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Abstract. The ray-tracing problem is, given an optical system and the position and 
direction of an initial light ray, to decide if the light ray reaches some given final 
position. For many years ray tracing has been used for designing and analyzing 
optical systems. Ray tracing is now used extensively in computer graphics to render 
scenes with complex curved objects under global illumination. 

We show that ray-tracing problems in some three-dimensional simple optical 
systems (purely geometrical optics) are undecidable. These systems may consist 
of either reflective objects that are represented by rational quadratic equations, or 
refractive objects that are represented by rational linear equations. Some problems in 
more restricted models are shown to be PSPACE-hard or sometimes in PSPACE. 

1. Introduction 

We often observe light rays passing through a window or a hole in a cloud, which 

appear to propagate  in straight lines. Since the size of windows and clouds is 

significantly larger than the wavelength, which is on the order of  10-7 m, the wave 
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nature of light becomes negligible. Based on this rectilinear propagation of light 
rays, the theory of geometrical optics was developed, and the foundation or ray 
tracing was established. 

The theory of geometrical optics is a classical field. In this theory the propaga- 
tion of light is assumed to be rectilinear in a homogeneous medium, and the 
ray-tracing technique uses this assumption. Ray tracing is a valuable tool for 
designing and evaluating optical instruments and for rendering realistic scenes in 
computer graphics. 

The history of ray tracing goes back at least to Euclid (315-250 B.C.) and his 
student, Archimedes (287-212 B.c.). Portions of Euclid's Elements were motivated 
by Greek interest in the theory of rectilinear propagation of light. In 1730 Newton 
(1642-1727) published his treatise Opticks [211 in which he defined the reflective 
and refractive laws of light based on his corpuscle theory and first formally defined 
and investigated some ray-tracing problems. 

Given a mathematical model of an optical system, light rays can be projected 
through it to evaluate its theoretical performance. The rays are traced by applying 
the reflection or refraction equation at each intersecting surface to locate where 
the reflected or transmitted ray intersects the next surface. In this way the rays 
are traced throughout the system. 

Ray tracing also has important applications in computer graphics. It is used 
to render scenes consisting of objects with reflective or refractive surfaces under 
global illumination [51, [11], [131, [26]. The realism of an image is enhanced by 
the way in which a scene is illuminated by light sources. A #lobal illumination 
model called ray tracing, which is based on geometrical optics, computes the 
illumination of any visible point in the scene by following the paths of light rays 
as they are reflected or refracted through the scene. Not surprisingly, ray tracing 
has produced some of the most spectacular computer-synthesized images to date. 
See [4], [81 [101, [121 [151, and [25] for physical theories and a brief history of 
ray tracing. 

Despite a great amount of attention paid to the use of ray tracing, the 
computability and complexity of various ray-tracing problems has not been well 
studied. Formalizing these problems by using assumptions from the theory of 
geometrical optics, their computability and complexity can be investigated. The 
results are very interesting as they answer the questions in the classical theory of 
optics, computer graphics, and computational geometry. 

2. Formal Description 

The ray-tracing problem is a decision problem: given an optical system (namely, 
a finite set of reflective or refractive objects), a light ray's initial position and 
direction, and some fixed point p, does the ray eventually reach p? 

Our optical systems consist of a finite set of optical objects that may be reflective 
or refractive. The boundaries of these objects may be totally reflective, partially 
reflective, or totally refractive. In this paper we restrict ourselves to optical systems 
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constructed out of homooeneous reflective or refractive objects whose boundaries 
are described by linear or quadratic equations. 

The positions of surfaces can be either rational or irrational relative to a 
coordinate system. However, we always assume that the position and tangent of 
the initial ray are represented with rational coordinates. If the optical system is 
irrational, the path of rays obviously will include irrational coordinates. In a 
restricted rational system with only reflective objects whose boundaries are 
described by linear equations, the trajectory of rays can be traced in rational 
coordinates--that is, we can define each ray's path as a union of line segments 
bounded by rational coordinates. However, the path of rays in more general, 
rational optical systems may not be represented in rational coordinates. If there 
are quadratic reflective surfaces, the ray may fail to intersect the surface at a 
rational position, and the tangent of the reflected ray may be irrational. If there 
are refractive objects, neither the position nor the tangent of the refracted ray may 
stay rational. We say that the ray-tracing problem is rational if the path of the 
ray is represented as the union of line segments bounded by rational coordinates 
throughout the system. Otherwise, we say that the problem is irrational. It seems 
that rational ray-tracing problems are not so difficult in terms of complexity. In 

this paper we show the surprising result that some rational problems are undecid- 
able. To keep some ray-tracing problems rational, we may put some restrictions 
on the general use of refractive objects and quadratic objects so that the trajectory 
of rays can be traced in rational coordinates. 

The ray-tracing problem is a decision problem. We are interested in determining 
if the ray will reach a given final position, and not in the intensity of the ray at 
that position. Throughout this paper we assume the theory of geometrical 
optics [4], [12]. The paths taken by rays are rectilinear inside a homogeneous 
medium and the directions of reflected or refracted rays are determined 

by the laws of reflection and refraction. The law of reflection states that the 
incident angle and the reflected angle are equal, and the law of refraction states 
that the angle of refraction depends on the incident angle and the indices of 
refraction of the materials as depicted in Fig. 1. Rays are assumed to have 
infinitesimal wavelength and are treated as lines with zero width. This implies that 
there is no diffraction caused by the wave nature of light. All surfaces are 

sin 0i = sin 01 

Incident light ' Reflected light 

r/i sin Oi = fir sin 0r 

I 

~ . . . ~ i  ~ Index of refraction 
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Fig. 1. Reflection and refraction. 
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perfectly smooth and do not cause the scattering of rays upon reflection or 
refraction. 

Our results in various optical models are summarized as follows: 

1. Ray tracing in three-dimensional optical systems consisting of a finite set of 
reflective or refractive objects represented by a system of rational quadratic 
inequalities is undecidable. 

2. Ray tracing in three-dimensional optical systems consisting of a finite set of 
refractive objects represented by a system of rational linear inequalities is 
undecidable. 

3. Ray tracing in three-dimensional optical systems consisting of a finite set of 
rectangular reflective and refractive objects is undecidable. 

4. Ray tracing in three-dimensional optical systems consisting of a finite set of 
reflective and partially reflective surfaces represented by a system of Jinear 
inequalities, where some of the inequalities are allowed to be irrational, is 
undecidable. 

5. Ray tracing in three-dimensional optical systems consisting of a finite set of 
reflective and partially reflective surfaces represented by a system of rational 
linear inequalities is PSPACE-hard. 

6. For any d > 2, ray tracing of d-dimensional optical systems consisting of a 
finite set of parallel and perpendicular reflective surfaces represented by a 
system of rational linear equalities is in PSPACE. 

An interesting application of the undecidability results is that geometrical 
optics can, in principle, simulate any computable computation. Some chaotic 
systems can be computed by finite programs [6], 1-19]. Thus, as a corollary 
to our undecidability results, geometrical optical systems can be chaotic in some 
cases. 

Theoretically, these optical systems can be viewed as general optical computing 
machines, if our constructions could be carried out with infinite precision, or 
perfect accuracy. However, these systems are not practical, since the above 
assumptions do not hold in the physical world. Specifically, since the wavelength 
of light is finite, the wave property of light, namely diffraction, makes the theory 
of geometrical optics fail at the wavelength level of distances [7]. 

3. Related Work 

Some of the results presented here were shown by us in an earlier paper [23]. There 
are several new results presented in this paper, which were obtained by considering 
refraction and by using a reversible Turing machine. 

Abstract ray-tracing problems have also been investigated by Fiume [8]. 
Fiume's work does not describe actual optical systems, but rather considers 
symbolic systems that transform the intensity of rays without any consideration 
of the geometry of the optical systems. He showed that if amplification of light 
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intensity was allowed, his abstract ray-tracing problem was PSPACE-complete. 
If amplification is not allowed, then he showed that the problem became 
NP-hard. However, his transformations on the intensity of optical rays would 
require active optical components with nonlinear transfer functions such as 
electro-optical devices or photorefractive crystals, which are not purely optical 
devices. 

In contrast, our results do not depend on any intensity of the rays. Instead, we 
encode problems by the position of optical rays. Manipulation of the positions is 
carried out by use of pure geometrical optics. Thus, our models give results more 
appropriate to computational geometry. In particular, they address the ray-tracing 
problems in the models that are described by Newton in his Opticks, and that 
form the backbone of modern ray-tracing theory. 

A similar undecidability proof has been independently obtained by Moore [20] 
who investigated unpredictability in dynamical systems. He showed that motion 
with as few as three degrees of freedom in smooth dynamics can simulate universal 
computation. 

4. Optical Systems and Ray Tracing 

Optical systems may consist of both reflective and refractive objects. Some objects 
may be represented by quadratic inequalities. Some boundaries may be described 
by equations with irrational coefficients. The trajectory of rays in some systems 
can be represented by rational coordinates and a rational tangent. 

The objects in an optical system are described by a finite system of inequalities 
and equalities. We restrict ourselves to systems including only linear and quadratic 
inequalities and equalities. If the system can be described by a set of equalities 
and inequalities where all coefficients in the system are rational, then the optical 
system is said to be rational. Otherwise, the optical system is classified as irrational. 

The degree of representation, namely, linear or quadratic, is also used to describe 
the optical systems. The optical system is linear if it can be represented by linear 
inequalities and equalities; the system is quadratic if it is represented by quadratic 
inequalities and equalities. 

If the path of rays in an optical system can be described in rational coordinates 
(that is, as a union of line segments with endpoints in rational coordinates), 
the ray-tracing problem is said to be rational. If the path requires irrational 
representations, the ray-tracing problem is said to be rational. The rational 
ray-tracing problems are recursively enumerable in a strong sense, since each path 
from one surface to another can be rationally represented, and each subsequent 
path can be computed by rational representation. The irrational ray-tracing 
problems could be recursively enumerable, if the computation on irrational values 
by some symbolic manipulation is considered recursively enumerable. Since 
computing irrational representations seems difficult, we focused most of our 
attention on rational problems. Still, we found that even these problems are 
undecidable. 
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5. Computability and Complexity 

5.1. Three-Dimensional Rational Quadratic Optical Systems with 

Reflective or Refractive Objects 

Optical System. In our first optical model we assume that each optical system 

consists of a finite set of reflective objects with linear and parabolic surfaces, or 

refractive objects with linear and hyperbolic surfaces. In the first subcase we do 

not require refractive objects at all. In the second subcase we may not need 

reflective objects, since reflective surfaces may be implemented by using (total) 

reflection from refractive objects. We restrict the use of quadratic surfaces so that 

the positions and tangents of the reflected rays can be traced in rational co- 
ordinates as in Fig. 2. 

Turing Machines. We show that ray tracing in the system is undecidable by 

simulating a universal Turing machine as an optical system. In particular, this 

implies that some optical system simulates some universal Turing machine. The 

model of a turing machine that  we use has a finite control, a tape which contains 

cells and input, and a tape head that reads one cell on the tape at a time. The 

tape is infinite in both directions. For a more detailed description of Turing 

machines, see [14]. 

The set of tape symbols F is {0, 1}. We assume that the set of states in the finite 

control is Q = {qt, q2 . . . . .  qs}, that ~ is the transition function, that qt is the initial 
state, and that q~ is the (only) final state. 

Our  discussion assumes reversible Turing machines. A reversible computation 

consists of a sequence of 1 : 1 deterministic operations that are also deterministic 

backward. A Turing machine is said to be reversible if its transition function is 

1 : 1, so that there is exactly one predecessor for each whole machine state. Bennett 

has demonstrated that a reversible Turing machine can be built to perform any 

possible recursively enumerable computat ion [1]. 

parabolic surface 
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Fig. 2. Rational ray tracing with parabolic and hyperbolic surlaces. 
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Simulation. We show that a Turing machine can be simulated by an optical 

system. We view this optical system as a set of complex optical boxes. Each 

complex box consists of a set of basic boxes with linear mirrors, and either 

parabolic mirrors or hyperbolic lenses. Each complex box has a unit square 

through which the ray enters (always entering perpendicular to this surface), and 

one or two unit squares from which the ray exits (always exiting perpendicular 

from this surface). These unit squares are called the entrance widnows and the exit 

windows, respectively. The tape is encoded by the (X, Y) coordinates of the ray 

relative to the unit square windows. We organize these complex boxes so that the 

whole system simulates the Turing machine. 

Each complex box corresponds to one state of the Turing machine's finite 

control, and implements the transition function defined for that state. The ray 

enters the entrance window and exits out of one of the two exit windows depending 

on which state the Turing machine may enter next. The system then projects the 

ray onto the next complex box while preserving the coordinates of the ray relative 
to the window, thus simulating the transition of states defined on the Turing 

machine. This is the general idea of how to simulate the Turing machine with this 

optical model. Next we describe this idea in more detail. 

Representation of Operations. We represent the storage tape of M by using two 

binary fractions U and V. Let Uo be the symbol at the tape head. Let u~, u2, u3 . . . .  

be the successive symbols to the left of u o, and let v o, v~, v2 . . . .  be the successive 

symbols to the right of u o. This is shown in Fig. 3. Then we can represent the 

storage tape by using two numbers U and V: 

U= ~ uJ2 I+1, (1) 
i = 0  

v = ~ v,/2 '+'. (2) 
i = 0  

U = 0 . 1 / 0 U l U 2 U  3 ' '  �9 V .~- 0 . 1 1 0 1 1 1 ' 0 2 0 3  �9 �9 �9 

I u, I I i v,I 

Finite Control 

Fig. 3. A Turing machine and two numbers U and V which represent the tape 
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(o, 

(u ,  v )  

(1, 1) 

(o, o: ---'- 
(1, o) 

Fig 4. The representation of (U, V) in a unit square 

Since 0 < U < 1 and 0 < V < 1, U and V form the coordinates  of  a point  lying 

in the unit square where the lef t -bot tom corner  is its origin as depicted in Fig. 4. 

Consider  the mapp ing  from the transit ion function 6 of  M into the transit ion 

opera t ion  of this optical  system. The transit ions can be divided into two cases, 

left moves as in a form ~(q, c) = (q', c', L) and right moves as in a form 6(q, c) = 
(q', c', R). Here,  q is the current  state, q' is the next state, c e {0, 1} is the symbol  

which the tape head has scanned,  and c ' e  {0, 1} is the symbol  which the tape head 

writes on the tape. L denotes a left move,  and R denotes a right move.  These 

transit ions are depicted in Fig. 5. 

Operations on U and V. 

1. : (Left move)  ~(q, c) = (q', c', L). 

Let U', V' be the values of U and V, respectively, after this transition. Then 

U' and V' can be writ ten as 

U' = 2 ~ ud2 '+1 = 2(U - Uo/2), (3) 
i = 1  

u I v u, ] v, 
lu: I", lu,0 vo l v, [v~ I :  -.. l u31~2 I~., e Iv0 Iv1 

]~  After transition ,(q,c)=(q',c',L~ /~  
i [ ~Head c = Uo Head 

u tv 
[ u ~ l ~  I~.0 v0 Iv, lo~ I . . . . . .  l ~ , l e l v . 0  vt lv~lv31 

]~  After transition •(q, c)= (q', c ' , /~ A~ 
I I ' t H e a d  c = u o  H e a d  

Fig. 5. State transition and tape 
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V' = c'/2 + �89 ~ vi/2 i+1 
i=O 

= c'/2 + V/2. (4) 

2. : (Right move) 6(q, c) = (q', c', R). 

In this case U' and V' can be written as 

U' = Vo/2 + c'/4 + �89 L ul/2i+1 
i = I  

= Vo/2 + c'/4 + ( g  - Uo/2)/2, (5) 

V' = 2 ~ V~2 i+1 = 2(V -- Vo/2). (6) 
i=1  

If we can implement complex optical boxes that can " read"  the ray entering 

the window, perform the transformations listed above, and then redirect the ray 

to a complex optical box corresponding to the next state, we will have succeeded 

in simulating the Turing machine. Next we describe how to build these complex 

boxes. 

Basic Boxes. First we describe basic boxes that can be used by each complex box. 

�9 Readout  box. 
We assume that U and V are represented as a position on a unit square 

lying on the X - Y  plane. The readout box uses two fiat mirrors (reflective), 

or two prisms (totally reflective), making an angle n/2 at x = 0.5 as illustrated 

in Fig. 6. 

- Z  

Reflective surfaces 

two mirrors  

0.5 )~ 

-o.5 I z = x - 0.5 (0 < x < 0.5) 
- z  * = - x  + 0.5 (0-5 < x < i)  

t w o  p r i s m s  
0.5 X 

0 ........................,.. .................. ~:...:~..~ ~- 
!~i~ii~!!~ ~ i ~ ....... !!i~i~ Ili !~ .".~i~! 

Fig. 6. Readout  box 



274 J.H. Reif, J. D. Tygar, and A. Yoshida 

The figure shows several views from different angles. The ray entering a 

box from the unit square on the X - Y  plane hits one of two flat reflective 

surfaces in the box. We call the unit square through which the ray enters the 

entrance window, and a window of size 1 x 0.5 from which the ray exits the 

box an exi t  window. There are two exit windows. If U < 0.5, the ray will be 

reflected through the left exit window. If  U > 0.5, the ray will be reflected 

through the right exit window. We observe that V maintains its value along 

the Y axis from the entrance window to one of the exit windows. On the 

other hand, U loses its value along the X axis, but the value U - Uo/2 is 

obtained along the Z axis at one of the exit windows. Thus, no information 
is lost. 

�9 Multiply2 (divide2) box. 

We need a box which performs the multiplication by two (division by two) 

operations used in the equations. This can be done by using a pair of 

cylindrical parabolic mirrors (reflective surfaces) or piano-convex hyperbolic 

lenses (refractive surfaces) placed with rational endpoints as in Fig. 7. (Note 

that conventional spherical lenses or mirrors introduce aberration [4] and 

should not be used here. Use of such objects would only make the decision 

problem more difficult, since it would introduce irrationality.) 

Similarly, we use the terms, entrance window and ex i t  window to denote 

the window through which the ray enters, and the window from which the 

ray exits. 

�9 Beam turner box. 

We may need this box in order to change the direction of the ray by n/2. 

This box is merely a mirror or a prism oriented at a ~r/4 angle. If using a 

prism, we assume the index of refraction is greater than x/2 to cause total 

internal reflection at an incident angle 1r/4. 

Next we combine these basic optical boxes to construct complex boxes for 

implementing the transition function 6. We retain the notation introduced above. 

Quadratic Surfaces 
. . . . . . . . .  ~ - ~ ~ Hyperbolic Lenses 

Ray 0.5 a ~ ~ . : ~ ' n  __ ~ __ _ _ _ _ _  ~ z ~ "'" 

focal line . . . . . . . .  " , : " l  

. . . . . .  

Fig. 7. Multiply2 (divide2) box using quadratic surfaces. 
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Fig.  8. I m p l e m e n t i n g  cS(q, c) = (q', c', L). 

Implementin9 (Left  Move) 3(q, c) = (q', c', L). We must configure boxes to project 

the ray at (U', V'): 

U' = 2(U - Uo/2 ), 

V' = c'/2 + V/2. 

Figure 8 shows a physical implementation of this function�9 

For each state, a separate complex box, such as shown in Fig. 8, is con- 

structed. The box in the middle is a readout box that reads Uo. We call the 

unit square at the readout box the entrance window of the state. Now, sup- 

pose u o = 1, then the ray enters the multiply2 box on the right. At this point, 

V has not changed its value. The ray comes out of the plane parallel to the 

Z - Y  plane, and the Z coordinate on the plane represents the value of U'. 

The ray which exits the multiply2 box enters the divide2 box. This halves 

the value of V. The ray which exits the divide2 box enters the entrance window 

of state q' with shifting by the value c'/2. The path that would be taken if 

uo = 0 can be similarly organized, and the ray can enter the entrance widow of 

the next state. 

Implementin 9 (Right Move) 6(q, c) = (q', c', R). In this case we must project the 

ray at (U', V'): 

U' = Vo/2 + c'/4 + (U - Uo/2)/2, 

v ' =  2 ( v -  Vo/2). 

Figure 9 shows an implementation of this transition. 

Undecidability. By simulating each 3 function as a complex box and routing the 

rays between the boxes (using beam turner boxes), we can simulate any reversible 
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Box associated with state q To box associated with state q~ 

path (if Uo = 1, v~ = O) 

" ~ 2 - :  . multiply2 " ~ I  

. . . .  "c ; readout 2(V - vo/2)_ - - - - - - ~ - - r - - - - . . '  ~" 1 - ~ f ~ .  ' 

U / 2  " l - ~ ' < ~ ' : ' ' : ' : ~ : : -  ~ ~ ' "-"J if Vo -- i constant 0.5 
. . . .  ~ ~ -  - - I -  - - ~  - - " ~ J "  - 

readout div" ~ if v0 = 0 

i, 0 = 0 i, u0 = 7 
t 

| path (if Uo = 1,v0 = 1) 

x 
z 

Fig. 9. Implementing 6(q, c) = (q', c', R)+ 

Turing machine, and, in particular, some deterministic reversible universal Turing 

machine. The number  of complex boxes which we require is equal to the number  

of finite states of  the Turing machine. Each complex box consists of  a finite number  

of  basic boxes that can be represented in rational coordinates. To show our  model 

can indeed simulate a universal computat ion,  we employ Bennett 's result and 

simulate a deterministic reversible Turing machine. 

We part i t ion the exit window into eight zones as in Fig. 10. If there is more 

than one exit window which must  be routed to the entrance window of a particular 

state q', each exit window must  be parti t ioned into several zones, and these zones 

must  be interleaved and routed to the entrance window of q'. There cannot be 

any overlapping of zones from two distinct exit windows when simulating a 

reversible Turing machine, which executes 1 : 1 transitions. 

The initial transition can be invoked by projecting a ray at the position that 

represents the input of  the Turing machine. A transition to the final state is 

V 

(0, I) 

(0, 0) 

4 5 

0 1 

Fig. I0. 

.... .,(I, I) 

I I 

I i 

At each t , oounuar~,, 

6 7 ' 
I I 

I- . . . .  - I  

2 3 

U 

(1, 0) 

Exit window partitioned into eight zones. 

the border belongs to 
the zone with a larger index. 
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simulated by the ray entering a state box that is designated for the final state. By 

induction, all reversible transitions that are defined by the Turing machine can be 

implemented by our optical system. We conclude that our optical system can 
simulate some reversible universal Turing machine. Thus, we have: 

T h e o r e m  5.1. The ray tracing of three-dimensional optical systems consisting of 

quadratic reflective or refractive objects is undecidable, even if all the objects are 

presented by a system of rational quadratic inequalities. 

5.2, Three-Dimensional Rational Linear Optical Systems with 

Refractive Objects 

Optical System. Next we restrict ourselves to objects with linear surfaces. We 

assume the index of refraction of the refractive objects to be r I = 2. This choice 

maintains the trajectory of rays in rational representations, but ray-tracing 

problems in this domain remain undecidable, giving us an interesting scenario. 

We note that some other value such as ~/= 7 also gives the same scenario. Since 

reflective surfaces can be obtained by using (total) reflection from refractive objects, 

we have no need for reflective objects. 

Basic Boxes. 

�9 Readout box. 

Use the same configuration as in Section 5.1. 

�9 Multiply2 (divide2) box. 
We construct the multiply2 (divide2) box from a prism whose boundaries are 

represented by a set of rational linear equations as illustrated in Fig. 11. The 

prism is appropriately oriented so that rays hit the surface at angle 0i. The 

refracted rays travel through the prism at angle O, and emerge from the other 

surface of  the prism. The transmitted rays are bent from the initial angle by 

Input ray tan 0i = 2, tan 0r = 1/2 t 

' Oi + 8 ,  = ~ /2  
g ' ' ~  o, <.~...o,~ ........ 

" ;. ''.E 

: : ~  ; . ~ :~  oi, 
. . . . . .  

Or ' "r , aligned parallel to Input ray. 

reRective surface / . ~ . ~ .  ~2 z 

- I ~ / 2  - ~ = . - / 4  

Fig. 11. Multiply2 (divide2) box implemented by a prism. 
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0i -- 0r. Setting r /=  2 determines the incident angle 01 and the refracted angle 

0,. To implement the multiply2 (divide2) box by a single prism, we need 
01 = 2 and 0r = �89 In order to route rays between optical boxes, the output 

rays must be aligned parallel to the input rays. This can be done by using a 

reflective surface oriented at angle 0a: 

0 o = / t / 2  -- (0 i + 0r)/2. (7) 

In our case we have 0a = 7t/4. Thus, all the surfaces can be represented by a 

set of rational linear equations, and the trajectory of rays can be traced in 

rational coordinates. (Note: If we use r/--- 7, we have tan 0 i = �88 tan 0, = ~, 

and tan 0a = ~). 

�9 Beam turner box. 

Use the same configuration as in Section 5.1. 

As we have done with the previous model, we combine these basic optical boxes 

to construct complex boxes that implement the transition function 6. 

Undecidability. We have demonstrated that our rational linear optical system 

can implement the multiply2 (divide2) box. Thus, we have: 

Theorem 5.2. The ray tracing of three-dimensional optical systems consisting of 
linear refractive (and reflective) objects is undecidable, even if all the objects are 

represented by a system of rational linear inequalities. 

5.3. Three-Dimensional Rational Linear Optical Systems with 

Rectangular Reflective and Refractive Objects 

Optical System. The previous two models use quadratic mirrors, lenses, or 

prisms. We now eleminate these objects from our model. Each optical system in 

this model consists of a finite set of rectangular reflective and refractive objects 

whose boundaries are represented by a set of linear rational equations. All 

rectangular objects have their surfaces oriented either parallel or perpendicular to 

one another. The trajectory of rays in this model cannot be represented in rational 

coordinates. The ray-racing decision problem in this model is undecidable. 

2-Counter Machine. In order to show that ray tracing in this model is undecid- 

able, we simulate a 2-counter machine with this optical model. Since a 2-counter 

machine can simulate an arbitrary Turing machine, we can conclude that ray- 

tracing problems in this model are undecidable. A 2-counter machine has a finite 

control, and two counters that can store arbitrarily large numbers. The numbers 

can be incremented, decremented, or tested for zero. 
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Simulation. First we show the relationship between an optical system and a 

2-counter machine. The optical system has a set of optical boxes that is capable 

of shifting rays by an irrational distance along either the X or Y axis by using 

rectangular refractive objects. Each box has a unit square through which the ray 

enters normally, and has a unit square from which the ray exits normally. Similarly, 
we call the unit square through which the ray enters the entrance window, and the 

unit square from which the ray exits the exit window. Two numbers U and V can 

be encoded as a position (Ur mod 1, Vr mod 1) relative to the unit square, where 

is some irrational number. The 2-counter machine has a finite number of states, 
and each state can be represented by a box. Both incrementing and decrementing 

a number can be done by shifting the ray by ~ in modulo 1 space. Checking if a 

number is zero can be done by testing to see if the ray is incident with the rim of 

a unit square. 

Representation of Operations. Use U and V to denote numbers stored by two 

counters. In this optical system U and V are encoded as a position on a unit 

square. Let ~ be an irrational number such that 0 < r < 1. The operations for a 

2-counter machine are: 

�9 Operation 1: increment (or decrement) a number by 1. 

Shift the ray along the X or Y axis by ~ (or - r  in modulo 1 space. The 
shift operations can be implemented by rectangular refractive object surfaces 

as in Fig. 12. ~ becomes mostly irrational for rational ~ and tan 0 i. The 
modulo operation can be implemented using a reflective surface and a 

partially reflective surface that are placed in rational coordinates as in Fig. 
13. We note that it is possible to add a modulo 1 operation to the shifting 

operation by using only reflective surfaces at irrational coordinates. We 

demonstrate this in the next model. 

�9 Operation 2: check if a number is 0. 
We test if U is zero by checking whether the ray passing through X = 0. We 

can do this by using the fact that we have mirrors with open edges. The case 

for V is handled similarly. 

- " /  . . . . . .  l 

. . . . . .  

becomes mostly irrational. 

Fig. 12. Shift ~ operation by a refractive slab. 
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branched rays  

I I parti,dly reflective 
,, ,-- - "1-  - ~  

. . . ,  . . . .  > . > "  t r ay  F,:.:+~, r - - - . - I  p a r t i a l l y  re f lec t ive  
I w t I 

, . ,  , z , . ." a z m o d l  

"'~ . . . . . . . .  ' ~ - - -  , reflective 
i I I I I 

I I I 

reflective sideview 

Fig. 13. Modulo 1 box. 

�9 Operat ion 3: transition from one state to another. 

We must implement a way to go from one state to another. Unlike the 

previous two models that simulate Turing machines, this counter  machine 

does not achieve reversibility by parti t ioning the unit square. Thus, we need 

some way to combine two or  more  exit windows to a single window. This can 

be carried out by using beam splitters which are often used in optical 

experiments. A beam splitter consists of a partially reflective surface so that 

two beams from different directions can emerge from the same surface as in 

Fig. 14. 

Since m~ mod  1 = 0 if and only if m = 0, we have: 

Lemma 5.1. This optical system can simulate a counter. 

Basic Boxes. First we describe basic boxes that  are used in this system. 

�9 Shift box. 

This box shifts rays by an irrational distance ~. It uses a rectangular refractive 

slab as shown in Fig. 12. 

�9 Modu lo  1 box. 

The modulo  operat ion uses a reflective surface and a partially reflective 

surface as in Fig, 13. 

: Ray I 

combined path 
Ray 2 '  ~ ~ N  == J ~  

. . . . . . . . .  ~ ~ N  , r . -  - 

partially reflective sideview 

Fig. 14. Beam combiner box. 
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�9 Beam combiner box. 

This box merges two windows into one. It requires only one partially 

reflective surface as in Fig. 14. 

Undecidability. Since a 2-counter machines can simulate universal Turing ma- 

chines, we have: 

Theorem 5.3. The ray tracin9 of three-dimensional optical systems consistin9 of 

linear rectangular reflective and refractive objects is undecidable, even if all the 

rectangular objects are represented by a system of rational linear inequalities. 

5.4. Three-Dimensional Linear Optical Systems with Reflective and 

Partially Reflective Surfaces 

Optical System. Next we consider optical systems that consist purely of reflective 

and partially reflective surfaces--without any "slabs" containing nonreflective 

surfaces. We use the same approach as the previous model, but instead of using 

rationally represented refractive objects, we use irrationally represented reflective 

surfaces to implement the shifting operations. 

Basic Boxes. We use the same basic boxes as in the previous model, but they 

are implemented differently. 

�9 Shift in modulo 1 box. 

This box uses six rectangular reflective surfaces as shown in Fig. 15. The 

surfaces are oriented at an angle whose tangent is rational, but the distance 

of the shift becomes irrational. 

�9 Beam combiner. 

This box uses a reflective surface and a partially reflective surface as before. 

Ray 

�9 - , - ~  shifted by 
: . . . . .  . . . . .  . > .  

I ~I-- -- T 

u'_ ~__-a." Z ~_ t 

sideview 

Fig. 15. Shift in modulo 1 box. 

z + ~ mod 1 
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We immediately have: 

Theorem 5.4. The ray tracing of three-dimensional optical systems consisting of 

linear reflective and partially reflective surfaces is undecidable, if some surfaces are 

allowed to be represented by irrational linear inequalities. 

5.5. Three-Dimensional Rational Linear Optical Systems with 

Reflective Surfaces 

Optical System. Next we restrict ourselves to rational optical systems with only 

reflective surfaces. 

Augmented Bounded 2-Counter Machine. First we define a new machine type: 

Definition 5.1. A 2" augmented bounded 2-counter machine has two counters 

that count up to 2" - 1. Furthermore, it can add or subtract 2"-1 from a number 

and read the nth and the (n - 1)th bits of the binary representation of a number. 

We simulate a 2" augmented bounded 2-counter machine as a rational optical 

system. The augmented 2-counter machine is unusual in that it has the ability to 

add or subract 2"--' from a number and to read the nth and (n - 1)th bits of the 

binary representation of a number. The relevance of this ability for our application 

is explained later. 

Representation of  Operations. We describe the operations which we need to 

simulate a 2" augmented bounded 2-counter machine. Incrementing or decrement- 

ing a number are handled as before, except ~ is set to the rational value 2-". We 

use U and V to denote two numbers. We consider n to be the input size, since 

the optical system can be described in a polynomial in n number of bits. 

Once again, we represent U and V as a position (U mod 1, V mod 1). 

Lemma 5.2. Each optical counter can count up to 2" - 1. 

Proof. Since r is a rational number 2-", for any integer m we have m~ mod 1 = 0 

if and only if m = k2", where k is an integer. Hence the counter can count up to 

2 " -  1. [] 

Next we consider the additional operations of the augmented 2-counter 

machine: 

�9 Add or subtract 2"-1 from a number. 

This can be implemented by shifting the ray along the X or Y axis by 0.5. 

�9 Test if a number is less than 2"-1. 

We use the "readout box" introduced in Section 5.1. 

Using these boxes, we can build an optical system that simulates a 2" augmented 

bounded 2-counter machine. 
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Complexity. 

L e m m a  5.3. Augmented bounded 2-counter machines can decide any PSPACE 

problem. 

Proof Karp [16] has shown that the problem of determining whether or not a 
deterministic n-space bounded Turing machine accepts its input is PSPACE- 

complete. As for the reversibility of space-bounded Turing machines, Bennett [2] 

has shown that any ordinary Turing machine running in space S can be simulated 
by a reversible one running in space O($2). Thus, suffice it to show that the 2" 

augmented bounded 2-counter machine can simulate a deterministic reversible 
n-space Turing machine. Any linear space Turing machine has a storage tape of 

length n, where n is the input size. We show that the 2" augmented bounded 

2-counter machine simulates a Turing machine. We consider the tape of the Turing 
machine to be cyclic as in Fig. 16. We can view the storage tape as a binary 

number, where the second highest bit of the number lies under the tape head. This 

arrangement partitions the unit square into eight zones using the three bits near 

the tape head. Assuming the Turing machine is reversible, these zones must be 

interleaved together without overlapping when two exit windows are routed to 

the entrance window of a particular state. 

Let CTM be the binary representation of the tape. Then CTM is an integer that 

satisfies 0 _< CTU < 2". One of the counters of the augmented bounded 2-counter 

machine stores this number, CTM. Each time when the tape head moves left or 

right, we must compute the new CTM which represents the tape at the subsequent 

step. Reading symbols at the tape head and its right can be done by using two 

half-size readout boxes placed in a unit cube. In order to compute the new CTM 

for a left move, we first remove the nth bit, u,_ 1, and replace u,_ z with c'. Then 

we multiply the number by two (using the second counter), and finally we add 

one if the original nth bit was 1. Similarly, the new CTM for a right move can be 

computed. The simulation is straightforward, completing the proof. []  

. o1 .11 .21  1.11. 

Tall~e head after transition head 
6(q, e) = (q', e, L) 

1.21-3  t lul 1.2 [ ... . 

Tape head after transition Tape head 
6(q, c) ---- (q', d, R) 

. , .  

Fig. 16. Cyclic Turing machine and its tape. 
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Thus, any linear-space deterministic reversible Turing machine can be trans- 

formed in polynomial time to a 2"- 1 augmented bounded 2-counter machine that 
is described as an optical system. There are a finite number of boxes in the optical 
system, where each box can be represented by a polynomial of n bits. Thus, the 
description of the optical system is of size polynomial of n, otherwise the 
transformation would be nonpolynomial time. We immediately have: 

Theorem 5.5 .  The ray tracing of three-dimensional optical systems consisting of 

linear reflective surfaces is PSPACE-hard, if all the surfaces are represented by a 

system of rational linear inequalities. 

5.6. d-Dimensional Rational Linear Optical Systems with 

Orthonormal Reflective Surfaces 

Optical System. In this model we consider rational optical systems where the 
mirrors lie parallel or perpendicular to each another in d dimensions. 

Complexity. We show that ray tracing in the system is in PSPACE. First we 
show the problem is in PSPACE if the angle that the initial ray makes with the 

first mirror it strikes is ~/4. 

Lemma 5.4. The ray tracing in this model is in PSPACE, if the angle that the 

initial ray makes with the system is ir/4. 

Proof. Since the input to the optical system is encoded in n bits, we can construct 
grid lines at every 2 -pt") interval such that the ray always intersects grid lines at 
the grid points, where p(n) is a polynomial of n. Figure 17 illustrates an example. 

( 0  11 
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I I  
II 
I I  

II 
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I I  
i I  

(0, 0) 

L. 
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w? o' 
!o' 
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I,.'! 
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O I 

O 

(1, 1) 

2-D 

(1, 0) 

input ray at incident angle x / 4  

Fig. 17. Grid lines. 
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(0, 1) (a, 1) 

(o, o) (1, o) 

(0, 1) (1, 1) 

I I l l l  I 

I 
I ' 
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r  

e' 

(o, 5) (1, o) 

Affine transformation 

Fig. 18. Expanding grid lines. 

The number of the grid points in the d-dimensional system is 2 dp(n). We give 

a nondeterministic polynomial-space algorithm for the ray-tracing problem. 
Let M, be a nondeterministic polynomial-space Turing machine which solves 
this problem. M, has two vectors, Pc and Pn" Pc represents the current position 
and direction of the ray. P,  represents the position and direction of the next 

reflected ray after leaving the current position. M, nondeterministically guesses 
Pn from Pc, and determines the correct P,  in a polynomial space. Initially, Pc 
stores the position and direction of the ray. We assume inductively that Pc stores 
the current position and direction of the ray. M, halts if it reaches the specified 
final position. Since these vectors can be encoded as a polynomial of n, we can 
construct M, to solve the problem. By Savitch's theorem [24], the problem is in 
PSPACE. 

Next, we consider the case in which the incident angle ~ is not ~/4. We only 
give a sketch of the proof. We simply note that the system can be reduced to the 
~/4 case by transforming the system via the multiplication of one of the axes by 

the tangent of ~ as illustrated in Fig. 18. The proof follows from the argument 
above. [] 

We hence have: 

Theorem 5.6. The ray tracin9 of d-dimensional rational optical systems consistin9 

of a finite set of orthonormal reflective surfaces is in PSPACE. 

5.7. Other Optical Ray-Tracin9 Phenomena 

By using linear iterative maps which generate oo-distributed sequences [18], we 
show that an optical system exists such that if a ray enters from a single fixed 
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point, it visits an edge of unit length at every point densely and uniformly in the 
range [0, 1). 

First we describe an w-distributed sequence which is dense and uniform in the 
range [0, i). 

Lemma ~.5. {~imod ll i  integer >0}  is dense and uniform in the range [0, 1) 
(~-distributed sequence in the range [0, 1)) for almost all real numbers ~ > 1. 

Proof The proof of this lemma is found in [9] and [18]. [] 

This leads to: 

Theorem 5.7. An optical system exists such that ira ray enters from a single fixed 

point, the set of points it visits on an edge of unit length is dense and uniform over 

the range [0, 1). 

Proof The idea is to construct an optical box which performs the multiplication 
by an irrational number ~ which satisfies Lemma 2.5. The implementation of 
modulo operations has already been introduced in Sections 5.3 and 5.4. To perform 
the multiplication by an irrational number ~, we use two lenses or mirrors, where 
one of the ratios of their focal lengths is ~. Then, by placing them together as in 
the multiply2 box in Section 5.1, we can construct an optical box which implements 

the multiplication by ~. [] 

We can extend this type of problem by considering polygons whose sides form 
mirrors. We can then pose the illumination problem: To find an initial position 
and orientation which would cause a light beam to visit all the interior edges of 
the polygon densely. These problems are often called billiard-ball problems, and 
the literature contains a number of "art-gallery theorems" about these models. 
One particular result [3], [17], [22] states that for every polygon whose angles 

are rational multiples of rt, the illumination problem has a solution. We ask the 
following extension of the illumination problem: Can the points on the polygon 
be visited densely and uniformly? 

6. Conclusion and Further Problems 

This paper has classified a wide degree of ray-tracing scenarios and given lower 

bounds for many of the problems. This work considers only geometric constructs 
of reflective and refractive objects. These models give interesting results in terms 

of pure computational geometry. 
There are some interesting ray-tracing problems that remain open. Here are a 

few: 

�9 Find a lower bound for computations of ray tracing in two-dimensional 

rational optical systems with reflective and/or  refractive objects. 
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�9 Find a lower bound for computations of ray tracing in two-dimensional 

rational linear optical systems with only reflective and partially reflective 

surfaces. Note  that the three-dimensional case is PSPACE-hard, but we have 

no lower bound in the two-dimensional case. 

�9 Determine if ray tracing in rational optical systems with only reflective linear 

surfaces is decidable. 
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