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Abstract

COMPS is a web-delivered computer-mediated problem
solving environment designed for supporting instructional ac-
tivities in mathematics. It is being developed as a platform
for student collaborative exploratory learning using problem-
specific affordances. COMPS will support computer-aided
monitoring and assessment of these dialogues. In this paper
we report on the first use of COMPS in the classroom, sup-
porting an exercise in quantitative problem-solving. We have
identified a number of categories of dialogue contribution that
will be useful for monitoring and assessing the dialogue and
built classifiers for recognizing these contributions. Regard-
ing the usability of the interface for problem-solving exer-
cises, the primary unexpected behavior is an increase (com-
pared to in-person exercises) in off-task activity and concomi-
tant decrease in shared construction of the answer. Its first
large deployment will be for Math 110, a quantitative literacy
class at Valparaiso University.

Introduction

COMPS is a web-delivered computer-mediated problem
solving environment designed for supporting instructional
activities in mathematics.

In its initial classroom use COMPS supports groups of
students engaging a particular exercise in quantitative liter-
acy: figuring out a winning strategy, should one exist, for
a Nim-like game. It has problem-related affordances for
the students to manipulate, shows the instructor the con-
versations in real time, permits the instructor to intervene,
and records all events for analysis. The intelligent part of
COMPS, which has not been deployed in classroom use,
has the computer itself participate in the supervisory task:
monitoring the conversation status for bits of knowledge and
other markers of progress or lack of progress and displaying
its findings to the supervising instructor.

COMPS gives us a platform for deploying Al techniques
in mathematics dialogues. Immediate applications include:

e FExploratory learning.  COMPS is an environment
with affordances for computer-supported collaborative
exploratory-learning dialogues. Plug-in modules provide
problem specific aids and affordances. The Poison game
we report on here comes with a visualization of the game
state and buttons for playing.
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o Computer-monitored dialogues. COMPS has provisions
for an instructor to oversee and intervene in the student
conversations. In the style of, e.g. Argunaut [De Groot
et al. 2007], COMPS will provide a status screen for the
instructor, showing what knowledge the students have dis-
covered in their inquiry learning as well as measures of af-
fective state (e.g. are they on-task or frustrated) and other
measures of progress. Experiments toward computer-
generated status are described in this paper.

o Assessment reports. Using similar techniques as for mon-
itoring, COMPS will provide the instructor with assess-
ment reports of the conversations. This will permit the
instructor to have the students engage in the exercises out
of class, on their own time.

e Observation and data collection. COMPS collects tran-
scripts and data that will be useful both in understanding
the student problem-solving behaviors and in producing
better computer understanding of COMPS conversations.

In this paper we report on the interaction model of
COMPS, the educational context for its initial deployment,
results from first use in a classroom setting, and first results
toward having it monitor the progress the student conversa-
tion.

The COMPS Model

The common threads to COMPS applications are a) dia-
logue, b) solving problems, and c) third parties. It is in-
tended to facilitate and capture the kinds of interactions that
would occur in mathematics problem-solving conversations.
We have a simplified keyboard-chat communication channel
instead of in-person face-to-face and voice communication.
This permits us to readily log all interaction, more impor-
tantly it facilitates having the computer understand, moni-
tor, assess, and potentially intervene in the dialogue. Be-
cause the problem domain is mathematics COMPS includes
facilities for interpreting and rendering “ASCII Math,” ex-
pressions typed in-line using ordinary keyboard characters
[MathForum 2012a].

COMPS conversations can be tutorial or they can be peer-
to-peer explorations. Our view of how to support interac-
tions is informed by the tutorial problem-solving dialogue
studies of [Fox 1993] and the Virtual Math Team problem-
solving dialogue studies of [Stahl 2009]. Wooz, the im-



mediate predecessor to COMPS, has been used for record-
ing and facilitating tutorial dialogues in algebra and differ-
ential equations, experiments in structured tutorial interac-
tions, and exploratory learning with differential equations
visualization applets [Kim and Glass 2004][Patel et al. 2003]
[Glass et al. 2007].

The other element of COMPS conversations is possible
third parties: teachers figuratively looking over the shoul-
ders of the students as they work, computers also looking
over the shoulders, teachers and computers intervening in
the conversation, reports generated afterward with assess-
ments of the student learning sessions, and analyses of the
transcripts of interactions.

The common elements of COMPS applications are thus:

e [nteractivity. Just as in in-person interactions, partici-
pants can behave asynchronously: interrupting and chat-
ting over each other. Participants can see the other partic-
ipants’ keystrokes in real time, they do not need to take
turns or wait for the other person to press enter. One
use for this is documented by Fox who found tutors us-
ing transition relevance points [Sacks et al. 1974]. These
are places within a dialogue turn where the other party is
licensed to take over. For example, the tutor can provide
scaffolding by starting to say an answer. Using prosodic
cues (rising voice, stretched vowels), the tutor provides
the student opportunities to take over the dialogue and
complete the thought.

o A problem window. The problem is configurable, but gen-
erally there are areas of the screen window that keep the
problem statement and elements of the solution in view
without scrolling them off the screen. These items are as-
sumed to be within the dialogue focus of all participants at
all times, the objects of team cognition (Stahl) and shared
construction (Fox).

e A central server. The server routes interaction traffic be-
tween the participants and optional third parties to the
conversation (both human and machine), and records all
interactions in log files.

Figure 1 at the end of this paper illustrates COMPS at work.

COMPS runs as a Flash application within a web browser,
the server is a Java program. The application is config-
urable: plug-in modules written in Flash provide custom
environments tailored for particular mathematics problems
and learning modalities.

COMPS is similar in spirit to the Virtual Math Teams
(VMT) chat interface [MathForum 2012b]. The VMT inter-
face supports a generalized graphical whiteboard instead of
having specialized interfaces for particular exercises. How-
ever many of the exercises that COMPS is intended to sup-
port are currently executed in class with manipulatives. For
example the Poison game described in this report uses piles
of tiles. It was incumbent on us to have COMPS provide
software affordances that mimic the manipulatives.

Math 110 Background

A goal of this project is to introduce COMPS computer-
mediation to the group collaborative exercises in the Val-

paraiso University (VU) Math 110 class. Math 110 deliv-
ers the quantitative literacy skills expected of an educated
adult [Gillman 2006] along with the mathematics skills ex-
pected in quantitative general education classes in a liberal
arts curriculum. It achieves this by using modern pedagog-
ical techniques and a selection of topics and problems that
are quite different from, more motivating than, and we hope
more successful than the typical bridge or college algebra
class.

It is the style of instruction that matches Math 110 to
COMPS, viz:

e Problems are explored by experimentation, using manip-
ulatives and written instructions.

e Four person groups collaborate on the in-class explo-
rations, with students adopting special assigned roles in
the collaborative process.

e During the class period the instructor observes the group
interactions and offers suggestions or guiding questions,
as needed.

These are aligned with the three threads of COMPS: solving
problems, dialogue, and third parties. During a semester,
students solve twenty in-class problems. An emphasis is
placed on problem-solving strategies.

Math 110 in its current form has been the established
bridge class in the VU curriculum for 15 years. Students
enrolled in Math 110 performed poorly on the mathematics
placement exam and must successfully complete the course
before they can enroll in quantitatively-based general edu-
cation courses. Data show that completing Math 110 has
a positive effect on retention and success at the university
[Gillman 2006].

Math 110 differs from simply repeating high school alge-
bra not only in teaching style but also in content. There are
five topical themes: Pattern Recognition, Proportional Rea-
soning, Fairness, Graphs and Decision Science, and Orga-
nizing Information. Together these themes provide a back-
ground in logical reasoning, quantitative skills, and critical
thinking.

Writing skills are exercised by requiring students to write
up each problem in a narrative format. Each written solution
includes the statement of the problem in the student’s own
words, the solution of the problem, and an explanation of the
solution. Often this entails a description of the experimental
activities and results. The students are assessed on the writ-
ten aspect of the solution in addition to the mathematical
aspect.

Poison Exercise

An example of a Math 110 collaborative exercise—the first
we have implemented in COMPS—is the Poison problem.
The prompt is shown in Figure 2 at the end of this paper.
Poison is a Nim-like two-person game. Starting from a pile
of tiles, each person removes one or two tiles per turn. The
last tile is “poisoned,” the person who removes the last tile
loses. The question before the students is to figure out how
to play perfectly, to find an algorithm for either person A
or person B to force a win. In a classroom setting the ma-
nipulative for this exploratory learning exercise in pattern



well everytime ive had 4, or 7 i lose.

huh?

Oh wait, that’s every round >:(

1 dont think it matters

hahaha

(playing game)

lets do 23 again and ill pick a 1 to start instead of a
2?

FINE

O 0>

oy

>

D 1ijust tried to avoid 7 and still got stuck with 4

Figure 3: Dialogue from Poison Exercise Using COMPS

recognition is a box of tiles. Students also have pencil and
paper.

For purposes of moving this exercise to the computer-
mediated environment, we wrote a COMPS module that
simulates the manipulatives: the pile of tiles. There are but-
tons for each of the two teams to remove one or two tiles.
There is an option to arrange the tiles into small groups, a
useful way to visualize the game and its solution. Students
sometimes discover this method while playing with the tiles
on the table-top. There is an option to restart the game with
an arbitrary number of tiles. Students often find that they can
better analyze the game if they consider a simpler problem,
with only a few tiles. Finally, there is a record of the moves
played, since in the face-to-face regime students typically
write down the sequences of moves for study.

The current status of this COMPS plug-in is that students
can play Poison, the teacher can monitor all the ongoing con-
versations in the computer lab, and the teacher can intervene.
The computer is not yet monitoring the conversation.

First Usage

Setup

In November 2011 students in an elementary education
mathematics course used the COMPS version of the Poison
exercise. These were not Math 110 students, but education
students who would normally engage in quantitative literacy
classroom exercises as part of both learning the mathematics
and experiencing how it is taught.

Twenty-five students were arranged in six groups in a
computer lab so that group members were not near each
other and verbal conversations were discouraged. The stu-
dents were accustomed to working in groups sitting around
a table. Keyboard chat was a new element. Each student
was given a copy of the problem. The instructor logged in
as a member of each group so that she could monitor and
contribute to the conversations. A sample from a conversa-
tion is shown Figure 3. The session ran for approximately
40 minutes, at which time the students stopped where they
were and gathered together offline to share notes for their
written reports.

A How?
//D  If you take 2, then whatever you do on the next
turn, you can do the opposite to leave 1.

B If you take 1 or 2, then you can take 1 or 2 to
counter balance that//

OK

OK

So if I take 2, whatever they do ...

So basically if the other team ends up 4 left, then
you can win. //

Yes

And that’s if the other team ends up with 4 left
OK
We could maybe abbreviate opponent as OPP or
something. Whatever, you might be writing a lot.
So yeah. um

(sounds of mumbling)

Ok. Um

Oh boy

We don’t need grammar.

Um so, if they 4 left you can win have how can you
get it so that ..

If you have 5 or 6 on your turn, you can either take
1 or two to get it to that situation.

Ok you you want to get to 4, that’s kind of a stable
point where you can force them

WrwA W >PwWEU wWxzO»

= U

Figure 4: In-Person Poison Dialogue

Observations

Both from experience observing Poison exercises, and from
prior audiotaped sessions, differences between COMPS-
mediated and in-person versions of Poison were evident.

e The COMPS students spent considerable time off-task,
chatting about things not related to the problem. From
the start, when students were logging in and greeting each
other, it took some time for them to focus on the problem.
Off-task conversation was almost negligible in our audio
tapes, and not extensively observed in the classroom be-
fore the problem is solved.

e The COMPS groups spent much time playing the game
for entertainment value, without advancing toward the
goal of deducing whether a winning strategy existed.

e In the COMPS environment there was more team rivalry
between the two teams within a group. There was even an
instance where a student was reluctant to share the win-
ning strategy with the rest of the group.

A consequence of all three of these behaviors is that in-
cidences of shared construction of the winning strategy are
less often observed in the COMPS transcripts, compared to
their transcribed verbal ones. Figure 4 (in-person) and Fig-
ure 3 (computer-mediated) illustrate the typical difference.
The in-person group engages in long exchanges where group
cognition is evident. In the computer-mediated group the
students rarely engage with each other for more than several
turns at a stretch.




The student experience

Students were surveyed the next day in class. There were 8
Likert questions (strongly-disagree to strongly-agree) and 6
short-answer questions. The students told us the following.

e Using the computer seemed easy: 19 of the 25 students
either agreed or strongly agreed.

e Students were divided over whether it was easier to play
Poison on a computer than with tiles on a table.

e Eleven students were neutral with regard to whether it was
easier to find a winning strategy for Poison on a computer
than with tiles on a table, while 10 students either agreed
or strongly agreed that the computer was easier.

This finding stands in contrast with our observation that
the computer-mediated groups were less successful in
finding a winning strategy.

e Responding to open-ended questions, students enjoyed
the chat option in COMPS and the fact that the activity
was different from other class activities.

e On the other hand, when comparing using COMPS to
solving problems face-to-face around a table, the students
commented that it took time to type their ideas (which
were sometimes difficult to put into words) and they could
not show things to the others.

One student did comment that the chat environment made
the student try to solve the problem individually rather
than sharing the solution right away among the group
members.

e Aspects of the Poison module were troublesome. Stu-
dents were confused about the L/R buttons (they were for
the two teams), they would have preferred images of tiles
to the @ symbol, and they found keeping up with the con-
versation difficult at times.

This was congruent with our own observation of students
using the interface. Images of tiles, and perhaps even a
way to drag them with a mouse cursor, would be a bet-
ter model for the manipulatives than the simple row of @
symbols and buttons. It took students a while to learn to
use the interface in this respect.

e The students would have liked to have a way to have a
private chat between members of a team so that the other
team could not see their conversation.

Other observations of student use of the interface:

e The physical tiles are limited to 20, but the computer
placed no limit on virtual tiles. Combined with the Poison
game’s evident play value, this resulted in some COMPS
groups playing longer games with more tiles than the
physical-tiles groups do. Such games did not contribute
to understanding.

e In person student groups picked and maintained teams a
bit more readily. We think COMPS should allow students
to pick a team, and have the software display the current
team rosters.

e We observed students using the full-duplex chat commu-
nication constantly. They often do not take turns, and they

react to the other students’ developing turns as they are
typed.

Studies in Computer Monitoring

The first COMPS application of intelligence is to figura-
tively look over the shoulder of the students as they work,
then display a real-time summary for the instructor. We have
initially approached this task by writing shallow text classi-
fiers. The work in this section is described in an unpublished
report [Dion et al. 2011].

Background

We created a preliminary set of categories and classifiers
based on two sources of language data

e Tape-recorded dialogues of upper-class students working
the poison exercise. Figure 4 shows an extract of recorded
verbal interaction.

e Written reports of the Poison problem that Math 110 stu-
dents provided in earlier semesters. These reports exhibit
many of the mathematical realizations that student exhibit
while solving the Poison problem, but none of the dia-
logue or problem-construction phenomena.

This work was completed before the initial collection of
COMPS-supported Poison dialogues, so does not include
the COMPS data.

For the COMPS Math 110 project we are concentrat-
ing first on identifying epistemic knowledge and social co-
construction phenomena. This is congruent with the results
of a study of the criteria that teachers use for assessing stu-
dent collaborative efforts [Gweon et al. 2011]. We cate-
gorized the dialogue data according to the following types
of phenomena we deemed useful for real-time assessment
along these axes:

e Bits of knowledge: domain-specific realizations that are
either needed or characteristically occur during the path
toward solving the problem.

e Varieties of student activities that were on-task but not
part of the cognitive work of constructing the solution:
e.g. picking sides, clarifying rules, playing the game.

e Student utterances related to constructing a solution: e.g.
making observations, hypothesizing, wrong statements.

o Off-task statements, filler.

Altogether we annotated the student utterances with 19 cat-
egories, shown in Table 1. In this study, individual dialogue
turns or sentences were assigned to one of these categories.

Experiment in machine classification

For our classifiers we chose two numerical methods: non-
negative matrix factorization (NMF) and singular value de-
composition (SVD). SVD is the most common numeri-
cal technique used in latent semantic analysis (LSA). Both
of these methods rely on factoring a word-document co-
occurrence matrix to build a semantic space: a set of
dimensionality-reduced vectors. The training set for these
experiments—the text used for building semantic spaces—
was 435 sentences from the written corpus. The test sets



Table 1: Dialogue Categories from Poison Conversations

Dialogue Category

4 tiles is important

2 and 3 are good tiles

You want to leave your opponent with 19 tiles
Going first gives you control of the game

You want to take 1 tile on your first move
1,4,7, 10, 13, 16, 19 are the poison numbers
“Opposite” strategy

1

2

3

4

5

6

7

8 | “3 pattern”

9 | Wrong statements

10 | Exploring

11 | Playing the game

13 | Making an observation

14 | Clarifying observations

15 | Claritying rules

16 | Exploring further versions of the game
17 | Hypothesizing

18 | There is a winning strategy
19 | Filler

were taken from approximately 100 sentences from the writ-
ten corpus and 500 spoken dialogue turns. All our semantic
spaces had 20 dimensions. Our feature sets included uni-
grams (individual words) and bigrams.

We report here on three computer-tagging methods: SVD,
NMF-s, and NMF-u.

The SVD and NMF-s methods are supervised. They
match test sentences to manually accumulated bundles of
exemplar sentences. This technique is much the same as
the latent semantic analysis algorithm used successfully by
Auto-Tutor [Graesser et al. 2007].

In the NMF-s method the vector for a test sentence was
built by solving a set of linear equations in 20 unknowns,
which effectively computed what the vector for the test sen-
tence would have been had that sentence been a part of the
training set. We believe that this technique for using non-
negative matrix factorization to build text classifiers is novel.

The NMF-u method is unsupervised. The reduced dimen-
sions of the factored matrices are assumed to correspond di-
rectly to semantic dimensions within the data. This approach
was described by [Segaran 2007] for classifiying blog posts.
Our training documents (sentences) were sorted according
to a) their manually-assigned category and b) which of the
20 dimensions in the NMF vector representation of the doc-
ument had the largest value. The dimensions were then man-
ually associated with individual tags, if possible.

Results

Table 2 summarizes the classification success rates of the
two supervised methods, using unigram, bigram, and com-
bined uni- and bi-gram feature spaces. We report the per-
centage of sentences that were correctly tagged from n =
113 test sentences. Test sentences represented all categories.
Overall classification accuracy varied from 45% to 55%.

Some categories occurred very infrequently in both the train-
ing and test corpora, resulting in very low success rates.
Thus we also report the percent correct among the most
common three categories in the test corpus: numbers 6, 11,
and 15 in Table 1. Together these represented n = 59, more
than half the test sentences.

A 2 test on tagging sentences in the top three categories
shows that the computer tagging success rates are indeed
not due to random chance. All values are significant at the
p < 0.05 level and some at the p < 0.01 level. We found
no consistent advantage to using unigrams, bigrams, or both
together. In this our result is similar to [Rosé et al. 2008],
where differences among these conditions are slight. That
study of classifiers for collaborative learning dialogues eval-
uated its results using « interrater reliability between human
and computer annotaters. We have not computed «, as the
number of categories is large and the number of test sen-
tences is small, rendering the statistic not very meaningful
[Di Eugenio and Glass 2004].

In the NMF-u method many dimensions did not corre-
late with any tag. It was thus not capable of categorizing a
test sentence into all the possible categories, leaving most of
the categories unrecognized. Table 3 summarizes the most
prominent categories that the NMF-u method found. For
some of the most attested categories NMF-u was successful
at correctly tagging the sentences in those categories, at the
cost of a high rate of false positives. It had high recall but
the precision was startlingly low.

Data Collection for Analysis

One of the benefits of COMPS is the ability to gather data on
students, their interactions, and the exercise that they engage
in.

An advantage of recording group problem-solving is that
ordinary obligations and discourse pragmatics dictate that
the participants signal when they achieve some understand-
ing or some common ground. This means that not only are
all the learnable knowledge components visible, but partici-
pants in the discussion should be making recognizable signs
of whether the components are understood [Koschmann
2011]. In short, student thinking is forced out into the open
in ways that an assessment test, a cognitive experiment, or a
think-aloud protocol might never get at.

Our study of Poison collaborative dialogues [Dion et al.
2011] has already uncovered knowledge components that
students realize and express before they arrive at a closed-
form solution but are not themselves part of the solution.
Examples are: 2 and 3 tiles force a win, 4 tiles is a simple
completely-analyzable case. There is no good way besides
observation to find out the ancillary realizations that students
characteristically pass through as they explore the problem.
And it is necessary to understand these ancillary realizations
in order to assess the state of the knowledge-construction
task.

Conclusions and Future Work

COMPS is being developed with several uses in mind, viz:
a platform for student collaborative exploratory learning us-



Table 2: Accuracy of Supervised Classifiers

% Correct Top 3 Tags
All Tags | Top 3 Tags X2 Tab6 | Tag 11 | Tag 15
n =113 n =59 pvalue | n=19 | n=13 | n =27
NMEF-s Unigrams 47% 61% .003 58% 31% 78%
NMF-s Bigrams 45% 58% .027 37% 38% 81%
NMF-s Both 48% 64% .024 52% 54% 78%
SVD Unigrams 51% 66% .0002 52% 86% 85%
SVD Bigrams 55% 68% .028 63% 15% 96%
SVD Both 53% 59% .003 42% 0% 100%

Table 3: Unsupervised NMF Classifier Results

Unigrams

Unigrams no-stopwords

Bigrams

Correctly False
Class N | classified | positives

#7 Opposite Strategy | 13 | 13 (100%) 63
#6 Poison Numbers | 13 | 12 (92%) 2
#15 Clarifying Rules | 27 | 16 (59%) 8
#1 Four Tiles Important | 9 5 (56%) 15
#7 Opposite Strategy | 13 | 11 (85%) 19
#15 Clarifying Rules | 27 | 23 (85%) 23
#6 Poison Numbers | 13 | 12 (92%) 10

#1 Four Tiles Important | 9 5 (56%) 15

ing problem-specific affordances, computer-aided monitor-
ing and assessment of these dialogues, and recording di-
alogues for study. Its first large deployment will be for
Math 110, a quantitative literacy class at VU.

First use with 25 students students exercising the Poison
exercise in six teams shows that COMPS is quite usable.
What seemed like a fairly straightforward translation of the
Poison exercise manipulatives to software affordances will,
however, benefit from updating and experimentation.

Analyzing dialogues collected before COMPS, we have
identified a number of categories of dialogue contribution
that will be useful in monitoring and assessing the dialogue.
With regard to epistemic knowledge in the Poison problem
domain, we have identified realizations that students pass
through on the way toward building the final solution. These
realizations may not appear in the final solution, but hav-
ing students engage in dialogue and team cognition seems
to successfully force the cognitive processes into the open.

We have classifiers based on latent semantic analysis and
non-negative matrix factorization that can recognize a few
of the most important of these epistemic categories in solv-
ing the Poison exercise. One of our classifiers relies on a
somewhat novel method of using NMF. It entails discover-
ing where a test sentence would be in the factor matrices
by solving a system of linear equations. It performed about
as well as LSA on our data set, but more testing would be
needed. Our classifiers are trained on student written re-
ports, we expect that accuracy will improve once we train
them on student dialogue data.

Regarding the usability of the interface for problem-
solving exercises, the primary unexpected behavior that we
will address in future tests is the increase (compared to in-

person exercises) in off-task activity and concomitant de-
crease in shared construction of the answer. Certain updates,
such as making the interface more explanatory and reducing
the maximum number of tiles, may reduce the evidently en-
hanced play value provided by the computer mediated envi-
ronment. Also specifically addressing this goal we have two
improvements on offer:

e Unlike earlier Wooz exercises, the Poison problem
prompt was not on permanent display in a COMPS win-
dow. The students have it on paper. Possibly putting the
problem on display will serve to keep the students more
on-task. In short, we may be suffering the consequence of
not following our own COMPS interaction model strictly
enough.

e In Math 110 team members are assigned roles. For ex-
ample one student is a moderator, one is a reflector, and
so on. These are not represented in the COMPS interface.
Possibly displaying which students are assigned to which
role will foster more focused interactions.

We note that in addition to the epistemic tags, teachers
have been found to evaluate student collaborative activities
on a number of axes such as goal-setting, division of labor,
and participation [Gweon et al. 2011] [Gweon et al. 2009].
Accordingly, we have been annotating our dialogues using
the VMT threaded markup scheme [Strijbos 2009] which
shows when a turn addresses previous turns and annotates
the discourse relationship between them. Future work on
the text classifiers needs to address these discourse relations.
The VMT Chat interface [MathForum 2012b] permits users
to explicitly link their dialogue utterances: a user can indi-
cate that a particular dialogue turn responds to a different,



earlier, turn, possibly uttered by somebody else. COMPS
does not have this functionality, but it might be useful.
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Figure 1: COMPS with Poison problem.

The people in each group are to form two teams. One team will play against the other team in the group. To begin, place 20
tiles between the two teams. Here are the rules:

1. Decide which team will play first.

2. When it is your team’s turn, your team is to remove 1 or 2 tiles from the pile.
3. The teams alternate taking turns.

4. The team that is forced to take the last tile — the poison tile — loses the game.

Play this game a number of times, alternating which team plays first. As you play these games, keep track of your
moves/choices. Eventually, you want to be able to determine how your team should play to force the other team to lose.
In order to make this determination, you will need to look for a pattern. In order to find a pattern, you will need data, and so
you will need to decide how to collect and organize these data to see if a pattern will appear.

Figure 2: Poison Assignment



