a vector f(E,d) € R" such that

(i) 0< fi(E,d)<d;forallie N

(ii) Tien fi(E,d) = E.

Some examples of allocation rules are the proportional rule, which divides the estate
proportional to the claims of the creditors, the constrained equal award rule, and the
adjusted proportional rule introduced by Curiel et al. (1987).

The adjusted proportional rule, or AP-rule, starts by giving each claimant : € N his
minimal right m;, which is the maximum of zero and the amount not claimed by the
other claimants, i.e., m; := max{E — ¥jen ) d;,0}. Next, the amount of the estate
which is left, E' := E — ¥ ;cy m;, has to be divided. Because each claimant already

received a part of his claim the claims are lowered. The claim of claimant : € N on E’
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becomes d; := min{d; — m;, E'} (claims higher than E’ are considered irrational). Now

the remaining estate E’ is divided proportionally to the new claims.

Example 6.1. Consider the bankruptcy problem (£,d) with £ = 400, and d =
(100,200,300). To determine AP(E,d) we first have to compute the minimal rights
of the players.

m; = max{400 — 200 — 300,0} =0,

my = max{400 — 100 — 300,0} = 0, and

ms = max{400 — 100 — 200,0} = 100.
The remaining estate E' = E — ¥ ,cym; = 300 and the new claims become d' =
(100, 200,200). Hence,

300

AP(E,d) = (0,0,100) + =5(100,200,200) = (60, 120, 220).

The AP-rule satisfies several nice properties. Some of them are listed below.

(i) The AP-rule satisfies the minimal right property, which states that it makes no
difference whether the rule is directly applied to a given bankruptcy situation, or
that first the minimal rights are allocated to the players and then the AP-rule is
applied on the remaining estate and the adjusted claims.

(ii) The AP-rule is symmetric, which mecans that if two claimants have the same claims,

they also receive the same part of the estate.

(iii) The AP-rule satisfies the truncaled claim property, which means that, given a
bankruptey problem, it does not matter for the allocation if all claims above the

estate are replaced by claims equal Lo the estate.

(iv) The AP-rule satisfies the additivity of claims property. This property states that,
given a bankruptcy problem (E,d) satisfying m; = 0 for all : € N, if one of the
claimants dies leaving behind parts of his claim to different heirs, which become

new claimants, this does not allect the allocation to the other claimants.

It turns out that the four properties listed above are sufficient to characterize the AP-
rule.

Theorem 6.2. (Curiel et al. (1987)) The AP-rule is the unique allocation rule for
bankruptcy problems satisfying the properties (i)-(iv).
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For a bankruptcy problem (E,d) € R x R", the corresponding bankruptey game (N, vg 4)
is defined by (cf. O'Neill (1982))

vgd(S) := max{E — Y d;,0} forall S€ an.
ieN\S
In Curiel et al. (1987) it is shown that bankruptcy games are convex games, and hence,

the T-value can easily be computed.

Example 6.3. Consider the bankruptcy problem (E,d) of example 6.1. The corre-
sponding bankruptcy game v := vg 4 is given by

v({1}) = v({2}) =0, »({3}) = v({1,2}) = 100,

v({1,3}) = 200, v({2,3}) = 300, v(N) = 400.
In example 2.2 the 7-value of this TU-game is computed. We found that 7(v) =
(60,120,220) € C(v). Hence, the 7-value of this bankruptcy game coincides with the
AP-solution of the bankruptcy problem. That this is no coincidence is shown in

Theorem 6.4. (Curiel et al. (1987)) Let (/,d) be a bankruptcy problem and let
(N,vgg4) be the corresponding bankruptcy game. Then

(i) AP(E,d) = r(vg4) and

(ii) T(U}_:;Ig) € C(vg'd).

An alternative game theoretic approach to bankruptcy problems is introduced by Dagan
and Voly (1992).

Given a bankruptcy problem (/,d), one can construct a bargaining problem
(C(£.4), be,a)) as follows. The most natural choice for the set C(ggq) of feasible out-

comes is to define

Cia = {z € RY | e d,Zz.— < E}.
iEN
The choice of the disagreement outcome b(g 4) is not as natural as the choice of C(g 4). Da-
gan and Voly (1992) proposed two possible alternatives: bg 4y := 0, and bg 4y 1= m(E, d),
where m( E, d) denotes the vector consisting of the minimal rights of the players. In case

be.q) = m(E,d) we have the following theorem.
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Theorem 6.5. (Dagan and Voly (1992)) Let (£,d) be a bankruptcy problem and
let {C(E,d],m{E,d)) be the corresponding bargaining problem. Then

RKS(Ciga),m(E,d)) = AP(E,d) = (vg,).

Exchange markets

Many economic situations can be modelled using cooperative game theory. Sometimes it
is more natural to use NTU-games than to use TU-games. This is the case for example
if one wants to model exhange markets as cooperative games.

An ezchange market £ is a tuple < N, R}, (/")ien, (ui)ien >. Here, N is the set of
agents, RY is the commodity space, Jie RY is the initial commodity bundle of agent
1 € N, and u; : RT — R is the utility function of agent :. An admissible reallocation of
coalition § is a collection of commodity bundles (z');cs such that z* € RY foreachi€ S
and Yies2' = ¥es f*. The set of admissible reallocations of coalition S is denoted by
A(S).

An exchange market £ gives rise to an NTU-game (N,V;) as follows. For each

S €2V \ {8} define
Vg(S) = {t € RS I 3(,-].5554(3““.'(3") >t;foralli e S]}

The following well-known example of Shaler (1980) can be found in Borm et al. (1992).
Example 6.6. Consider the following exchange market £ with three agents and two
commodities. The initial commodity bundles of the agents 1,2 and 3, and the utility

functions are given by

fl =(l _('0)1 f2=(0»1—(}, f:!:((-l(}\

ul(:l!xi) E UQ(Il,Ig) o “]i'ﬂ{.‘lthg}, and

u;;(:c],xg) — %(I; + I:) for all (11,12) & Ri

where 0 € e < %
The corresponding NTU-game (N, V¢) is given by

Vg({:}) ={teR|t<0},i=12
Ve({3h) ={teR|t< ¢},
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Ve({1,2)) = {(tist2) ER? [t + 12 < 1— €, 4, <1 — ¢, t3 < 1 — ¢},
Ve({1,3) = {(tits) ER? | th +ta < J 4+ 3¢, h S 6, ta < 3 + Je),
Ve({2,3)) = {(t2 ta) € R? | ta + L3 < § + 3¢, L2 < 6 13 < 3 + 3¢},
Ve({1,2,3}) = {(tis ta, ) ER? | i+ ta+ ta < 1, 1 <1, 5 < 1, 13 < 1},

Easy computations yield that in this case the compromise value and the NTU 7-value
give the same solution, namely (} — 3¢, 3 — j¢,€).

However, the Shapley NTU-value of this game differs from the compromise value and the
NTU r-value. The Shapley NTU-value gives the outcome {(5 — 3¢, — 3¢, 1 + 2¢)}.
We see that the Shapley NT'U-value always gives a positive payofl to agent 3 of at least
L even if € = 0. But if € = 0, agents 1 and 2 together can achieve a utility of 1 by
forming the subcoalition {1,2}, leaving 0 for agent 3. This was the reason that Shafer
(1980) argued that in this case the Shapley NTU-value is not a reasonable outcome. The

compromise value and the NTU-7-value however, give a utility of 0 to agent 3 if ¢ = 0.

Big boss games
A TU-game (N,v) is called a big boss game (with player i as big boss) (cf. Muto et al.
(1988)) if and only if the following three conditions hold:

(i) v is monotonic, i.e.,if SCT C N, then v(S) < v(T)
(i) v(S)=0if: ¢S
(iii) v(N) —v(S) 2 Ljems M;(v) if 1 € S.

Condition (i) implics that v > 0 and that M(v) > 0. Condition (ii) states that player
i is very powerful, i.e., coalitions not containing 7 cannot get anything, and (iii) implies
that for a coalition without the big boss the marginal contribution to the grand coaltion
is at least as large as the sum of the marginal contributions of each of its members. It
turns out that there are many economic situations which give rise to big boss games.

We mention

(1) bankruptcy problems with one big claimant, i.e., a claimant who claims more than

the estate
(2) one-seller many buyers situations of a certain type

(3) information market games as introduced in Muto et al. (1989).
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For more applications the reader is referred to Muto et al. (1988). Generalizations of
big boss games were studied in Potters et al. (1989) (clan games) and Nagarajan (1992)
(games with leading coalitions).

In the next theorem some results for big boss games are collected.

Theorem 6.7. Let (N,v) be a big boss game with player i as the big boss. Then

(i) the core of v is a paralellotope, consisting of the vectors z € RY with Ty 2; =
v(N)and 0 < z; < M;(v) for all j € N\ {i}

(i) the r-value and the nucleolus of v both coincide with the center of the core, i.e.,

t)(N) = %ZkeN\{_‘l} J‘!k(l’) I[J =
1 M;(v) ifj#1i

(ii1) for the Shapley value ®(v) we have ®,(v) < 7i(v)

7j(v) = n;(v) = {

(iv) @(v) = 7(v) = n(v) if and only if v is convex.

Weighted graph games
Brown and Housman (1988) introduced weighted graph games as a class of games where
the value of a coalition with more than two players depends on the values of the two

player coalitions. Formally, a weighted graph game is a TU-game (N, v) where

vi= Z arur

T:|T|=2
with ap > 0 for all T € 2V, |T| = 2. Here, uy denotes the T-unanimity game defined by

Il f'cS
up(S) = {

0 otherwise.

A weighted graph game corresponds to a weighted complete graph in which the players
are the vertices and the weight on an edge 7' ¢ N, with |[T'] = 2 is given by aq. For
a coalition § € 2V, v(S) can be scen as the sum of the weights on the edges of the
subgraph induced by S.

The folowing theorem illustrates that for weighted graph games the Shapley value, the
nucleolus and the 7-value coincide.

Theorem 6.8. (Brown and Housman (1988)) Let (N,v) be a weighted graph game.
Then for all i € N



®;(v) = 7i(v) = ni(v) = %(the sum of the weights of all edges adjacent to 7).

As a corollary of this theorem it follows that the 7-value and the nucleolus are additive

on the cone
K} := cone{ur | T € 2V,|T| = 2}.

In van den Nouweland et al. (1993) it is shown that the r-value is additive on every cone
KY with 2 <1 < |N|. Here, K¥ := cone{ur | T € 2V,|T| = 1}.

Theorem 6.9. (van den Nouweland et al. (1993)) Let (N,v) € K¥ (2 < I < |N|).
Then ®(v) = 7(v).

It is not diflicult to show that the nucleolus does not coincide with the r-value and

the Shapley value on K if [ > 2.

Sequencing games

In a sequencing situation there is a queue, consisting of n customers waiting to be
served at a counter. The original order of the customers is given by a permutation
xof N :={l,...,n}. In the sequel we assume w.l.o.g. that x(z) =i for al i € N. For
every i € N, s; denotes the service time of 1 and ¢; is the cost function of 1. We assume
that ¢; is affine, i.e., ¢;(t) = a;t + (; for all t € Ry.

Given a sequencing situation one can construct a TU-game in the following way (cf.
Curiel et al. (1989)). The set of players is N and, we define v in such a way that the
worth of a coalition S is equal to the maximal cost savings the coalition can obtain
by rearranging their positions in the queue. Hereby, we allow two customers in the
queue to change positions only if there is no customer outside S standing between them.
The cost savings that two neighbours ¢ and j in the queue can obtain by switching are
gi; = max{a;s; — a;s;,0}.

A coalition T' € 2V is called connected if for all i,j € T and all k € N, with 1 < k < j,

we have k € T'. For a connected coalition 7' the maximal cost savings are
v(T} = Z Gij-
iJETH<]

For a non-connected coalition §, we say that T' C S is a component of S if T' is connected

and T'U {1} is not connected for every ¢ € S\ T. The components of S form a partition
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of § which we denote by P(S). Now we define

v(S) = Z v(T).
TeP(S)
The game (N,v) defined above is called the sequencing game corresponding to a se-
quencing situation. In Curiel et al. (1989) it is shown that sequencing games are convex
games, and therefore, the 7-value can easily be computed. For player ¢ € N the utopia

payoff M;(v) is equal to

Mv)= Y gan- X gx— Y = b2 sk-
JkEN: j<k JkEN: j<k<i JkEN:i<j<k JREN: j#£k, j<i<k
Since sequencing games are zero-normalized, i.e., v({i}) = 0 for all i € N, it follows that

the 7-value is proportional to the upper value.

7 Final remarks and open problems

We conclude this paper with some remarks and open problems related to compromise

values.

In this paper we studied solution concepts which are based on upper and lower val-
ues for games. In section 2 we have seen that the 7-value of a quasi-balanced TU-game
can also be seen as a value based on an upper value for the game and a concession
vector. Here, the upper value is used as a starting point, which gives more than the
worth of the grand coalition to the players, and the concession vector indicates in which
way to lower the payolls in order to reach an efficient ontcome. This approach to the
r-value provides a relation with a broad literature on another type of solution concepts
for cooperative games, called concession methods. Characteristic for concession methods
are an upper or lower value as a starting point and a concession vector which indicates
how the payofls in the starting point should be lowered or increased in order to reach
an efficient outcome. Well-known examples of concession methods are the egalitarian
solution for bargaining problems, and the cgalitarian nonseparable cost method for cost
allocation problems. For literature on this type of solution concepts we refer to Kalai

(1977), Peters (1992), Driessen (1988), Driessen and Funaki (1993a, 1993b).



The 7-value gave rise to the introduction of several interesting subclasses of TU-games
such as semi-convex games and 1-convex games. Can the compromise value also generate
in some way interesting classes of NTU-games 7 What is the NTU-analogue of the gap

function 7

As mentioned in section 4 the RKS-solution is implemented by subgame perfect equi-
libria of non-cooperative games in extensive form by Moulin (1984) and Peters et al.
(1991). It is still an open problem whether it is possible to implement the 7-value, the
compromise value and the NTU 7-value by means of a non-cooperative game in extensive

form.

An extension of the 7-value to games with a continuum of players is not known (cf.
Aumann and Shapley (1974)).

Characterizations of the Shapley NTU-value are provided by Aumann (1985) and Kern
(1985). It is still an open problem whether replacing of one or more of the axioms in
these characterizations by suitable axioms for the NTU 7-value will yield a characteri-
zation of the NTU 7-value.

A reduced game property for the RKS-solution is provided by Peters et al. (1991),
and a reduced game property for the r-value is given by Driessen (1993). Reduced game
properties for the compromise value and the NTU r-value are still unknown.

In this paper we studied several classes of games for which the r-value coincided with
the Shapley value or the nucleolus. In particular, for weighted graph games al three solu-
tion concepts coincide. Brown and Housman (1988) also provided weaker conditions for
coincidence of the three solution concepts. It is an interesting problem to find necessary
and sufficient conditions for coincidence of the r-value , the nucleolus and the Shapley

value.

In section 6 we have seen that for sequencing games the 7-value is easy to compute.
However, for other combinatorial games such as flow games (Kalai and Zemel (1982),
Curiel et al. (1989)), traveling salesman games (Fishburn and Pollak (1983), Tamir
(1989), Potters et al. (1992)), and minimum spanning tree games (Granot and Huber-

man (1981)) no explicit formulas for the r-value are known. For a recent survey on

28



combinatorial optimization games the reader is referred to Tijs (1992).
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