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Abstract

The aim of this paper is to give a survey on several well-known compromise
values in cooperative game theory and its aliplications.

Special attention is paid to the r-value for TU-games, the Raiffa-Kalai-
Smorodinsky solution for bargaining problems, and the compromise value for NTU-
games.



1 Introduction

Since the introduction of cooperatíve games by von Neumann and Morgenstern in 1944,
the problem most extensively studied in cooperative game theory is how to divide the
total earnings of the grand coalition if all players cooperate.
Many solution concepts have been proposed to }randle these problems. Well-known
examples are the core, the 5hapley value and t}ie nucleolus in games with transfer-
ablc utility (Tl1-ganres), thc, corc~ ancl thc~ Shaplcy N'l'l1-valuc in non-transfcrablc utility
ganres ( N'1'U-ganres), ancl the N~r.vli hargaiuing sulution in cuoperative bargaining theory.

The aim of this paper ís to give a survey on a special type of solution concepts, called
compromise values. A compromise value is a solution concept which assigns to each game
a value that is based on two vectors, the so-called upper and lower values. Prominent

examples of compromise values are the r-value for TU-games, the cornpromíse value for
NTU-garnes, and the Raiffa-Kalai-S~norodinsky solution for bargaining problems.

The paper is organized as follows. (!irst, in section 2 we recall some basic definitions and
solution concepts in TU-games. Most attention is paid to the r-value introduced by Tijs
(1981). The r-value plays a central role in section 3, where we discus several properties
and axiomatic characterizations of the r-value.
In section 4 we consider bargaining problems. Particularly, we are interested in the
Raiffa-Kalai-Smorodinsky solution introcluced by Raiffa (1953) and characterized by
Kalai and Smorodinsky in 197~i.

Section 5 is devoted to comprornise values in NTU-games. We discuss two extensions of
the r-value to NTU-games introduced by Borm et al. (1992), namely the compromise
value and the NTU r-value.

In section 6 we consider compromise values in several applications of cooperative game
theory, and compare the outcomes witL outcomes of other economic or game theoretic
solution concepts. We consider the following applications in economics and operations
research: cost allocation theory, airport games, bankruptcy problems, big boss games,
exchange markets, weighted graph games and seyuencing games.

Finally, we conclude this paper in section 7 with some remarks and open problems.
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2 TU-games

In this section we examine compromise values for TU-games. We start with some basic

definitions.

A h~ansJerable utilit y game or TU-ganae is an ordcred pair (.N, v) where N is a finite

set of players and v: 2N -~ 1~. is a map assigning to each coalition S E 2N a real number

v(S), called Lhe 2nov~tle of S, a.nd where v(Ql) :- 0.

Often a T[I-garne ( N, v) will be identified with the function r~. The class of all TU-games

with player set ,N is denoted by CN, and by G we clenote the class of all TU-games.

A TU-game v is called convex if for all coalitions S, T E?N

v(S) f v(T) ~ v(S U T) f v(S n 7').

One of the main topics dealt with in cooperative game theory is, given a game v, to

divide the amount v(N) betwecn the players if the grand coalition N is formed.

A payoff vector is a vector ~ E RN which is e~cient, i.c., ~;EN ~; - v(N). Here r;

represents the payolT to player i E N. A payoff vector a~ E R'v is called an irnputation if

r-; 1 v({i}) for all i, E N. The set of all imputations of the game v is denoted by I(v).

The core oJ v is the set

C(v) :- {~ E I(v) ~~x; ~ v(S) for all S E 2N}.
iES

If x E C(v), then no coalitiou S~ N has an iucentivc to split off if ~ is the proposed

pa.yolf vector, because the total arnount ,r(S) :- ~;ES x; allocated to S is not smaller

t,han the a.mount ~o(S) which they can obtain by forrning a subcoalition.

The core of a ga,rne can be empty, but it is shown by Shapley (1971) that if v is convex,

then C(v) ~ 0. Games with a non-empty core are called balanced. The class of balanced

TU-games with player set N is denoted by I3N.

Since the introduction of TU-games in von Neurnann and Morgenstern ( 1944) rnany

solution concepts have been proposed t,o a,llocate the amourit v(N) in a fair way between

the players. }~orrnally, a solution concepl on a class A C C is a rnap which assigns to each

~h11-ga.me (N,v) E ~1 a vector in R~ or a set of vrctors in If~. `I'he imputation set and



the core are examples of (multivalued) solution concepts. Also many one-point solution

concepts, which assign to a game v a unique vector, have been proposed. A one-point

solution concept is also called a rule or a value. The most well-known values are the
Shapley value introduced by Shapley (1953) and the nucleolus introduced by Schmeidler

(1969 ).

The Shapley value ~(v) E R`v of a game v E GN is a weighted average of the marginal
contributions of players to coalitions. Formally, the Shapley value of v is defined by

~;(v) :- ~ (~S~ - 1)!(~IN~II 1- ~S~)~(v(S U {i}) - v(S)) for all i E N.
SCN`{i}

The nucleolus is defined on the class of games with uon-empty irnputation set. Let

v E CN with ~(v) ~ 0 and lct ~~ E I1.N ancl S E 2N. 'hlic ezccss of S 7ll.r.t. x, Gv(S,x),

is dcfincd as

F,v(S,x) :- v(S) - x(S).

Ev(S,x) measures the complaint of coalition S against x.
Let O(x) be the 2~N~-tuple whose components are the excesses Ev(S, x), S C N, arranged

in a nonincreasing order, i.e., O;(x) ~ O~(x) whenever 1 C i C j e 2~N~. O(x) is the

excess vector (complaint vector) of x. The nucleolus of v, n(v), is the set of all ímputations
x E I(v) satisfying

O(x) G~, O(J) for all y E I(v).t

So the nucleolus has the property that it minimizes the maximal complaint. Schmeidler

(1969) proved that the nucleolus of a garne always consists of one point.

A third value for TU-games is the r-value introduced by Tijs (1981) for quasi-balanced

games. The r-value of a game is a compromise between an upper and a lower value for

the game. Let v E GN be a TU-game. The vector M(v) E RN with coordinates

A~;(v) :- v(N) - v(N ` { })

~ G~ denotes tl~e lexicografic order ou li.'N
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is called tlie upper value of v. M;(v) can be regarded as the maximal payoff player i can
expect to get: if he c(aims more, then it is advantageous for the other players to exclude
him from the grand coalition. M;(v) is also called the utopia payoff for player i.
Let i E N and S E 2N with i E S. We calculate what remains for player i if S forms
and all other players in S obtain their utopia payoff. The remainder of i E S, Rv(S, i),
is defined by

Rv(S,i) :- v(S) - ~ Mj(v).
jES`{i}

The vector m(v) E RN with coordinates

m;(v) :- max Rv(S,i)
S:iES

is called the lower value of v. m;(v) denotes the minimal right of player i: he can

guarantee himself this payoff by offering the members of a suitable coalition S, for which
the maximum is achieved, their utopia payoff and then nz;(v) remains for himself.
A game v E GN is called quasi-balanced iff

m(v) C M(v) and ~ rn;(v) C v(N) G~ M;(v).
iEN iEN

The class of all quasi-balanced games with player set N is denoted by QBN. That

13N C QI3N follows froin tlic following theorom provcd by 7'ijs and Lippcrts (1982).

Theorem 2.1. Let v E BN. Then for all ~ E C(v), we have

m(i,) C z G n'l (v).

For a game v E QBN the r-value of v, denoted by r(v), is the unique payoff vector on
the line segment in RN with end points m(v) and M(v). Thus,

r(v) :- m(v) ~ ~(M(v) - nz(v)),
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where ~ is such that ~iEN r~(v) - v(N).

Example 2.2. Let (N, v) be the 3-person game with N:- { 1, 2, 3} and
v({1}) - v({2}) - o, v({3}) - v({1,2}) - loo,
v({1,3}) - 200, v({2,3}) - 300, v(N) - 400.

'1'hcn ~lf (v) - ( I00, L00, 300),
m1(v) - max{v({1}), v({1,2}) - M~(v), v({1,3}) - M3(v), v(N) - Mz(v) - M3(v)} -
max{0, -100, -100, -100} - 0, m2(v) - 0, and m3(v) - 100.
It follows that

r(v) - (o,o, loo) f ~Y(loo,'~oo,zoo),
where a is such that ~;EN r~(v) - 400. Ileuce, a- 5 and r(v) -(60, 120, 220).

Note that for this game 4'(v) -(663, 1163,2163) and n(v) -(50, 125,225).
One easily verifies that in this case the r-value, the Shapley value and the nucleolus all

belong to thc corc.

Theorem 'l.l illustrates that the r-value of a bala.uced game is a compromise between
an upper and lower bound for the core. '1'ijs ( 1981) gives several classes of TU-games
for which these bounds are sharp, e.g. the class of convex games. A compromise value
based on sharp bounds for the core is the Q-value introduced in Bondareva ( 1988), and
Bondareva and Driessen ( 1990). For convex games the r-value and the Q-value coincide.
Another value for TU-games which is based on lower and upper values is discussed by
van Heumen ( 1984), who uses a ( less sharp) upper bound for the core proposed by Milnor
( 1952). Also van den Brink (1989) considers values for games which are based on upper
and lower vectors.

A value for transferable cost gamc~s that is based ou upper and lower bounds for the

core, is the so-called alternate cost avoided (ACA) method. This method, proposed in

the 1930's by a consultant of the Tenncssce Valley Authority (TVA), will be further

studied in section 6.

Driessen and Tijs (1983) provided an alternative approach of calculating the r-value
of quasi-balanced games by introducing the gap function.

Let v E GN. The gnp jTmction oj v, gv : 2N -~ R.~`, is defined by

gv(S) :- ~M;(v) - v(S) for all 5' E 2N.
~ES
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The gap gv(S) of coalition S is the difference between the sum of the utopia payoffs

of the players in S and the worth of coalition S. The concession vector ~(v) E RN is

defined by

a;(v) :- min gv(S) for all i E N.
S:iES

The interest of gv and the vector .~(v) follows from the next theorem.

Theorem 2.3. (Driessen and Tijs (1983))

(i) .~(v) - M(v) - m(v) for every v E GN

(11) QBN - {v E GN I 9v ~ ~~~iEN ~i(v) ~ gv(N)}

(iii) If v E QBN and gv(N) - 0, then r(v) - M(v)

(iv) If v E QBN and g~(N) ) 0, then r(v) - M(v) - gv(N)(~iEN .1 ;(v))-ra(v).

Using gap functions Driessen and Tijs introduced several interesting classes of quasi-

balanced garnes for which the r-value is easy to compute. Here we only mention the
class of semi-convex games and the class of 1-convex games. For further classes the

reader is referred to Driessen (1988).

A game v E QBN is called semi-convez if gv({i}) - mins:iES9v(S) for all i E N. Note

that a game v E QBN is serni-convex if and only if m;(v) - v({i}) for all i E N. Hence,

for semi-convex garnes the r-value can easily be determined. It is easy to show that

convex games are semi-convex.

hurther, a game v E QBN is called 1-convex if gv(N) - minseNgv(S).

Theorem 2.4. (Driessen and Tijs (1983)) If v E QBN is 1-convex, then the r-value and

the nucleolus of v both coincide with the barycenter of the core.

Note the resemblance with the result of Shapley (1971) who showed that for convex
games the Shapley value coincides with the barycenter of the core.

Furthermore, Driessen and Tijs (1992) extended the r-value to TU-games with coali-

tion structures. A coalition structure in a TU-game is defined to be a partition of the

player set. ]n garnes with coalition structures it is assumed that instead of the formation

of l,he grand coaltion N, thc coalitions in the coalit,ion structure will be formed. Hence,
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in these games payoíf vectors should describe possible divisions of the worth of each
coalition in the coalition structur~ between the members of this coalition. Roughly, the
idea behind the r-value for games with coalition structures is simply to compute sepa-
rately for each coalition in the coalition structure the r-value in the subgame induced
by this coalition.

We conclude this section with the remark that Tijs and Driessen (1986a) provided an
extension of the r-value from the class of quasi-balanced games to the class of games
with a non-empty imputation set, which is based on the principle of imposing taxes on
the formation of non-trivial subcoalitions in a multiplicative way. For more details we
refer to Tijs and Driessen (1986a) and Driessen (1988). The idea behind this extension
plays a role in the paper on linear production garnes where non-balanced control games
are allowed (cf. Curiel et al. (1988)).

3 Properties and characterizations of the T-value

In this section we investigate several properties of the r-value on the class of quasi-
balanced games. We start with some basic properties.

Proposition 3.1. The r-value satisifes the following properties on QBN.

(1) e,,~iciency: ~;Ely r;(v) - v(N) for all v E QBN

(2) individual rationality: r(v) ~ v({i}) for all v E QBN and all i E N.

(3) the dummy player property: r;(v) - v({i}) for all v E QBN and all dummy players
i in v, i.e., players i E N sucli that v(S U{i}) - v(S) f v({i}) for all S C N`{i}.

(4) symmetry: r;(v) - r~(v) for all v E QBN and all symmetric players i and j in the
game v, i.e., players i and j such that v(SU {i}) - v(SU {j}) íor all S C N` {i, j}.

(5) covariance: for all v and all w in QBN witli w - kv -}. a for some k E(0, oo)
and a E RN we have f(w) - k f(v) f a. (Here the game kv ~ a is defined by
(kv -~ a)(S) :- kv(S) f a(S) for all S E 2N).

Shapley (1953) showed that the Shapley value is the unique value on GN which satisfies

7



the propertics (1), (3), (4) and, in addition, addilivily, which mcans that the Shapley

value of the sum of two games with the same player set is the sum of the Shapley values.
However, the Shapley value does not satisfy the individual rationality property. Other
characterizations of the Shapley value can be found in e.g. Young (1985a), Hart and

Mas-Colell (1989).

On the class of games with non-empty imputation set the nucleolus satisfies all properties

mentioned above except additivty. Moreover, the nucleolus is stable, i.e., the nucleolus

of a game belongs to the core, whenever the core is non-empty. The r-value and the
Shapley value do not satisfy stability. Characterizations of the nucleolus are provided
by 5nijders (1991), and by Potters (1991).

The rest of this section is devoted to characterizations of the r-value. First, theorem 3.2
considers several additional properties of the r-value.

Theorem 3.2. The r-value satisfies the following properties on QBN.

(6) dummy out property: if v E QBN and D C N is the set of dummy players in v,

then r(t1~N`D) - r(v)~N`D. 2

(7) complementary monolonicity: if v,w E QBN are such that v(T) G w(T) for some
T E 2N, 7' ~ N, and v(S) - w(S) for all S E 2N, S~ T, then r,(v) ~ r(w) for
a11iEN`T.

(8) restricted proportionality: r(v) is proportional to M(v) if m;(v) - 0 for all i E N.

(9) minimal right property: r(v) - m(v) f r(v - m(v)) for all v E QBN.

The dummy out property and the complementary monotonicity property for the r-value

are proved in Tijs and Driessen ( 1986b) and Driessen (1985). Complementary mono-

tonicity of the r-value means that if a game v is changed to a game w by increasing only
the worth of one coa.lition T~ N then, according to thc r-value, no player outside T
does profit from this deviation. The reader can easily verify that also the Shapley value
satisfies the complementary monotonicíty property. However, the nucleolus fails to have

this property. For a detailed survey of monotonicity properties of the Shapley value, the

nucleolus, and the r-value the reader is referred to Driessen ( 1985), Otten (1990), and
Sagonti ( 1991).

The restricted proportionality property and the minimal right property are proved in

zv~N`D denotes the restriction of v to N`D.
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Tijs (1987) to provide the following characterization of the r-value.

Theorem 3.3. (Tijs (1987)) 'I'lie r-value is the unique value on QBN which satis-
fies efficiency, restricted proportionality and the minimal right property.

Itecently, anotltcr characterization of thc r-valuc ou QBN was provided by Calvo et

al. (1993). In this characterization thrce additional properties of the r-value play a

role. Namely, bounded aspirations, convexity, and restricted linearity. It turns out that

together with efficiency and covariance these three propf:rties characterize the r-value

on QBN. For more details on this characterization the reader is referred to Calvo et al.

(1993).

The characterizations of Tijs (1987) and Calvo ct al. (1993) are characterizations of
the r-value on a fixed player set N. Recently, Driessen provided a characterization of
the r-value on a set of games with a variable niunber of players, using an axiom of
consistency. For more details on ttiis characterization the reader is referred to Driessen
(1993).

4 Bargaining problems

Also in bargaining theory a well-known compromise solution appears, i.e., the
Raiffa-Kalai-5morodinsky solution, or shortly, RIiS-solution ( Raiffa ( 1953), Kalai and
Smorodínsky (1975)). This solution concept plays a central role in this section.
We start with some basic definitions.

A bargaining problem for N is a pair (C, d) where 0~ C C RN, and d E RN are such
that

(i) C is closed, convex and comprehensive, i.e., if x E C and
yCx,thenyEC

y E RN are such that

(ii) Cd :- {x E C ~ x~ d} is boimded

(iii) there is an xo E C with ~0 1 d.

By BPN we denote the class of all bargaining problcros for N.

The interpretation of a bargaining problem (C, d) is as follows. The players in N try to

9



reach an agreement on some outcome x E C, yielding utility x; for player i E N. If the

players in N do not reach an agreement, then the disagT~eement outcome d results with

utility d; for player i E N. Condition (iii) implies that the players will have an incentive

to reach an agreement. The problem of interest is on which outcome should the players

in N agree? Many solutions to handle this problern have been proposed.

A bargaining solution on BPN is a map J: BPN -~ RN such that J(C, d) E C for all

(C, d) E BPN. The most well-known bargaining solution is the Nash bargaining solu-

tion introduced by Nash (1950). The Nash (bargaining) solution of a bargaining problem

(C, d) E BPN, denoted N(C, d), is the unique point in Cd where the function

x~ ~(x;-d;)
~EN

is maximal.

An alternative bargaining solution, first proposed by Raiffa (I953), and axiomatically

characterized by Iíalai and Smorodinsky (1975), is the RKS-solution. This solution is a

feasible compromise between the disagreement point and a utopia point.

Let (C, d) E BPN be a bargaining problem and let i E N. The utopin point for player i

is the point

u;(C,d) :- max{x; ~ x E Cd}.

The point u(C,d) :- (u;(C,d));EN is called the utopia point oJ(C,d). The RIiS-solution
of (C, d), denoted by Rlí S(C, d), is defined as the unique weak Pareto optimal point of

C lying on the line through d and u(C, d). Ilere, a point x E C is called weak Pareto

optimal in (C,d) if there does not exist a point y E C with y 7 x. The set of all weak
Pareto optimal points in (C,d) is denoted by WPar(C,d).

Example 4.1. Let N:- { 1, 2}. Consider the bargaining problem (C, d) on N given by

d :- (0, 0) and

C:- {x -(x~, xZ) E RN ~ x2 C 4, 2xr f x2 C 8}. See figure 1.

10



Figure 1.

From figure 1 it immediately íollows that N(C, d) -(2, 4) and u(C, d) -(4, 4). Hence,
RKS(C, d) - (8~3, 8~3).

Now we introduce some interesting properties for bargaining solutions.

(i) A bargaining solution f : BPN -~ RN is called Pareto optímal if for all (C, d) E
BPNwehave f(C,d)EPar(C,d):-{zEC~yEC,ylximpliesy-a}.

(ii) A bargaining solution f: BPN -~ RN is called weak Pareto optimal if for all
(C, d) E BPN we have f(C, d) E W Par(C, d).

(iii) A bargaining solution f: 13PN -~ RN is called sy~nmetr7c if for all (C,d) E BPN

with d; - d~ for all i, j E N and C such thaL (c;);EN E C implies (cx~;~);E~r E C for

each permutation ~r of N, we have f;(C,d) - f~(C,d) for all i, j E N.

(iv) A bargaining solution f: I3PN --~ RN has the covariance with a,~ne transfor-
mations properly if for all (C,d) E BPN and all afiine fuuctions A : RN --~ RN

with A(~) - a~ x f~i, .x E RN, for soine a E li.t~ and ,[j E RN, we havc

f(A(C), A(d)) - A( f(C, d)). (Here cr ~ x:- (a;x;)iEN-)

(v) A bargaining solution f: BPN -~ Ii.N satisfies independence of irrelevant alter-

natives if for all (C, d), ( D, d) E BPN witti C C D and f(D, d) E C we have

f (C, d) - f (D, d).

11



(vi) A bargaining solution f : BPN -~ RN has the ( restrictedJ monotonicity property
if for all (C, d), (D, d) E BPN with C C D and u(C, d) - u(D, d) we have
f(C, d) c f( D, d).

Nash (1950) proved that, in case ~N~ - 2, the Nash solution is the unique bargaining so-
lution which satisfies the properties (i) (or (ii)), (iii)-(v). Later, this result was extended
to bargaining problems with more than two players.

The main axiom in this characterization is the axiom of independence of irrelevant al-
ternatives, to which much criticism was raised (see, for example Luce and Raiffa (1957),
and Kalai and Smorodinsky (1975)). As an alternative for the independence of irrele-
vant alternatives axiom, Kalai and Smorodinsky (1975) suggested a monotonicity axiom,
which is very much related to the (restricted) monotonicity property (cf. Peters (1992)).
The replacement of the independence of irrelevant alternatives axiom by the (restricted)
monotonicity property leads to

Theorem 4.2. (cf. Kalai and Smorodinsky (1975)) The RKS-solution is the unique

bargaining solution on the class of two player bargaining problems which satisfies the
properties ( i) (or (ii)), and (iii), (iv) and (vi).

An alternatíve characterization of the RKS-solution using a reduced game property was
obtained by Peters et al. (1991). In this paper also the RKS-solution is implemented

by thc uniquc subgamc perfcct equilibrium of a non-coopcrative game in extensive form.
Another non-coopcrative game leading to the RKS-solution was developed earlier in

Moulin (198~1).

In the next section we will see that, by weakening some of the properties which charac-

terize the RKS-solution for two player bargaining problems, one can obtain an extension

of thcorem 4.2 to a class of NTU-gamcs.

NTU-games

In this section we consider the more general class of NTU-games introduced by Aumann
and Pcleg (1960).

12



A non-transferable utility game or NTU-ganae is a pair (N,V), where N is a finite set of
players and V is a map assigning to each coalition S E 2N `{0} a subset V(S) of RS of
attainable payoff vectors. We assume that for each i E N there exists a real number v(i)

such that V({i}) -{x E R ~ x C v(i)}. Further, we assume that for each S E 2N `{0}
the following properties hold

(i) V(S) is a non-empty, closed and comprehensive subset of RS

(ii) V(S) fl {x E RS ~ x; 1 v(i) for all i E S} is bounded.

Similar to TU-games we will identify an NTU-game (N,V) often with V.

The next two examples illustrate that the class of NTU-games comprises the class of
TU-garnes and the class of bargaining problcros.

Example 5.1. Let (N,v) be a 1'U-game. (N,v) gives rise to an N'I'U-game (N,V),
where for each S E 2N `{(ti}

V(S) :- {x E RS ~ x(S) c v(S)}.

Example 5.2. Eac6 bargaining problem (C, rl) for N corresponds to an NTU-game

(N, V ), where

V(N) :- C

V(S) :- {x E Rs ~ x c(d,),ES} for all S E 2N `{0, N}.

In Borm et al. (1992) the compromise value is introduced as an extension of the T-value

to a subclass of N'I'li-gamcs. Sintilar to 1,hc~ r-valuc~ for quasi-balanced Tll-gamcs thc

cotnpromisc valuc. is bascd ou uppcr and lowcr I~uunds for thc corc of an N`l'U-game.

Let (N,V) be an NTU-game. l~'or each S E 2N `{fD}, let

dom(S):-{xERS~xGyforsomeyEV(S)}.

The elements of dom(S) are elements which are dominated by coalition S.
The core of (N, V), denoted C(V), consists of all payoff vectors attainable for the grand
coalition N which are not dominated by any coalition S, i.e.,
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C(V) :- {x E V(N) ~(x;);ES ~ dom(S) for all S E 2N `{0}}.

Let í E N. The utopia payo,(jfor player i, li;(V), is defined by

K;(V) :- sup{t E R ~ 3QERx~{ .~ :(a,t) E V(N),a ~ dom(N `{i}),a 1(v(j)) jEN~~;}}.

By assumption ( ii) in the definition of an NTU-game it follows that K;(V) C oo. How-

ever, it might happen that lí;(V) --oo. We restrict ourselves to NTU-games (N,V)
for which If;(V) E R íor all i E N. The vector K(V) :- (K;(V));Err is called the upper
value of V.
Let i E N and let S E 2N with i E S. The remainder of i E S is given by

p~(S,i) :- sup{t E R ~ 3QERs~{;} : (a,t) E V(S),a ~(Ií~(V))~ES`{:}}.

The minima! right of player i is denoted by

k;(V) :- max p~(S, i),
S:iES

and the vector k(V) :- (k;(V));EN is called the lower value for V. Again, we restrict
ourselves to NTU-games (N, V) for which k(V ) E RN.

Analogously to theorem 2.1 we have

Theorem 5.3. ( Borm et al. (1992)) If (N,V) is an NTU-game with C(V) ~~, then

k(V) G x c lí(V) for al1 x E C(V).

Moreover, we have

Theorem 5.4. (Borm et al. (1992))

(i) Let (N,v) be a TU-garne with v(N `{i}) 1 ~~EN`{;} v({j}) for all i E N and let

(N, V) be the corresponding NTU-game. Then lí (V )- M(v) and k(V) - m(v).

(ii) Let (C, d) be a bargaining problem for N, and let (N, V) be the corresponding

NTU-game. Then lí (V) - u(C,d) and k(V) - d.

The compromise value is defined on the class of compromise admissible NTU-games. An
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NTU-game (N, V) is called comprnmise adnaissible if

k(V) c lí(V), and k(V) E V(N), lí(V) ~dom(N).

By CN we denote the class of all comprornise adrnissible NTU-games with player set
N. From thcorem 5.3 it immediatcly follows that V E CN if C(V )~~. Further-
more, frorn thcorcm 5.4 it follows Lhat N'l'U-gamcs corresponding to bargaining situ-
ations are compromise admissible, and that for yuasi-balanced TU-games (N, v) with
v(N `{i}) ~~~EN`{~} v({j}) for all i E N, the corresponding NTU-games are compro-

mise admissible.

For a comprornisc admissible N'I'lJ-game (N,V) Llie compmmise value T(V) is defined
as thc uniyuc vcctor on Lhc linc scgnicnt hctwccn k(V) and lí(V) which lies in V(N)
and is nearest to the utopia valrre lí(V), i.e.,

T(~) :- k(v) t a~(rí (v) - k(~)),
where

a~ :- n,ax{cr E[0, 1] ~ k(V) -}- cr(l~ (V) - k(6~)) E V(N)}.

The following corollary immediately follows frorn tlreorem 5.4.

Corollary 5.5. (( Borm et al. (1992))

(i) If v is a quasi-balanced TU-game satisfying v(N `{i}) ~~~EN`{;} v({j}) for all

i E N, and (N,V) is the corresponding N'IU-game, then r(v) - T(V).

(ii) If (C, d) is a bargaining problem for N, and ( N, V) is the corresponding NTU-game,

then Rlí S(C, d) - T(V ).

So the compromíse value definitionally extends the r-value and the RKS-solution to

NTU-games. As theorem 5.6 and theorem 5.7 bclow show both the characterization of

the r-value by Tijs (1987) (theorem 3.3) and the characterization of the two player RKS-

solution by Kalai and Smorodinsky (1975) (theorem 4.2) can be extended in order to

provide characterizations of the compromise value. Therefore we introduce the following

properties of values for NTU-games which are straightforward extensions of properties

for values for TU-gamcs and solutions for bargaining problcros.

Let f: CN -~ ItN bc a valuc oii Lhc~ sct of compron,isc ad,nissiblc ganics with playcr sct

N.

15



(i) f is called e,fj`~ecient if f(V) E V(N) `dom(N) for all V E CN

(ii) f satisfies the minimum righl property if j(V) - k(V)f j(V -k(V)) for all V E CN

(iii) f satisfies restricted proportionality if j(V) is proportional to Ií (V) for all V E CN

with k(V ) - 0

(iv) f is called symmetric if for all V E CN and all i, j E N with k;(V) - k~(V), Ií;(V) -

K~(V), we have f;(V) - f~(V)

(v) f is monotonic if for all V,W E CN with k(V) - k(W),lí(V) - Ií(W) and

V(N) C W(N) we have j(V) c j(W)

(vi) f satisfies covariance if for all V E CN, all a E R~} and all ,Q E RN we have

j(~~V~a)-~~j(~)}Q.

Clearly, the compromise value satisfies all properties mentioned above.

It turns out that Lhe first three properties characterize the compromise value on the set

CN C CN of all compromise admissible games (N,V) for which the boundary of the set

{x E V(N) ~:c 1 k(V)} contains no segments parallel to a coordinate hyperplane.

Theorem 5.6. (Borm et al. (1992)) The compromise value is the unique value on
N
C which satisfies efFiciency, restricted proportionality, and the minimum right property.

The properties (i), (iv)-(vi) characterize the compromise value on the smaller subclass

CN C G~N of compromise admissible games (N,V) satisfying

(1) k(V) c IC(V)

(2) (kN`{;},~í;(V)) E V(N) for all i E N

(3) V(N) is convex.

Theorem 5.7. (Borm et al. (1992)) 1'he compromise value is the unique value on

which satisfies efficiency, symmetry, monotonicity and covariance.

CN

Besides the properties mentioned above, the compromise value also satisfies other stan-

dard properties, such as inclividual rationality and the dummy property. Additional
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properties oí the compromise value such as the durnmy out property and a complemen-
tary monotonicity property which is slightly different from the complementary mono-
tonicity property of the r-value can be found in Otten (1990). Also an extension of the
compromise value to NTU-games with coalitíon structures ca,n be found in Otten (1990).

Borm et al. (1992) provided another extension of the r-value to NTU-games, namely
the NTU r-value. The NTU r-value is based on the same ideas as the Shapley NTU-
value (Shapley (1969)). Given an NTU-game, Shapley considered so-called .1-transfer
TU-games associated with this NT[J-game. The Shapley NTU-value is obtained from
thc Shapley valuc of thi~sc `I'U-ganrc~s. Siniilarly, thc N'I'U r-valuc is obtainc.d from thc
r-value of quasi-balanced ~-trarrsfer games.

Let (N, V) be a NTU-game and let .~ E On, :- {~ E RN ~ x ~ 0, ~;E~, x; - 1}. ~ is
called V-feasióle if for all S E 2N `{(~}:

va(S) :- sup{~ À;x; ~ x E V(S)} C oo.
~ES

So, a V-feasible ~ generates a TU-game (N,va). This TU-game is called a~-transfer
game corresponding to (N, V). If for all V-feasible a E ON the corresponding ~- transfer

games are quasi-balanced, the garne (N, V) is called r-ad~nissióle. For a r-admissible

NTU-game (N,V) the N7'U r-value, denotcd by r(V), is defined by

r(V) :- {x E V(N) ~ there is a V-feasible ~ E ON such that r(va) -~~ x}.

Note that the NTU r-value of an NTU-game not necessarily consists of one point, so
the name value is rather misleading here. The NTU r-value can even be empty for r-
admissible games. In Borm et al. (1992) a class oí r-admissible NTU-games is given for
which the NTU r-value is nonempty.

If (N, v) is a quasi-balanced TU-garne, then the corresponding NTU-garne is r-admissible
and the NTU r-value o[ the this NTU-game coincides with the r-value of v. Moreover,
for two player bargaining situations the NTU r-value coincides with the Nash bargaining
solution.

An extension of the NTU r-value to NTU-games with coalition structures can be found

in Ott~n (1990).
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6 Applications

Cost allocation problems
tn many real life situations the problem of allocating joint costs occurs. Examples are set-

ting fees for common facilities like communication networks, canals, airports etc. Other

examples are the allocation of joint costs among the divisions of a firm, and the alloca-

tion of costs among the users of a water supply system. A theoretical tool to analyse

this type of problems is provided by cooperative game theory.

To formulate a cost alloca,tion problem in terms of cooperative game theory, it is mod-

elled as a cost game (N,c), where N represents the set of participants among which the

joint costs should be divided, and c: 2N ~ R is the so-called (joint~ cost function. For

any coalition S E 2N, c(S) denotes the minimal costs of designing a project only to serve

the purposes of the members of S.

Given a cost game (N, c), the cost allocation problem becomes how to allocate the joint

costs in a fair way.

For games corresponding to reward situations notions like impututation set, core etc. are

important. For games corresponding to cost situations these notions should be reversed.

The reverse-core of (N, c) is defined by

CT(c) :- {x E RN ~ x(N) - c(N),x(S) C c(S) for all S E 2N}.

The reader easily verifies that x E C'(c) if and only if -x E C(-c).

We say that a cost game (N, c) is concave if and only if (N, -c) is convex. Similarly, the

notion of r-value can be adjusted to cost games. We say that a cost game c is reverse

quasi-balanced if -c is quasi-balanced. The r~everse r-value, rT (c), of a cost game (N, c),

is defined as rr(c) :- -r(-c) if -c is quasi-balanced.

Note that for a reversed quasi-balanced cost game (N,c), rT(c) is the unique efficient

compromise betwecn the two vectors M'(c) and mr(c) defined by

M; (c) :- M;(c) for all i E N

m; (c) :- mín R`(S, i) for all i E N.s:~es

Tijs and Driessen (1986b) introduced the reverse r-value for cost games using gap func-

tions.
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An alternative cost allocation rule related to the reverse r-value is the so-called al-
ternate cost avoided method, or shortly the ACA-method. This method, proposed in the
1930's by the Tennessee Valley Authority (TVA) (see R.ansmeier (1942), Strafftn and
Heaney (1981), Young (1985b)), is the unique eflïcient compromise on the line between
the vector M'(c) and the vector (c({i}));EN. Hence, the reverse r-value of a cost game
c coincides with the ACA-method if the cost game is such that m;(c) - c({i}) for all
i E N, i.e., if -c is semi-convex. Aoki (1989) analyses the reverse r-value for cost games
with concave cost functions.

In Otten (1993) two characterizations of the ACA-method are provided, one on a class

of cost games with a fixed player set, and one on a class of cost games with a variable

player set using a reduced gamc property.

Airport games
A special type of cost allocation situations is related to airports. Consider the aircraft

landing fee problem of an airport with one runway. Suppose that the planes which are

to land are classified into m typcs. Let N; bc the sct of landings by planes of type j over

a fixed period of time. Then N :- (rJm , N; is thc set of all landings. Let n; :- ~N;~ and
mn :- ~;-r ni.

The cost of building a runway depends on the largest plane for which the runway is

designed. Lct t; be the cost to ma,ke thc runway suitable for landings by planes of type

j. We assume that

0-:tp~t1 Gty C...Ct,n.

The cost function c: 2N --. R is defined by c(~) :- 0 and for S E 2N `{0}

c(S) :- max{t; ~ 1 G j G ni, S n N; ~ 0}.

Note that the game c is equal to c, where

m

C :- ~(tk - tk-1)uU
~kN.

k-1

and for T E 2N, uT is the game defined by uT(S) - 1 if T n S~ ~ and uT(S) - 0
otherwise.
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For the reverse r-value of the airport game we have (cf. Tijs and Driessen ( 1986b)) in

Case n,„ ? 2

m

r;(c) - tm(~ nktk)-lt~ if i E N~.
k-1

So the reverse r-value assigns cost alloca.tions proportional to the cost of a shortest run-

way needcd by a player. 1'he proof of this statement is based on the fact that airport

games are concave and so, the reverse r-value coincides with the ACA-method. More-

over, we have that the marginal cost M; ( c) of each player i E N equals zero. Hence,

r'(c) is proportional to

(C({1}),...,C({ri})) - (tl,...,tr,t2...,ty,...,t,n,...,t,n).

In Littlechild and Owen (1973) and Dubey (1982) the Shapley value of airport games is

discussed and characterized. For the nucleolus of airport games the reader is referred to

Littlechild (1974), Littlechild and Owen (1977) and Owen (1982).

Bankruptcy problems
A bankruptcy problem is a pair ( E, d) E R x RN, where d; 1 0 for all i E N and

0 G E G~;EN d;. Ilere, E is the estate which has to be divided among the claimants,

and d; is the claim of claimant i E N. Several allocation rules for bankruptcy problems

have been proposed. An allocation rule is a function j which assigns to every bankruptcy

problem (E,d) a vector j(E,d) E RN such that

(i) OG j;(E,d)Gd;foralliEN

(ii) ~iENj,(E,d) - E.

Some exarnples of allocation rules are the proportional rule, which divides the estate

proportional to the claims of the creditors, the constrained equal award rule, and the

adjusted proportional rule introduced by Curiel et al. (1987).

The adjusted proportional rule, or AP-rule, starts by giving each claimant i E N his

minimal right m;, which is the maximum of zero and the amount not claimed by the

other claimants, i.e., m; :- max{E -~~EN`{;} d~, 0}. Next, the amount of the estate

which is left, E' :- E-~;EN m;, has to be divided. Tiecause each claimant already

received a part of his claim thc claims are lowered. The claim of claimant i E N on E'
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becomes d; :- min{d; - m;, E'} ( claims higher than E' are considered irrational). Now
the remaining estate E' is diviclcd proportionally Lo the new claims.

Example 6.1. Considcr thc banl:rupl,cy problcin (E,d) with !s' - 400, and d-

(100,200,300). To determine AP(E,d) we first have to compute the minimal rights

of the players.

ml - max{400 - 200 - 300, 0} - 0,

m~ - max{400 - 100 - 300, 0} - 0, and
m3 - max{400 - 100 - 200,0} - ]00.

The remaining estate E' - E-~;EN m; - 300 and the new claims become d' -

(100, 200, 200). Hence,

AP(E, d) -(0, 0, 100) f 500 (]
00, 200, 200) -(60, l'20, 220).

The AP-rule satísfies several nice properties. Some of them are listed below.

(~) The AP-rule satisfies the naiiaimal right proper(y, which states that it makes no

difference whether the rulc is directly applied to a giveu bankruptcy situation, or

that first the minimal rights are allocated to ttie players and then the AP-rule is

applied on the remaining estate and the adjusted claims.

(ii) The AP-rule is symmetric, which nieans thaL if two claimants have the same claims,

they also receive the samc part of thc estate.

(iii) The AP-rule satisfies the t~hmcatr.d claini properly, which mcans that, given a

h,~nkru~,tcy pruhlc~iu, it clu~,s uut nr~tti,r fur I,hc alluc~at.iun if all claims aliovc Lhc

cstatc arc rcplaccYl by clainis cqual I,o thc cstatc.

(iv) The AP-rule satisfies the additivity ojclai~ns properly. This property states that,

given a bankruptcy problem (E,d) satisfying m; - 0 for all i E N, if one of the

claimants dies leaving behind parts of his claim to di(ferent heirs, which become

new claimants, this does not affect t,he allocation to the other claimants.

It turns out that the four properties listed above are sufi'icient to cFiaracterize the AP-

rule.

Theorem 6.2. (Curiel et al. (1987)) The AP-rule is the unique allocation rule for

bankruptcy problems satisíying the properties (i)-(iv).
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For a bankruptcy problem ( E, d) E R x RN, the corresponding óankruptcy game (N, vE,d)
is defined by (cf. O'Neill ( 1982))

vE,d(S) :- max{E - ~ d;,0} for all S E 2N.
~EN`S

In Curiel et al. (1987) it is shown that bankruptcy games are convex games, and hence,

the r-value can easily be computed.

Example 6.3. Consider tlie bankruptcy problem (E,d) of example 6.1. The corre-

sponding bankruptcy garne v:- v~,d is given by

v({1}) - v({2}) - o, v({3}) - v({1,2}) - loo,
v({1,3}) - 200, v({2,3}) - 300, v(N) - 400.

In example 2.2 the r-value of this TU-game is computed. We found that T(v) -

(60,120,220) E C(v). Hence, the r-value of this bankruptcy game coincides with the

AP-solution of the bankruptcy problem. That this is no coincidence is shown in

Theorem 6.4. (Curiel et al. (1987)) Let (L:,d) be a bankruptcy problem and let

(N,vE,d) be the corresponding bankruptcy game. Then

(i) AP(E, d) - r(vE,d) and

(Il) T(VE,d) E C~(VE,d)-

An alternative game theoretic approach to bankruptcy problems is introduced by Dagan

and Voly (1992).

Civen a bankniptcy prohlenr (E,d), one can construct a bargaining problem

(C~E,d), b~E,d~) as follows. `I'he most natural choice for the set C~E,dI of feasible out-

comes is to define

C(E.d):-{xERN~~Cd,~a;GE}.
iEN

The choice of the disagreemer~t outcome b~E,d~ is not as natural as the choice of C~E,d~. Da-
gan and Voly (1992) proposed two possible alternatives: b~E,d~ :- 0, and b~E,dl :- m(E, d),
where m(E,d) denotes the vector consisting of the minimal rights of the players. In case

b~E,dl - rn(E,d) wc have the following theorem.
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Theorem 6.5. (Dagan and Voly (}992)) Let (G,d) be a bankruptcy problem and
let (C(E,d),m(E,d)) be Lhe corresponding bargainíng problem. '1'hen

RIfS(C(E,d),m(E,d)) - AP(E,d) - r(vE,d).

Exchange markets
Many economic situations can be rnodelled using cooperative game theory. Sometimes it

is more natural to use NTU-games than to use TU-games. This is the case for example
if one wants to model exhange markets as cooperative games.
An exchange market S is a tuple G N, Rt, (J`);EN, (u;)iEN 1. f1Cre, N is the set of
agents, R~ is the comrnodity space, f` E R~ is the initial commodity bundle of agent

i E N, and u; : Rt -. R is the utility function of agent i. An adm.issible reallocation of
coalition S is a collection of commodity bundles (z');ES such that x` E Itt for each i E S

and ~;ES x' - ~;ES f'. The set of admissible reallocations of coalition S is denoted by

A(S).

An exchange market E gives ríse to an NTL1-game (N, VE) as follows. For each

S E 2N ` {0} define

VE(S) :- {t E Rs ~ 3(I, )~ESEA(S)~u;(x') ~ t; for all i E S]}.

The following well-known example of Sha(er (}9S0) can be found in Borm et al. (1992).

Example 6.6. Consider the following exchange rrrarket S with three agents and two

commodities. The initial commodity bundles of the agents 1,2 and 3, and the utility

functions are given by

fr -(1 - c,0), Ï2 - Í 0,1 - c), Ï3 -( ~,~),

ur(xr,x2) - us(ar,xs) - min{x~,x2}, and

us(xr,x2) - 2(~t f x2) for all (xi,~2) E Rt

whereOGeG 5.
The corresponding N1'U-game (N, VE) is given by

VE({i})-{tER~tCO}, i-1,2

VE({3}) - {t E R ~ t e e},
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VE({1,2}) - {(tl,t~) E R2 ~ tt -h t~ G 1- E, tt C 1- E, tZ C 1- E},

VE(11,3}) - l(tl,t3) E R2 I tt ~ tg C Z~ 2C, tt G E, t3 ~ 2~~E},

Vf(12,3}) - 1(t2,t3) E RZ I t2 ~ t3 C Z~ 2C, t2 C E, t3 G 2~ 2E},

VE({1,2,3}) - {(tl,t~,t3) E R3 I tl ~ t2 -~ t3 G l, tt G 1, t2 C 1, t3 C 1}.

Easy computations yield that in this case the compromise value and the NTU r-value

give the same solution, namely ( 2- 2 E, 2-~ E, E).

However, the Shapley NTU-value of this game differs from the compromise value and the

NTU T-value. The Shapley NTU-value gives the outcome {(IZ - 2E, 12 - IZE, 6} 6E)}.

We see that the Shaplcy N`I'U-value always givcs a positive payo(f to agent 3 of at least

6 even if E- 0. 13ut if E- 0, agents 1 and 2 together can achieve a utility of 1 by

forming the subcoalition {1,2}, leaving 0 for agent 3. This was the reason that Shafer

(1980) argued that in this case the Shapley NTU-value is not a reasonable outcome. The

compromise value and the NTU-r-value however, give a utility of 0 to agent 3 if E- 0.

Big boss games
A TU-game (N, v) is called a big boss game (with player i as big boss) (cf. Muto et al.

(1988)) if and only if the following three conditions hold:

(i) v is monotonic, i.e., if S C T C N, then v(S) C v(T)

(ii) v(S) - 0 if i~ S

(iii) v(N) - v(S) ?~~EN`sM~(v) if i E S.

Condition (i) implics that v 1 0 and that M(v) ~ 0. Condition ( ii) states that player

i is very powerful, i.e., coalitions not containing i cannot get anything, and (iii) irnplies

that for a coalition without the big boss the marginal contribution to the grand coaltion

is at least as large as the sum of the marginal contributions of each of its members. It

turns out that there are many economic situations which give rise to big boss games.

We mention

(I) bankruptcy problems with one big claimant, i.e., a claimat~t who claims more than

the estate

(2) one-seller many buyers situations of a certain type

(3) information market games as introduced in Muto et aL (1989).
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For morc applications the reader is refcrrcd to Muto et al. (1988). Ceneralizations of
big boss games were studied in Potters et al. (1989) (clan games) and 1Vagarajan (1992)
(games with leading coalitions).

In the next theorem some results for big boss games are collected.
Theorem 6.7. Let (N, v) be a big boss game with player i as the big boss. Then

(i) the core of v is a paralellotope, consisting of the vectors x E RN with ~;E~, x; -
v(N)andOGxjGM~(v)foralljEN`{i}

(ii) the r-value and the nucleolus of v both coíncide with the center of the core, i.e.,

v(N) - 2 L.kEN`{j} ~~k(v) if j- i
rj(v) - nj(v) -

2~~~(v) ~f .1 ~ t

(iii) for the Shapley valuc ~(v) wc havc N;(v) C r;(v)

(iv) ~(v) - r(v) - n(v) if and only if z~ is convex.

Weighted graph games
Brown and Flousman (1988) introduced weightecl graph games as a class of garnes where
the value of a coalition with more than two playcrs depends on the values of the two
player coalitions. Formally, a weighted graph ganae is a T1,J-game (N, v) where

v :- ~ aTUT
T:~TI-2

with aT 1 0 for all T E 2N, ~T~ - 2. IIerc, u~. clenotes the T-nnanimity game defined by

u~r(S) :-
r I if 'I' C .ti'

Sl 0 othcrwise.

A weighted gra.ph gamc corresponds to a wcightc~d complctc graph in which thc players

arc thc vcrticcs ancl tlic wcight un an cill;i~ 'I' C N, wil,h ~'I'~ - l is givcu by cr-~.. For

a coalition S E 2N, v(S) can bc~ sccn as I,hc~ suni of I,hc wcights on thc edgcs of thc

subgraph induced by S.

The folowing theorem illustratcs that for wcightcd graph games the Shapley value, the

nucleolus and the r-value coincide.

Theorem 6.8. (Brown and FIousman (1988)) Let (N, v) be a weighted graph game.
Then for all i E N
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~;(v) - T;(v) - n;(v) - 2(the sum of the weights of all edges adjacent to i).

As a corollary of this theorem it follows that the r-value and the nucleolus are additive

on the cone

Kz :- cone{uT ~ T E 2N, ~7'~ - 2}.

In van den Nouweland et al. (1993) it is shown that the r-value is additive on every cone

KN with 2 G l G ~N~. Here, IíN:- cone{uT ~ T E 2N, ~T~ - l}.

Theorem 6.9. (van den Nouweland et al. (1993)) Let (N,v) E IíN (2 c 1 G ~N~).

Then ~(v) - T(v).

lt is not difficult t.o show that thc nuclcolus docs not coincidc with thc r-value and

thc Shaplcy valnc on K~N if 1)`l.

Sequencing games
In a sequencing situation there is a queue, consisting of n customers waiting to be

served at a counter. The original order of the customers is given by a permutation

a of N:- { 1, ..., rz}. In the sequel we assume w.l.o.g. that a(i) - i for al i E N. For

every i E N, s; denotes the service time of i and c; is the cost junction of i. We assume

that c; is atCne, i.e., c;(t) - a;t f,Q; for all t E R~.

Civen a sequencing situation one can construct a TU-game in the following way (cf.

Curiel et al. (1989)). The set o[ players is N and, we define v in such a way that the

worth of a coalition S is equal to the maximal cost savings the coalition can obtain

by rearranging their positions in the queue. (íereby, we a11ow two customers in the

queue to change positions only if there is no customer outside S standing between them.

'I'hc cost savings that two ncighbotn-s i and j in thc qucuc can obtain by switching are

q;j :- max{crjs; - cr;sj,0}.

A coalitiou 7' E 2N is called corrnected if for all i, j E T and all k E N, with i G k G j,

we have k E T. For a connected coalition T thc maximal cost savings are

v(T) :- ~ g;j.
i,jET:iCj

For a non-connectecí coalition S, we say that T C S is a coniponent of S if T is connected

and T U{i} is not connected for every i E S`T. The components of S íorm a partition
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oí S which we dcnote by 1'(S). Now we define

v(S) :- ~ v(T).
TET(S)

The game (N, v) defined above is callcd the sequcncing game corresponding to a se-

quencing situation. In Curiel et al. (1989) it is shown that sequencing games are convex

games, and therefore, the r-value can easily be computed. For player i E N the utopia

payoff M;(v) is equal to

M;(V) - ~ gjk - ~ gjk - ~ gjk - ~ gjk.
j,kEN: jGk j,kEN: jGkGi j,kEN: iGjGk j,kEN: j~k, jGiGk

Since sequencing games are zero-normalized, i.e., v({i}) - 0 for all i E N, it follows that

the r-value is proportional to the upper value.

7 Final remarks and open problems

We conclude this paper with some remarks and open problems related to compromise
values.

In this paper we studied solution concepts whicó are based on upper and lower val-

ues for games. In section 2 we have seen that the r-value of a quasi-balanced TU-game

can also be seen as a value based on an upper va.lue for the game and a concession

vector. Here, the upper value is used as a starting point, which gives more than the

worth of the grand coalition to tbe playcrs, and the concession vector indicates in which

way Lo lowcr Lhc payoffs in orclcr to rca.ch a.n cflicicuL ontcoinc. ~l'his approach Lo thc

r-value provides a relation with a broad litcraturc ou another Lype of solution c.oncepts

for cooperative games, called concession methods. Characteristic for concession methods

are an upper or lower value as a starting point and a concession vector which indicates

how the payo(fs in the starting point should he lowered or increased in order to reach

an efficienL outcome. Well-known examples of concessiou methods are the egalitarian

solution for bargaining problems, and the egalitarian nonseparable cost method for cost

allocation problerns. For literature on this typc of solution concepts we refer to Kalai

(1977), Peters (1992), Driessen (1988), Driessen and hunaki (1993a, 1993b).
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'I'hc~ r-valuc gavc risc to thc introduction of scvcra.l intcresting suhclasscs of TU-games

such as semi-convex garnes and 1-convex games. Can the comprornise value also generate

in some way interesting classes of NTU-games ? What is the NTU-analogue of the gap

function ?

As mentioned in section 4 the RKS-solution is implemented by subgame períect equi-
libria of non-coopcrative games in extensive form by Moulin (1984) and Peters et al.

(1991). It is still an open problem whether it is possible to implement the r-value, the
compromise value and the NTU r-value by means of a non-cooperative game in extensive
form.

An extension of the r-value Lo games with a continuum of players is not known (cf.
Aumann and Shaplcy (1974)).

Characterizations of the Shapley NTU-value arc provided by Aumann (1985) and Kern
(1985). It is still an open problem whcther replacing of one or more of the axioms in
these characterizations by suitable axioms for the NTU r-value will yield a characteri-

zation of the NTU r-value.

A reduced game property for the RKS-solution is provided by Peters et al. (1991),
and a reduced game property for the r-value is given by Driessen ( 1993). Reduced game
propertics for Lhe cornpromise value and the N'fU r-valuc are still unknown.

In this paper we studied several classes oí games for which the r-value coincided with

the Shapley value or the nucleolus. In particular, for weiglited graph games al three solu-

tion concepts coincide. Brown and Housman (1988) also provided weaker conditions for

coincidence of the three solution concepts. It is an interesting problem to find necessary

and sufFicient conditions for coincidence of the r-value , the nucleolus and the Shapley

val uc.

In section 6 we have seen tliat for sequencing ga~nes the r-value is easy to compute.
However, íor other cornbinatorial gamcs such as ílow games (Kalai and Zemel (1982),
Curiel et al. (1989)), traveling salesman games (Fishburn and Pollak (1983), Tamir
(1989), Potters et al. (1992)), and minimum spanning tree games (Granot and Huber-
man (1981)) no explicit formulas for the r-value are known. For a recent survey on
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combinatorial optimization gamcs thc rcadcr is rcferrcd to Tijs (1992).
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