
COMPUTABILITY AND COMPLEXITY PROPERTIES

OF AUTOMATIC STRUCTURES AND THEIR

APPLICATIONS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Mor Mia Minnes

August 2008

c© 2008 Mia Minnes

ALL RIGHTS RESERVED

COMPUTABILITY AND COMPLEXITY PROPERTIES OF AUTOMATIC

STRUCTURES AND THEIR APPLICATIONS

Mor Mia Minnes, Ph.D.

Cornell University 2008

Finite state automata are Turing machines with fixed finite bounds on resource

use. Automata lend themselves well to real-time computations and efficient al-

gorithms. Continuing a tradition of studying computability in mathematics, we

examine automatic structures, mathematical objects which can be represented

by automata, and apply resulting observations to computer science.

We measure the complexity of automatic structures via well-established con-

cepts from model theory, topology, and set theory. We prove the following results.

The ordinal height of any automatic well-founded partial order is bounded by ωω.

The ordinal heights of automatic well-founded relations are unbounded below ωCK1 ,

the first uncomputable ordinal. For any computable ordinal α, there is an auto-

matic structure of Scott rank at least α. Moreover, there are automatic structures

of Scott rank ωCK1 , ωCK1 + 1. For any computable ordinal α, there is an automatic

successor tree of Cantor-Bendixson rank α.

Next, we study infinite graphs produced from a natural unfolding operation

applied to finite graphs. Graphs produced via such operations have finite degree

and can be described by finite automata over a one-letter alphabet. We investigate

algorithmic properties of such graphs in terms of their finite presentations. In

particular, we ask how hard it is to check whether a given node belongs to an

infinite component, whether two given nodes in the graph are reachable from one

another, and whether the graph is connected. We give polynomial-time algorithms

answering each of these questions. For a fixed input graph, the algorithm for

infinite component membership works in constant time and reachability is decided

uniformly by a single automaton. Hence, we improve on previous work, in which

nonelementary or nonuniform algorithms were found.

We turn our attention to automata techniques for deciding first-order logical

theories. These techniques are useful in Integer Linear Programming and Mixed

Integer Linear Programming, which in turn have applications in diverse areas of

computer science and engineering. We extend known work to address the enu-

meration problem for linear programming solutions. Then, we apply a similar

paradigm to give an automata theoretic decision procedure for the p-adic valued

ring under addition and for formal Laurent series over a finite field with valuation

and addition.

BIOGRAPHICAL SKETCH

Mor Minnes was born in Haifa, Israel in 1982. From an early age, Mor learned the

importance of words and education: in the bath, Mor’s parents (both students at

the time) saw her and her sister typing intently on imaginary typewriters and pro-

claiming that they were working. In 1989, the nuclear family (now also including

two brothers) moved to Vancouver, Canada for what was intended as a short visit

for Mor’s father to do a residency in psychiatry. Quickly, Mor became Mia, choos-

ing a more suitable English name at the suggestion of her maternal grandmother.

The family settled in Vancouver and Mia attended Prince of Wales Mini School

and the International Baccalaureate Program at Sir Winston Churchill Secondary

School. While in high school, Mia enjoyed both the sciences and the humanities.

Not willing to give up either of these, Mia decided to pursue dual Bachelor’s de-

grees at Queen’s University in Kingston, Ontario. In 1999, Mia headed to snowy

Kingston and enrolled in Applied Science (Mathematics & Engineering, Computing

and Communications) and Philosophy. Mia had her first encounter with program-

ming and fell in love with the power behind logical thinking. Considering graduate

studies, logic was a natural fit with Mia’s interests as it lay in the intersection of

her favourite philosophy courses (philosophy of language and science) and engi-

neering courses (computer architecture, programming, and math). Her best friend

compiled a list of graduate programs in logic and Mia started browsing through

their websites. When she discovered Anil Nerode’s research outlining connections

between automata, logic, and hybrid systems, she knew she had found what she

wanted to work on. Mia graduated from Queen’s and headed south to Ithaca, NY

to begin graduate school in mathematics at Cornell University, along the way also

earning a Master’s degree in computer science. After five years of graduate school,

Mia is looking forward to being a C.L.E. Moore Instructor at MIT next year.

iii

ACKNOWLEDGEMENTS

First, I thank my advisor, Anil Nerode. Anil personifies the possibilities and

excitement of integrating theoretical and applied research. He has been an inspiring

source of ideas, historical context, and anecdotes. Moreover, he has guided me

through my initial forays into the world of academic mathematics and has been

an incredible advocate in facilitating interactions with leading researchers. In

particular, Anil introduced me to Bakhadyr Khoussainov. I am grateful to Bakh

for accepting me as a colleague and for introducing me to automatic structures.

He also invited me to Auckland, New Zealand and hosted a productive and highly

enjoyable month of work and travel.

My committee members Richard Shore, Dexter Kozen, and Joseph Halpern

have been instrumental in bringing me to this point in my academic career. The

courses I took from each of them during my first years in graduate school helped

shape my view of mathematical logic and theoretical computer science. Through

his leadership of the logic seminar and his incisive questions, Richard has helped

me hone my academic speaking and writing skills and find clarity in complicated

arguments. Also, in our conversations during frequent commutes between Ithaca

and the Boston area, Richard gave me invaluable professional advice and glimpses

at his brilliant grasp of the big picture of our field. Dexter and Joe illustrated future

directions and connections of my research within computer science and helpfully

pointed me to references which broadened my understanding of the material.

I have greatly enjoyed speaking with and learning from many researchers. The

New Zealand group, including André Nies, Rod Downey, Noam Greenberg, Sasha

Rubin, and Jiamou Liu, provided a stimulating work environment during my visit

and at conferences and talks over the past five years. Along the way, I also benefited

from mathematical conversations with Doug Cenzer, Peter Cholak, Barbara Csima,

iv

Joe Miller, Antonio Montalbán, Reed Solomon, Frank Stephan, and Moshe Vardi.

My fellow graduate students in the mathematics department (in particular, my

peers in the logic group and my friends from the 120A Café) at Cornell have

made these past years immeasurably richer and more fun through our philosophical

and mathematical discussions. In her capacity as the graduate student teaching

coordinator, and as a personal friend, Maria Terrell has supported me during my

graduate career. Her flexibility has given me challenging and enriching teaching

opportunities in some semesters, while allowing me the freedom to go to conferences

and research visits in others.

Last, but certainly not least, I would like to thank my family. My mother has

been a pillar of strength, insight, and inspiration. For as long as I can remember,

she has made juggling two or three careers and taking care of the family look easy

and rewarding. She made me believe I could do anything I want. My father, with

his sense of humour and his patience, reminded me that it’s okay to make mistakes

and that if you listen to yourself, you find the path that’s right for you. I can’t

imagine growing up without my siblings: Shir, thank you for listening to my rants

and my excitement - it means so much to me that we are so close; Tom, we’ve

been the meat and veggies of our crazy family sandwich and you make us all laugh

so much; Gal, thank you for always wanting to learn about the math that I do

even though I know it’s so remote from your interests. I have been inspired by my

parents-in-law’s pride in me to live up to their expectations. And, Todd – your

support, encouragement, and love have nourished me along this journey. Thank

you.

v

TABLE OF CONTENTS

Biographical Sketch . iii
Acknowledgements . iv
Table of Contents . vi
List of Tables . vii
List of Figures . viii

1 Introduction and Preliminaries 1
1.1 Motivation and background . 1
1.2 Automatic structures and computable structures 6
1.3 Overview of complexity results . 15

1.3.1 Isomorphism problem . 15
1.3.2 Graph questions . 16
1.3.3 Tree questions . 17

1.4 Outline . 17

2 Ranks 19
2.1 Introduction . 19
2.2 Heights of automatic well-founded partial orders 22
2.3 Configuration spaces of Turing machines 26
2.4 Heights of automatic well-founded relations 28
2.5 Automatic structures and Scott rank 30
2.6 Cantor-Bendixson rank of automatic successor trees 38
2.7 Conclusion . 45

3 Algorithmic Properties of Unary Automatic Structures 46
3.1 Introduction . 46
3.2 Unary automatic graphs . 50
3.3 Unary automatic graphs of finite degree 56
3.4 Deciding the infinite component problem 61
3.5 Deciding the infinity testing problem 66
3.6 Deciding the reachability problem 68
3.7 Deciding the connectivity problem 76
3.8 Conclusion . 78

4 Automatic Decision Procedures 79
4.1 ILP and Presburger arithmetic . 80
4.2 MILP and (R; Z,+ ≤, 0, 1) . 92
4.3 Automata and the p-adics . 105
4.4 Automata and formal power series 109
4.5 Conclusion . 110

Bibliography 111

vi

LIST OF TABLES

1.1 Complexity of the isomorphism problem. 15
1.2 Complexity of graph theoretic questions 17
1.3 Complexity of tree questions . 18

vii

LIST OF FIGURES

1.1 A lasso in a Büchi automaton. 9
1.2 A finite automaton recognising the graph of +2 11

2.1 Automatic partial order tree with CB rank 2 40

3.1 A typical unary graph automaton 52
3.2 A typical one-loop automaton . 57
3.3 Unary automatic graph of finite degree Gησω 60

4.1 A RVA representing {1
2
}. 94

4.2 A RVA representing Z. 95
4.3 The decomposition of RVA. 96
4.4 Sharing states in Aϕ. 100
4.5 A RVA representing the equation x+ y = 3. 100
4.6 A Müller automaton representing p-adic solutions to x+ y = 0. . . 108
4.7 A Büchi automaton recognising the graph of addition for p = 2. . . 110

viii

Chapter 1

Introduction and Preliminaries

1.1 Motivation and background

In recent years there has been increasing interest in the study of structures that

can be presented by automata. The underlying idea in this line of research consists

of using automata (such as finite automata, Büchi automata, tree automata, and

Rabin automata) to represent structures and study the logical and algorithmic

consequences of such presentations. Informally, a structure A = (A;R0, . . . , Rm)

is automatic if the domain A and all the relations R0, . . ., Rm of the structure

are recognised by finite automata (precise definitions are in Section 1.2). For

instance, an automatic graph is one whose set of vertices and set of edges can

each be recognised by finite automata. This definition is analogous to that of

computable structures, in which the domain and all basic relations are required to

be computable.

In the 1980s, as part of their feasible mathematics program, Nerode and Rem-

mel [78] suggested the study of polynomial-time structures. A structure is said to

be polynomial-time if its domain and relations can be recognised by Turing ma-

chines that run in polynomial time. An important early result by Cenzer and Rem-

mel [27] showed that every computable purely relational structure is computably

isomorphic to a polynomial-time structure. This implies that solving questions

about the class of polynomial-time structures is as hard as solving them for the

class of computable structures. For instance, the problem of classifying the iso-

morphism types of polynomial-time structures is as hard as that of classifying the

1

isomorphism types of computable structures. Since polynomial-time structures

and computable structures yielded similar complexity results, greater restrictions

on models of computations were imposed. In 1995, Khoussainov and Nerode sug-

gested bringing in models of computations that have less computational power than

polynomial-time Turing machines. The hope was that if these weaker machines

were used to represent the domain and basic relations, then perhaps isomorphism

invariants could be more easily understood. Specifically, they suggested the use of

finite state machines (automata) as the basic computation model.

The idea of using automata to study structures goes back to the work of Büchi.

Büchi [22], [23] used automata to prove the decidability of of a theory called S1S

(monadic second-order theory of the natural numbers with one successor). Rabin

[85] then used automata to prove that the monadic second-order theory of two

successor functions, S2S, is also decidable. In the realm of logic, these results

have been used to prove decidability of first-order or MSO theories. Büchi knew

that automata and Presburger arithmetic (the first-order theory of the natural

numbers with addition) are closely connected. He used automata to give a simple

proof (not using quantifier elimination) of the decidability of Presburger arithmetic.

Capturing this notion, Hodgson [49] defined automaton decidable theories in 1982.

While he coined the definition of automatic structures, little was done in the 1980s

to follow up on his work. In 1995, Khoussainov and Nerode [56] rediscovered the

concept of automatic structure and initiated a systematic study of the area.

Automatic structures possess a number of nice algorithmic and model-theoretic

properties. For example, Khoussainov and Nerode proved that the first-order the-

ory of any automatic structure is decidable [56]. This result is extended by adding

the ∃∞ (there are infinitely many) and ∃n,m (there are n many mod m) quantifiers

2

to the first-order logic [14],[62]. Blumensath and Grädel proved a logical charac-

terization theorem stating that automatic structures are exactly those definable in

a particular fragment of arithmetic (see Example 1.6). Automatic structures are

closed under first-order interpretations. There are descriptions of automatic linear

orders and trees in terms of model theoretic concepts such as Cantor-Bendixson

ranks [63]. Also, Khoussainov, Nies, Rubin and Stephan have characterized the

isomorphism types of automatic Boolean algebras [59]; Thomas and Oliver have

given a full description of finitely generated automatic groups [82] and a recent

result by Nies and Thomas [81] gives a necessary condition for infinite groups to

be automatic. Some of these results have direct algorithmic implications. For

example, the isomorphism problems for automatic well-ordered sets and Boolean

algebras are decidable [59].

Thurston observed that many finitely generated groups associated with 3-

manifolds are finitely presented groups with the property that finite automata

recognise equality of words and the graphs of the unary operations of left multi-

plication by a generator; these are the Thurston automatic groups. These groups

yield rapid algorithms [38] for computing topological and algebraic properties of in-

terest (such as the word problem). Among these groups are Coxeter groups, braid

groups, Euclidean groups, and others. We emphasize that Thurston automatic

groups differ from automatic groups in our sense; in particular, the vocabulary of

the associated structures is starkly different. Thurston automatic groups are rep-

resented as unary algebras whose relations are all unary operations (corresponding

to left multiplication by each generator). On the other hand, an automatic group

in our sense represents the full group multiplication (a binary function) and hence

must satisfy the constraint that the graph of this operation be recognisable by

a finite automaton. The Thurston requirement for automaticity applies only to

3

finitely generated groups but includes a wider class of finitely generated groups

than what we call automatic groups. For example, the countable direct product of

(Z; +) is an automatic structure (see Example 1.12 and Lemma 1.10) but is not a

Thurston automatic group because it is not finitely generated. Free groups on two

or more generators are Thurston automatic but not automatic in our sense because

their full multiplication is provably not recognisable by any finite automaton.

In the computer science community, an interest in automatic structures comes

from problems related to model checking. Model checking is motivated by the quest

to prove correctness of computer programs. This subject allows infinite state au-

tomata as well as finite state automata. Current topics of interest may be found

in [2], [1], [19]. Examples of infinite state automata include concurrency protocols

involving an arbitrary number of processes, programs manipulating some infinite

sets of data (such as the integers or reals), pushdown automata, counter automata,

timed automata, Petri-nets, and rewriting systems. Given such an automaton and

a specification (formula) in a formal system, the model checking problem asks us to

compute all the states of the system that satisfy the specification. Since the state

space is infinite, the process of checking the specification may not terminate. Spe-

cialized methods are needed to cover even the problems encountered in practice.

Abstraction methods try to represent the behaviour of the system in finite form.

Model checking then reduces to checking a finite representation of the state space

to identify the states that satisfy the specification. Automatic structures arise nat-

urally in infinite state model checking since both the state space and the transitions

of infinite state systems are usually recognisable by finite automata. In 2000, Blu-

mensath and Grädel [13] studied definability problems for automatic structures

and the computational complexity of model checking for automatic structures.

4

There is also a body of work devoted to the study of resource-bounded com-

plexity of the first-order theories of automatic structures. For example, on the one

hand, Grädel and Blumensath constructed automatic structures whose first-order

theories are nonelementary [14]. On the other hand, Lohrey in [71] proved that

the first-order theory of any automatic graph of bounded degree is elementary. It

is worth noting that when both a first-order formula and an automatic structure

A are fixed, determining if a tuple ā from A satisfies ϕ(x̄) can be done in linear

time.

The results about automatic structures can be seen to pull in two opposite

directions. One body of work about automatic structures demonstrates that in

various concrete senses automatic structures are not complex from a logical point

of view. Such papers include [5], [13], [34], [52], [60], [61], [63], [80]. However, this

intuition can be misleading. For example, in [59] it is shown that the isomorphism

problem for automatic structures is Σ1
1-complete. This informally tells us that there

is no hope for a description (in a natural logical language) of the isomorphism types

of automatic structures. A group of papers including [53], [59], [69] gives further

evidence to the richness of automatic structures. There has been a series of PhD

theses in the area of automatic structures including Blumensath [11], Rubin [90],

Bárány [6], this thesis, and the upcoming [70]. A recently published paper of

Khoussainov and Nerode [58] discusses open questions in the study of automatic

structures. There are also survey papers on some of the areas in the subject by

Khoussainov and Minnes [54], Nies [79], and Rubin [91].

5

1.2 Automatic structures and computable structures

To establish notation, we briefly recall some definitions associated with finite au-

tomata. A finite automatonM over an alphabet Σ is a tuple (S, ι,∆, F), where

S is a finite set of states, ι ∈ S is the initial state, ∆ ⊂ S × Σ × S is the

transition relation, and F ⊂ S is the set of final or accepting states. The

set of words of finite length over Σ is denoted Σ∗. A computation of A on a

word σ1σ2 . . . σn (σi ∈ Σ) is a sequence of states q0, q1, . . . , qn such that q0 = ι

and (qi, σi+1, qi+1) ∈ ∆ for all i ∈ {0, . . . , n − 1}. If qn ∈ F the computation

is successful and we say that the automaton M accepts the word σ1σ2 . . . σn

if there is some successful computation of M on it. The language accepted by

the automaton M is the set of all words accepted by M. In general, D ⊂ Σ∗ is

finite automaton recognisable, or regular, if D is the language accepted by

some finite automaton M. An automaton (S, ι,∆, F) is called deterministic if

∆ is a function; that is, for each pair (s, σ) ∈ S × Σ there is at most one s′ ∈ S

such that (s, σ, s′) ∈ ∆. Any language accepted by a non-deterministic finite au-

tomaton can also be recognised by some deterministic automaton. However, the

deterministic automaton may have exponentially more states than its equivalent

non-deterministic automaton. For proofs of these basic facts about finite automata,

see for example [57].

To define automaton recognisable relations, we use n-variable (or n-tape) syn-

chronous automata. An n-tape synchronous automaton can be thought of as

a one-way Turing machine with n input tapes [37]. Each tape is semi-infinite,

having written on it a word over the alphabet Σ followed by an infinite succession

of blanks (denoted by ⋄ symbols). The automaton starts in the initial state, reads

simultaneously the first symbol of each tape, changes state, reads simultaneously

6

the second symbol of each tape, changes state, etc., until it reads a blank on each

tape. The automaton then stops and accepts the n-tuple of words if and only if

it is in a final state. The set of all n-tuples accepted by the automaton is the

relation recognised by the automaton. Formally, an n-tape automaton on Σ is a

finite automaton over the alphabet (Σ⋄)
n, where Σ⋄ = Σ ∪ {⋄} and ⋄ 6∈ Σ. The

convolution of a tuple (w1, . . . , wn) ∈ Σ∗n is the string c(w1, . . . , wn) of length

maxi |wi| over the alphabet (Σ⋄)
n which is defined as follows. Its kth symbol is

(σ1, . . . , σn) where σi is the kth symbol of wi if k ≤ |wi| and ⋄ otherwise. The

convolution of a relation R ⊂ Σ∗n is the language c(R) ⊂ (Σ⋄)
n∗ formed as

the set of convolutions of all the tuples in R. An n-ary relation R ⊂ Σ∗n is finite

automaton recognisable, or regular, if its convolution c(R) is recognisable by

an n-tape automaton.

In Chapter 4, we will consider automata whose inputs encode real numbers.

To do so, we need automata which process inputs of infinite length. A Büchi

automaton over a finite alphabet Σ isM = (S, ι,∆, F) interpreted as in the case

of finite automata. Inputs to M are infinite words α ∈ Σω. A computation of

M on input α is an infinite sequence of states s0, s1, s2 . . . such that s0 = ι and for

each i, (si, σi, si+1) ∈ ∆. A computation ofM is successful if it enters F infinitely

many times; α is accepted by M if there is some successful computation of M

on α. The language of M, L(M) ⊂ Σω, is the set of infinite words accepted by

M. As in the case of finite automata, we can define n-tape synchronous Büchi

automata and thus get a notion of Büchi recognisability for n-ary relations on

infinite words. A Büchi automaton is called deterministic if ∆ is a (possibly

partial) function. Unlike the case of automata on finite words, deterministic Büchi

automata are less expressive than non-deterministic Büchi automata. That is,

given a non-deterministic Büchi automaton, there is not necessarily a deterministic

7

Büchi automaton which accepts the same set of infinite words. For example, the set

of infinite binary words {α : α contains only finitely many 0s} = {0, 1}∗ · {1}ω can

be recognised by a non-deterministic Büchi automaton but cannot be recognised

by any deterministic Büchi automaton (see [57]).

Sets recognisable by finite or Büchi automata have strong closure properties.

Standard product constructions show that the union or intersection of two recog-

nisable sets is again recognisable. The projection operation on an n-ary relation

R is defined to be

∃xiR = {(a1, . . . , ai−1, ai+1, . . . , an) : ∃a ∈ Σ∗(a1, . . . , ai−1, a, ai+1, . . . , an) ∈ R}

Looking at the definition of n-tape automata, it is easy to see that the projec-

tion of a recognisable relation is itself a recognisable relation. We now turn our

attention to the complementation operation. For finite automata, the proof of

closure under complementation is immediate: given a finite automaton A, to con-

struct the complement automaton we determinize A and then switch all accepting

and non-accepting states. The proof that Büchi automatic sets are closed under

complementation constituted one of Büchi’s main early achievements [22], and the

study of complementation algorithms for Büchi recognisable languages is still an

active area of research.

The emptiness question for a given (finite or Büchi) automaton asks whether

the set of words accepted by the automaton is empty. In each case, we have an

efficient algorithm to answer this question. Given a finite automaton, its language

is non-empty just in case there is a path in the underlying directed graph which

begins at the initial state and ends at some accepting state. The existence of such a

graph can be checked in linear time in the size of the automaton by a breadth-first

search. On the other hand, non-emptiness of a Büchi automaton corresponds to

8

there being a lasso: a path in the underlying directed graph which begins at the

initial state, reaches an accepting state, and then loops back to the accepting state

(see Figure 1.1). Checking for such a lasso can also be done efficiently.

ι

Figure 1.1: A lasso in a Büchi automaton.

We will be using automata to represent mathematical objects. Therefore, we

now present the logical abstractions for discussing such objects. A vocabulary or

signature is a finite sequence (Rm1

1 , . . . , Rmt

t , fn1

1 , . . . , fnr
r , c1, . . . , cs), where each

R
mj

j is a relation (predicate) symbol of arity mj > 0, each fni

i is a function symbol

of arity ni > 0, and each ck is a constant symbol. We will restrict our attention

to relational vocabularies, those without function or constant symbols, by rep-

resenting functions by their graphs and replacing constants by unary predicates

which hold of a unique element. The relations Rj of the signature are called basic

or atomic relations. A structure (or model) of the vocabulary (Rm1

1 , . . . , Rmt

t)

is a tuple A = (A;RA
1 , . . . , R

A
t), where A is the domain (or universe) of A and

RA
j ⊂ Amj is a relation interpreting the symbol Rj of the vocabulary. When con-

venient, we may omit the superscripts A of the interpretations. The cardinality of

the structure is the cardinality of its domain. We only consider infinite structures,

those whose universe is an infinite set, since any finite structure is recognisable by

a finite automaton.

Definition 1.1. A structure A = (A;R0, R1, . . . , Rm) is automatic over Σ if its

domain A and all basic relations R0, R1, . . ., Rm are regular over Σ. If B is iso-

morphic to an automatic structure A then we call A an automata presentation

9

of B and say that B is automatically presentable.

There is a wide literature studying structures which can be presented by other

types of automata (including the Büchi automata discussed above, as well as au-

tomata whose inputs are trees rather than strings). An overview of this literature is

presented in the Khoussainov and Minnes survey paper [54]. This thesis contains

results mainly on automatic structures where the automata are finite automata

(over finite strings). We now present some examples of such structures. Our first

examples are automatic structures over the alphabet Σ = {1}. These structures

are called unary automatic and are discussed further in Chapter 3.

Example 1.2. The structure (1∗;≤, S), where 1m ≤ 1n ⇐⇒ m ≤ n and S(1n) =

1n+1, is automatic.

Example 1.3. The structure (1∗; mod 1, mod 2, . . . , mod n), where n is a fixed

positive integer, is automatic. The finite automata recognising the modular rela-

tions contain cycles of appropriate lengths.

Next, we move to structures with a binary alphabet {0, 1}. Any automatic

structure over a finite alphabet is isomorphic to an automatic structure over a

binary alphabet [90]. Clearly, any automatic structure has a countable domain.

Example 1.4. The structure ({0, 1}∗;∨,∧,¬) is automatic because bit-wise op-

erations on binary strings can be recognised by finite automata.

Example 1.5. The structure ({0, 1}∗ · 1; +2,≤), where +2 is binary addition if

the binary strings are interpreted as base-2 encodings of natural numbers with the

least significant bit first. The usual algorithm for adding binary numbers involves

a single carry bit, and therefore a small finite automaton can recognise the relation

+2, as in Figure 1.2.

10

c0 c1





0

0

0





,





0

1

1





,





1

0

1









0

1

0





,





1

0

0





,





1

1

1









1

1

0









0

0

1





Figure 1.2: A finite automaton recognising the graph of +2

Example 1.6. Instead of Presburger arithmetic, we may consider the structure

({0, 1}∗ · 1; +2, |2). This is arithmetic with weak divisibility: w |2 v if w represents

a power of 2 which divides the number represented by v. Since we encode natural

numbers by their binary representation, weak divisibility is a regular relation.

Example 1.7. If we treat binary strings at face value rather than as representa-

tions of natural numbers, we arrive at a different automatic structure:

({0, 1}∗;�, Left, Right, EqL),

where � is the prefix relation, Left and Right denote the functions which append

a 0 or 1 to the binary string (respectively), and EqL is the equal length relation.

It is easy to show that this structure is automatic. This structure plays a major

role in the study of automatic structures with respect to logical definability [13].

Example 1.8. A useful example of an automatic structure is the configuration

space of a Turing machine. The configuration space is a graph whose nodes are the

configurations of the machine (the state, the contents of the tape, and the position

of the read/write head). An edge exists between two nodes if there is a one-step

transition of the machine which moves it between the configurations represented

by these nodes. This example will come up again as a key tool in the proofs of

Chapter 2.

11

The following fundamental theorem of automatic structures from [56], [11], [62]

allows us to obtain new automatic structures from given ones. Consider the first-

order logic extended by ∃ω (there exist infinitely many) and ∃n,m (there exist n

many mod m, where n and m are natural numbers) quantifiers. We denote this

logic by FO+.

Theorem 1.9 (Khoussainov, Nerode; 1995. Blumensath, Grädel; 1999. Khous-

sainov, Rubin, Stephan; 2004.). Suppose A is an automatic structure and ϕ(x̄) is

a formula in FO+. There is an algorithm that produces an automaton that recog-

nises exactly those tuples ā from A that make ϕ true. In particular, the set of FO+

sentences true in A is decidable.

We present several constructions which use this theorem to demonstrate the

closure of automata presentability under natural operations. Let M and M′ be

automata presentable structures over the same vocabulary with automatic presen-

tations A,A′. The disjoint union of M and M′ is defined to be the structure

whose domain is the disjoint union of the domains ofM,M′ and whose relations

are disjoint unions of the relations in A,A′. An automatic presentation of the

disjoint union is B where B = A × {1} ∪ A′ × {2} (assuming that 1, 2 are not in

the alphabet of A,A′). We can extend this construction as follows [90]. The ω-fold

disjoint union of a structure A is the disjoint union of ω many copies of A.

Lemma 1.10 (Rubin; 2004). If A is automatic then its ω-fold disjoint union is

automata presentable.

Proof. Suppose that A = (A;R1, R2, . . .) is automatic. Let A′ be the structure

with the same vocabulary whose domain is A× 1∗ and where relations are defined

by 〈(x, i), (y, j)〉 ∈ R′
m ⇐⇒ i = j & 〈x, y〉 ∈ Rm for each m. It is clear that A′

is automatic and is isomorphic to the ω-fold disjoint union of A.

12

We now give some natural examples of automata presentable structures. Note

that many of the automatic structures in the earlier examples arise as the presen-

tations of the following automata presentable structures.

Example 1.11. Presburger arithmetic, the natural numbers under addition and

order, have a finite automata presentation. The automata presentation here is

the word structure ({0, 1}∗ · 1; +2,≤). This example will be discussed in detail in

Chapter 4.

Example 1.12. Finitely generated abelian groups are all finite automata pre-

sentable. Recall that a group G is finitely generated if there is a finite subset S

such that G is the smallest group containing S; a group G is called abelian if the

group operation is commutative (∀a, b ∈ G a · b = b · a). Since every such group

is isomorphic to a finite direct sum of copies of (Z; +) and (Zn; +) [89], and since

each of these has an automata presentation, any finitely generated abelian group

has an automata presentation. Note that free groups on more than one generator

are not automata presentable [56], [11].

Example 1.13. The Boolean algebra of finite and co-finite subsets of ω is finite

automata presentable. An automata presentation is the structure whose domain

is {0, 1}∗ ∪ {2, 3}∗ where words in {0, 1}∗ represent finite sets and words in {2, 3}∗

represent cofinite sets. Note that by cardinality considerations it is immediate that

the full Boolean algebra of all subsets of ω is not automata presentable.

Example 1.14. The linear order of the rational numbers (Q;≤) has a finite au-

tomata presentation: ({0, 1}∗ ·1;≤lex), where u ≤lex v is the lexicographic ordering

and holds if and only if u is a prefix of v or u = w0x and v = w1y for some

w, x, y ∈ {0, 1}∗.

Example 1.15. An ordinal is a well-founded linear ordinal. All ordinals below

ωω have finite automata presentations [56]. To see this, observe that ω has a finite

13

automata presentation and ωn is first-order definable from ω. Likewise, sums of

linear orders are first-order definable. An important result of Delhommé proves

that this is a characterisation of ordinals with finite automata presentations [34].

This theorem is generalized in Chapter 2.

In the following, we abuse terminology and identify the notions of “auto-

matic” and “automatically presentable” . The class of automatic structures is

a proper subclass of the computable structures. We therefore mention some cru-

cial definitions and facts about computable structures. Good references for the

theory of computable structures include [43], [64].

Definition 1.16. A computable structure is A = (A;R1, . . . , Rm) whose do-

main and relations are all computable.

The domains of computable structures can always be identified with the set ω

of natural numbers. Under this assumption, we introduce new constant symbols

cn for each n ∈ ω and interpret cn as n. We expand the vocabulary of each

structure to include these new constants cn. In this context, A is computable if

and only if the atomic diagram of A (the set of Gödel numbers of all quantifier-

free sentences in the extended vocabulary that are true in A) is a computable set.

If A is computable and B is isomorphic to A then we say that A is a computable

presentation of B. Note that if B has a computable presentation then B has

ω many computable presentations. In particular, a computable ordinal is a

presentation of the natural numbers under a computable well-ordering. That is, it

is the order-type of a computable well-ordering of the natural numbers. The least

ordinal which is not computable is denoted ωCK1 (after Church and Kleene).

14

1.3 Overview of complexity results

The following tables collect complexity results for the classes of computable struc-

tures, automatic structures, and some of their natural subclasses. Preceding each

table are the relevant definitions. Complexity is measured with respect to the

arithmetic hierarchy (see [88]). Recall that ∆0
1 statements are computable and

therefore such problems can be decided algorithmically. In the following tables,

each problem is complete for its complexity class.

1.3.1 Isomorphism problem

Definition 1.17. The isomorphism problem for a class of structures C asks:

given two elements of the class C, are they isomorphic?

Table 1.1: Complexity of the isomorphism problem.

Isomorphism problem for computable structures [88] Σ1
1

Isomorphism problem for automatic structures [59] Σ1
1

Isomorphism problem for automatic graphs [53] Σ1
1

Isomorphism problem for locally finite automatic graphs [90] Π0
3

Isomorphism problem for automatic ordinals [63] ∆0
1

Isomorphism problem for automatic Boolean algebras [59] ∆0
1

Isomorphism problem for unary automatic linear orders [51] ∆0
1

Isomorphism problem for unary automatic trees [51] ∆0
1

Isomorphism problem for unary automatic equivalence relations [51] ∆0
1

15

1.3.2 Graph questions

In the following, we usually assume that graphs are infinite and undirected.

Definition 1.18. A graph is locally finite if each vertex has at most finitely

many neighbours (vertices which share an edge). In other words, each vertex has

finite valence.

Definition 1.19. A computable graph is called highly recursive if it is locally

finite and the map f : v 7→ {neighbours of v} is computable.

We use the abbreviation LFUA to denote locally finite unary automatic graphs.

Definition 1.20. A graph is Hamiltonian if there is a path through the graph

which visits every node exactly once.

Definition 1.21. A clique of a graph is a set of nodes, each pair of which is

connected by an edge. That is, it is a subgraph which is a complete graph.

Definition 1.22. Given a graph and a vertex of the graph, the infinity testing

problem asks whether the vertex lies in an infinite component of the graph.

Definition 1.23. The infinite component questions asks whether a given graph

has some infinite component.

Definition 1.24. The connectivity problem asks if each pair vertices in a given

graph is connected by a sequence of edges (a path). That is, it asks if the graph

consists of a single connected component.

Definition 1.25. Given a graph and two vertices in the graph, the reachability

problem asks whether there is a path in the graph which connects the two vertices.

16

Table 1.2: Complexity of graph theoretic questions

Is a highly recursive graph Hamiltonian? [48] Σ1
1

Is a planar automatic graph Hamiltonian? [69] Σ1
1

Does an automatic graph have an infinite clique? [91] ∆0
1

Infinite component problem for automatic graphs [90] Σ0
3

Infinity testing problem for automatic graphs [90] Π0
2

Connectivity problem for automatic graphs [90] Π0
2

Reachability problem for automatic graphs [90] Σ0
1

Infinite component problem for LFUA graphs [11],[52] ∆0
1

Infinity testing problem for LFUA graphs [11],[52] ∆0
1

Connectivity problem for LFUA graphs [11],[52] ∆0
1

Reachability problem for LFUA graphs [11],[52] ∆0
1

1.3.3 Tree questions

Definition 1.26. A (partial order) tree is a partially ordered set (T ;≤) such

that there is a ≤-least element of T , and each subset {x ∈ T : x ≤ y} is finite and

is linearly ordered under ≤.

Definition 1.27. A successor tree is a structure (T ;S) such that the reflexive

and transitive closure ≤S of S produces a partial order tree (T ;≤S).

1.4 Outline

We now outline the structure of the remainder of this thesis. Chapter 2 discusses

various measures of complexity applied to automatic structures. In particular, set

17

Table 1.3: Complexity of tree questions

Does a recursive tree have an infinite path? [88] Σ1
1

Does an automatic successor tree have an infinite path? [69] Σ1
1

Does an automatic partial order tree have an infinite path? [63] ∆0
1

theoretic, topological, and model theoretic ranks are considered. In each setting,

there is a natural bound on the ranks attained by computable structures. We

show that automatic structures achieve ranks that are as high as those of com-

putable structures. Thus, in this sense, automatic structures are as complicated

as computable structures.

Chapter 3 restricts to a class of automatic structures which lend themselves

more readily to efficient algorithms. In particular, we discuss locally finite unary

automatic graphs. Several characterizations of this class of graphs are given. Then,

polynomial-time algorithms are presented for the infinite component, infinity test-

ing, connectivity, and reachability problems.

Finally, Chapter 4 discusses automata theoretic decision procedures. We recall

linear programming questions and relate them to various logical theories. A known

automata theoretic decision procedure for Presburger arithmetic is detailed, and

then extended to suit the linear programming applications. The methodology is

then applied for other mathematical structures including formal power series and

the p-adics.

18

Chapter 2

Ranks

The results in this section were first reported in [53] and will appear in [55]. They

reflect joint work with Bakhadyr Khoussainov.

2.1 Introduction

Most current results demonstrate that automatic structures are not complex in

various concrete senses. However, in this chapter we use well-established concepts

from both logic and model theory to prove results in the opposite direction. We

now briefly describe the measures of complexity we use (ordinal heights of well-

founded relations, Scott ranks of structures, and Cantor-Bendixson ranks of trees)

and connect them with the results of this chapter.

A relation R is called well-founded if there is no infinite sequence x1, x2, x3, . . .

such that (xi+1, xi) ∈ R for i ∈ ω. In computer science, well-founded relations are

of interest due to a natural connection between well-founded sets and terminating

programs. We say that a program is terminating if every computation from an

initial state is finite. This is equivalent to well-foundedness of the collection of

states reachable from the initial state, under the reachability relation [10]. The

ordinal height is a measure of the depth of well-founded relations. Since all

automatic structures are also computable structures, the obvious bound for ordi-

nal heights of automatic well-founded relations is ωCK1 (the first non-computable

ordinal). Sections 2.2 and 2.4 study the sharpness of this bound. Theorem 2.5

characterizes automatic well-founded partial orders in terms of their (relatively

19

low) ordinal heights, whereas Theorem 2.10 shows that ωCK1 is the sharp bound

in the general case. Note that Theorem 2.5 gives a generalization of Example

1.15 which dealt with well-founded linear orders rather than well-founded partial

orders.

Theorem 2.5 For each ordinal α, α is the ordinal height of an automatic well-

founded partial order if and only if α < ωω.

Theorem 2.10 For each (computable) ordinal α < ωCK1 , there is an automatic

well-founded relation A with ordinal height greater than α.

In fact, given a computable ordinal α, Theorem 2.10 produces an automatic

well-founded relation A whose ordinal height r(A) satisfies α ≤ r(A) ≤ ω + α.

Section 2.5 is devoted to building automatic structures with high Scott ranks.

The concept of Scott rank comes from a well-known theorem of Scott stating

that every countable structure A may be associated to a sentence ϕ in Lω1,ω-

logic which characterizes A up to isomorphism [92]. The minimal quantifier rank

of such a formula is called the Scott rank of A. Work by Nadel [77], Makkai

[72], and Knight and Millar [67] gives information on possible Scott ranks for

computable structures. In particular, we get that the upper bound on the Scott

rank of computable structures is ωCK1 + 1. Since all automatic structures are

computable structures, the Scott rank of any automatic structure can be at most

ωCK1 + 1. But, until now, all the known examples of automatic structures had low

Scott ranks. Results in [71], [34], [63] suggest that the Scott ranks of automatic

structures could be bounded by small ordinals. This intuition is falsified in Section

2.5 with the theorem:

Theorem 2.20 For each computable ordinal α there is an automatic structure of

20

Scott rank at least α.

Moreover, for a given ordinal α less than or equal to ωCK1 , Theorem 2.20 con-

structs an automatic structure A whose Scott rank is between α and 2 +α. Thus,

this theorem gives a new proof that the isomorphism problem for automatic struc-

tures is Σ1
1-complete (another proof may be found in [59]).

In the last section of this chapter, we investigate the Cantor-Bendixson ranks

of automatic trees. A partial order tree is a partially ordered set (T ;≤) such

that there is a ≤-least element of T , and each subset {x ∈ T : x ≤ y} is finite

and is linearly ordered under ≤. A successor tree is a structure (T ;S) such that

the reflexive and transitive closure ≤S of S produces a partial order tree (T ;≤S).

The derivative of a tree T is obtained by removing all the nonbranching paths of

the tree. One applies the derivative operation to T iteratively until a fixed point

is reached. The least ordinal that is needed to reach the fixed point is called the

Cantor-Bendixson (CB) rank of the tree. The CB rank plays an important

role in logic, algebra, and topology. Informally, the CB rank tells us how far the

structure is from algorithmically (or algebraically) simple structures. Again, the

obvious bound on CB ranks of automatic successor trees is ωCK1 . In [61], it is

proved that the CB rank of any automatic partial order tree is finite and can be

computed from the automaton for the ≤ relation on the tree. It has been an open

question whether the CB ranks of automatic successor trees can also be bounded

by small ordinals. We answer this question in the following theorem.

Theorem 2.28 For α < ωCK1 there is an automatic successor tree of CB rank α.

The main tool we use to prove results about high ranks is the configuration

spaces of Turing machines, considered as automatic graphs. It is important to

21

note that graphs which arise as configuration spaces have very low model-theoretic

complexity: their Scott ranks are at most 3, and if they are well-founded then

their ordinal heights are at most ω (see Propositions 2.9 and 2.13). Hence, the

configuration spaces serve merely as building blocks in the construction of auto-

matic structures with high complexity, rather than contributing materially to the

high complexity themselves.

2.2 Heights of automatic well-founded partial orders

In this section we consider structures A = (A;R) with a single binary relation. An

element x is said to be R-minimal for a set X if for each y ∈ X, (y, x) /∈ R.

The relation R is said to be well-founded if every non-empty subset of A has an

R-minimal element. This is equivalent to saying that (A;R) has no infinite chains

x1, x2, x3, . . . where (xi+1, xi) ∈ R for all i.

A ranking function for A is an ordinal-valued function f such that f(y) <

f(x) whenever (y, x) ∈ R. If f is a ranking function on A, let ord(f) = sup{f(x) :

x ∈ A}. The structure A is well-founded if and only if A admits a ranking function.

The ordinal height of A, denoted r(A), is the least ordinal α which is ord(g) for

some ranking function g on A. An equivalent definition for the rank of A is the

following. We define the function rA by induction: for the R-minimal elements

x, set rA(x) = 0; for z not R-minimal, put rA(z) = sup{r(y) + 1 : (y, z) ∈ R}.

Then rA is a ranking function admitted by A and r(A) = sup{rA(x) : x ∈ A}.

For B ⊆ A, we write r(B) for the ordinal height of the structure obtained by

restricting the relation R to the subset B.

Lemma 2.1. If α < ωCK1 , there is a computable well-founded relation of ordinal

22

height α.

Proof. This lemma is trivial: the ordinal height of an ordinal α is α itself. Since all

computable ordinals are computable and well-founded relations, we are done.

The next lemma follows easily from the well-foundedness of ordinals and of R.

Lemma 2.2. For a structure A = (A;R) where R is well-founded, if r(A) = α

and β < α then there is an x ∈ A such that rA(x) = β.

Proof. We proceed by induction. If α = 0 the claim is vacuous; if α = 1 the only

possible value for β is 0, which must be attained by definition of height for R-

minimal elements of A. For the inductive step, let α > 1 and β < α. Consider the

sets Lβ = {x ∈ A : rA(x) < β} and Rβ = {x ∈ A : rA(x) > β}. Suppose, on the

one hand, that Rβ = ∅. Then sup{rA(x) : x ∈ A} ≤ sup{β, rA(x) : x ∈ Lβ} ≤ β,

a contradiction with r(A) = α > β. Therefore, Rβ 6= ∅ and let y ∈ Rβ be an

element such that rA(y) ≤ rA(w) for all w ∈ Rβ (by well-foundedness of the

ordinals). Hence, for all w ∈ Rβ , it is not the case that R(w, y). Assume for a

contradiction that there is no z ∈ A with rA(z) = β. Then,

rA(y) = sup{rA(x) + 1 : R(x, y)} = sup{rA(x) + 1 : x ∈ Lβ & R(x, y)} < β + 1.

In particular, we have that rA(y) ≤ β, a contradiction with y ∈ Rβ .

For the remainder of this section, we assume further that R is a partial order.

For convenience, we write ≤ instead of R. Thus, we consider automatic well-

founded partial orders A = (A;≤). We will use the notion of natural sum of

ordinals. The natural sum of ordinals α, β (denoted α+′ β) is defined recursively:

α +′ 0 = α, 0 +′ β = β, and α +′ β is the least ordinal strictly greater than γ +′ β

for all γ < α and strictly greater than α+′ γ for all γ < β.

23

Lemma 2.3. Let A1 and A2 be disjoint subsets of A such that A = A1 ∪ A2.

Consider the partially ordered sets A1 = (A1;≤1) and A2 = (A2;≤2) obtained by

restricting ≤ to A1 and A2 respectively. Then, r(A) ≤ α1 +′ α2, where αi = r(Ai).

Proof. We will show that there is a ranking function on A whose range is contained

in the ordinal α1 +′ α2. For each x ∈ A consider the partially ordered sets A1,x

and A2,x obtained by restricting ≤ to {z ∈ A1 : z < x} and {z ∈ A2 : z < x},

respectively. Define f(x) = r(A1,x) +′ r(A2,x). We claim that f is a ranking

function. Indeed, assume that x < y. Then, since ≤ is transitive, it must be

the case that A1,x ⊆ A1,y and A2,x ⊆ A2,y. Therefore, r(A1,x) ≤ r(A1,y) and

r(A2,x) ≤ r(A2,y). At least one of these inequalities must be strict. To see this,

assume that x ∈ A1 (the case x ∈ A2 is similar). Then since x ∈ A1,y, it is the

case that r(A1,x)+ 1 ≤ r(A1,y) by the definition of ranks. Therefore, we have that

f(x) < f(y). Moreover, the image of f(x) is contained in α1 +′ α2.

Corollary 2.4. If r(A) = ωn and A = A1 ∪ A2 where A1 ∩ A2 = ∅, then either

r(A1) = ωn or r(A2) = ωn.

Khoussainov and Nerode [56] show that, for each n, there is a finite automata

presentation of the ordinal ωn. It is clear that such a presentation has ordinal

height ωn. The next theorem proves that ωω is the sharp bound on ranks of all

automatic well-founded partial orders. Once Corollary 2.4 has been established,

the proof of Theorem 2.5 follows Delhommé [34] and Rubin [90].

Theorem 2.5. For each ordinal α, α is the ordinal height of an automatic well-

founded partial order if and only if α < ωω.

Proof. One direction of the proof is immediate from [56] (see Example 1.15). For

24

the other direction, assume for a contradiction that there is an automatic well-

founded partial order A = (A;≤) with r(A) = α ≥ ωω. Let (SA, ιA,∆A, FA) and

(S≤, ι≤,∆≤, F≤) be finite automata over Σ recognising A and ≤ (respectively). By

Lemma 2.2, for each n > 0 there is un ∈ A such that rA(un) = ωn. For each u ∈ A

we define the set

u ↓= {x ∈ A : x < u}.

Note that if rA(u) is a limit ordinal then rA(u) = r(u ↓). We define a finite

partition of u ↓ in order to apply Corollary 2.4. To do so, for u, v ∈ Σ∗, define

Xu
v = {vw ∈ A : w ∈ Σ∗ & vw < u}. Each set of the form u ↓ can then be

partitioned based on the prefixes of words as follows:

u ↓= {x ∈ A : |x| < |u| & x < u} ∪
⋃

v∈Σ∗:|v|=|u|

Xu
v .

(All the unions above are finite and disjoint.) Hence, applying Corollary 2.4, for

each un there exists a vn such that |un| = |vn| and r(Xun
vn

) = r(un ↓) = ωn.

Meanwhile, we use the automata presenting A to define the following equiva-

lence relation on pairs of words of equal lengths:

(u, v) ∼ (u′, v′) ⇐⇒ ∆A(ιA, v) = ∆A(ιA, v
′) &

∆≤(ι≤,

(

v

u

)

) = ∆≤(ι≤,

(

v′

u′

)

)

There are at most |SA| × |S≤| equivalence classes. Thus, the infinite sequence

(u1, v1), (u2, v2), . . . contains m, n such that m 6= n and (um, vm) ∼ (un, vn).

Lemma 2.6. For any u, v, u′, v′ ∈ Σ∗, if (u, v) ∼ (u′, v′) then r(Xu
v) = r(Xu′

v′).

To prove the lemma, consider g : Xu
v → Xu′

v′ defined as g(vw) = v′w. From the

equivalence relation, we see that g is well-defined, bijective, and order preserving.

Hence Xu
v
∼= Xu′

v′ (as partial orders). Therefore, r(Xu
v) = r(Xu′

v′).

25

By Lemma 2.6, ωm = r(Xum
vm

) = r(Xun
vn

) = ωn, a contradiction with the as-

sumption that m 6= n. Therefore, there is no automatic well-founded partial order

of ordinal height greater than or equal to ωω.

2.3 Configuration spaces of Turing machines

In the forthcoming constructions, we embed computable structures into automatic

ones via configuration spaces of Turing machines. This subsection provides termi-

nology and background for these constructions. LetM be an n-tape deterministic

Turing machine. The configuration space of M, denoted by Conf(M), is a

directed graph whose nodes are configurations of M. The nodes are n-tuples,

each of whose coordinates represents the contents of a tape. Each tape is encoded

as (w q w′), where w,w′ ∈ Σ∗ are the symbols on the tape before and after the

location of the read/write head, and q is one of the states of M. The edges of

the graph are all the pairs of the form (c1, c2) such that there is an instruction of

M that transforms c1 to c2 in one step. The configuration space is an automatic

graph. The out-degree of every vertex in Conf(M) is 1; the in-degree need not

be 1. Later, it will be helpful to have some control over the structure of the con-

figuration space of a given Turing machine. The following definition and theorem

from [8] give us this control.

Definition 2.7. A deterministic Turing machine M is reversible if Conf(M)

consists only of finite chains and chains of type ω.

Lemma 2.8 (Bennett; 1973). For any deterministic 1-tape Turing machine there

is a reversible 3-tape Turing machine which accepts the same language.

Proof. (Sketch) Given a deterministic Turing machine, define a 3-tape Turing ma-

26

chine with a modified set of instructions. The modified instructions have the

property that neither the domains nor the ranges overlap. The first tape performs

the computation exactly as the original machine would have done. As the new

machine executes each instruction, it stores the index of the instruction on the

second tape, forming a history. Once the machine enters a state which would have

been halting for the original machine, the output of the computation is copied onto

the third tape. Then, the machine runs the computation backwards and erases the

history tape. The halting configuration contains the input on the first tape, blanks

on the second tape, and the output on the third tape.

We establish the following notation for a 3-tape reversible Turing machine M

given by the construction in this lemma. A valid initial configuration of M

is of the form (λ ι x, λ, λ), where x is in the domain, λ is the empty string, and

ι is the initial state of M. From the proof of Lemma 2.8, observe that a final

(halting) configuration is of the form (x, λ, λ qf y), with qf a halting state of

M. Also, because of the reversibility assumption, all the chains in Conf(M) are

either finite or ω-chains (the order type of the natural numbers). In particular, this

means that Conf(M) is well-founded under the edge relation. We call an element

of in-degree 0 a base (of a chain). The set of valid initial or final configurations is

regular. We classify the components (chains) of Conf(M) as follows:

• Terminating computation chains: finite chains whose base is a valid

initial configuration; that is, one of the form (λ ι x, λ, λ), for x ∈ Σ∗.

• Non-terminating computation chains: infinite chains whose base is a

valid initial configuration.

• Unproductive chains: chains whose base is not a valid initial configuration.

27

Configuration spaces of reversible Turing machines are locally finite graphs

(graphs of finite degree) which are well-founded. Hence, the following proposition

guarantees that their ordinal heights are small.

Proposition 2.9. If G = (A;E) is a locally finite graph then either E is well-

founded and the ordinal height of E is not above ω, or E is not well-founded.

Proof. Suppose G is a locally finite graph and E is well-founded. For a contra-

diction, suppose r(G) > ω. Then there is v ∈ A with r(v) = ω. By definition,

r(v) = sup{r(u) : uEv}. But, this implies that there are infinitely many elements

E-below v, a contradiction with local finiteness of G.

2.4 Heights of automatic well-founded relations

We are now ready to prove that ωCK1 is the sharp bound for ordinal heights of

automatic well-founded relations.

Theorem 2.10. For each computable ordinal α < ωCK1 , there is an automatic

well-founded relation A with ordinal height greater than α. In particular, α ≤

r(A) ≤ ω + α.

Proof. The proof of this theorem uses properties of Turing machines and their

configuration spaces. We take a computable well-founded relation whose ordinal

height is α, and “embed” it into an automatic well-founded relation with similar

ordinal height.

By Lemma 2.1, let C = (C;Lα) be a computable well-founded relation of ordinal

height α. We assume without loss of generality that C = Σ∗ for some finite

28

alphabet Σ. Let M be the Turing machine computing the relation Lα. On each

pair (x, y) from the domain, M halts and outputs “yes” or “no” . By Lemma

2.8, we can assume that M is reversible. Recall that Conf(M) = (D;E) is

an automatic graph. We define the domain of our automatic structure to be

A = Σ∗ ∪D. The binary relation of the automatic structure is:

R = E ∪ {(x, (λ ι (x, y), λ, λ)) : x, y ∈ Σ∗} ∪

{(((x, y), λ, λ qf “yes”), y) : x, y ∈ Σ∗}.

Intuitively, the structure (A;R) is a stretched out version of (C;Lα) with infinitely

many finite pieces extending from elements of C, and with disjoint pieces which

are either finite chains or chains of type ω. The structure (A;R) is automatic

because its domain is a regular set of words and the relation R is recognisable

by a 2-tape automaton. We should verify, however, that R is well-founded. Let

Y ⊂ A. If Y ∩C 6= ∅ then since (C;Lα) is well-founded, there is x ∈ Y ∩C which

is Lα-minimal. The only possible elements u in Y for which (u, x) ∈ R are those

which lie on computation chains connecting some z ∈ C with x. Since each such

computation chain is finite, there is an R-minimal u below x on each chain. Any

such u is R-minimal for Y . On the other hand, if Y ∩ C = ∅, then Y consists of

disjoint finite chains and chains of type ω. Any such chain has a minimal element,

and any of these elements are R-minimal for Y . Therefore, (A;R) is an automatic

well-founded structure.

We now consider the ordinal height of (A;R). For each element x ∈ C, an

easy induction on rC(x), shows that rC(x) ≤ rA(x) ≤ ω + rC(x). We denote by

ℓ(a, b) the (finite) length of the computation chain of M with input (a, b). For

any element ax,y in the computation chain which represents the computation ofM

determining whether (x, y) ∈ R, we have rA(x) ≤ rA(ax,y) ≤ rA(x) + ℓ(x, y). For

29

any element u in an unproductive chain of the configuration space, 0 ≤ rA(u) < ω.

Therefore, since C ⊂ A, r(C) ≤ r(A) ≤ ω + r(C).

2.5 Automatic structures and Scott rank

The Scott rank of a structure is introduced in the proof of Scott’s Isomorphism

Theorem [92]. Since then, variants of the Scott rank have been used in the com-

putable model theory literature. We follow the definition of Scott rank from [24].

Definition 2.11. For structure A and tuples ā, b̄ ∈ An (of equal length), define

• ā ≡0 b̄ if ā, b̄ satisfy the same quantifier-free formulas in the language of A;

• For α > 0, ā ≡α b̄ if for all β < α, for each c̄ (of arbitrary length) there is

d̄ such that ā, c̄ ≡β b̄, d̄; and for each d̄ (of arbitrary length) there is c̄ such

that ā, c̄ ≡β b̄, d̄.

Then, the Scott rank of the tuple ā, denoted by SR(ā), is the least β such that

for all b̄ ∈ An, ā ≡β b̄ implies that (A, ā) ∼= (A, b̄). The Scott rank of A, denoted

by SR(A), is the least α greater than the Scott ranks of all tuples of A.

Example 2.12. SR(Q;≤) = 1, SR(ω;≤) = 2, and SR(n · ω;≤) = n+ 1.

Configuration spaces of reversible Turing machines are locally finite graphs. By

the proposition below, they all have low Scott Rank.

Proposition 2.13. If G = (V ;E) is a locally finite graph, SR(G) ≤ 3.

30

Proof. The n-neighbourhood of a subset U , denoted Bn(U), is defined as follows:

B0(U) = U and Bn(U) is the set of v ∈ V which can be reached from U by n or

fewer edges. The proof of Proposition 2.13 relies on two lemmas.

Lemma 2.14. Let ā, b̄ ∈ V be such that ā ≡2 b̄. Then, for all n, there is a bijection

of the n-neighbourhoods around ā, b̄ which sends ā to b̄ and which respects E.

Proof. For a given n, let c̄ = Bn(ā) \ ā. Note that c̄ is a finite tuple because of the

local finiteness condition. Since ā ≡2 b̄, there is d̄ such that āc̄ ≡1 b̄d̄. It suffices

to show that Bn(b̄) = b̄d̄. Hence, two set inclusions are needed. First, we show

that di ∈ Bn(b̄). By definition, we have that ci ∈ Bn(ā), and let aj , u1, . . . , un−1

witness this. Then since āc̄ ≡1 b̄d̄, there are v1, . . . , vn−1 such that āc̄ū ≡0 b̄d̄v̄.

In particular, we have that if ciEuiE · · ·Eun−1Eaj, then also diEviE · · ·Evn−1Ebj

(and likewise if the E relation is in the other direction). Hence, di ∈ Bn(b̄).

Conversely, suppose v ∈ Bn(b̄) \ d̄. Let v1, . . . , vn be witnesses and this will let us

find a new element of Bn(ā) which is not in c̄, a contradiction.

Lemma 2.15. Let G = (V ;E) be a graph. Suppose ā, b̄ ∈ V are such that for

all n, (Bn(ā);E, ā) ∼= (Bn(b̄);E, b̄). Then there is an isomorphism between the

component of G containing ā and that containing b̄ which sends ā to b̄.

Proof. We consider a tree of partial isomorphisms of G. The nodes of the tree are

bijections from Bn(ā) to Bn(b̄) which respect the relation E and map ā to b̄. Node f

is the child of node g in the tree if dom(f) = Bn(ā), dom(g) = Bn+1(ā) and f ⊃ g.

Note that the root of this tree is the map which sends ā to b̄. Moreover, the tree is

finitely branching and is infinite by Lemma 2.14. Therefore, König’s Lemma gives

an infinite path through this tree. The union of all partial isomorphisms along this

path is the required isomorphism.

31

To finish the proof of Proposition 2.13, we note that for any ā, b̄ in V such that

ā ≡2 b̄, Lemmas 2.14 and 2.15 yield an isomorphism from the component of ā to

the component of b̄ that maps ā to b̄. Hence, if ā ≡2 b̄, there is an automorphism

of G that maps ā to b̄. Therefore, for each ā ∈ V , SR(ā) ≤ 2, so SR(G) ≤ 3.

Let C = (C;R1, . . . , Rm) be a computable structure. Recall that since C is a

computable set, we may assume it is Σ∗ for some finite alphabet Σ. We construct

an automatic structure A whose Scott rank is (close to) the Scott rank of C. The

construction of A involves connecting the configuration spaces of Turing machines

computing relations R1, . . . , Rm with each other and with Σ∗. Note that Propo-

sition 2.13 suggests that ensuring that the Scott rank of the resulting automatic

structure is sufficiently high constitutes the main part of the construction because

each of the configuration spaces has low Scott rank. The construction in some

sense expands C into an automatic structure. We comment that expansions do not

necessarily preserve the Scott rank. For example, any computable structure has

an expansion with Scott rank 2 obtained by adding the successor relation into the

signature.

We detail the construction for Ri. Let Mi be a Turing machine for Ri. By

a simple modification of the machine we assume that Mi halts if and only if its

output is “yes” . By Lemma 2.8, we can also assume that Mi is reversible. We

now modify the configuration space Conf(Mi) so as to respect the isomorphism

type of C. This will ensure that the construction (almost) preserves the Scott rank

of C. We use the terminology from Subsection 2.3.

Smoothing out unproductive parts. The length and number of unproduc-

tive chains is determined by the machineMi and hence may differ even for Turing

machines computing the same set. In this stage, we standardize the format of

32

this unproductive part of the configuration space. We wish to add enough redun-

dant information in the unproductive section of the structure so that if two given

computable structures are isomorphic, the unproductive parts of the automatic

representations will also be isomorphic . We add countably infinitely many chains

of length n (for each n) and countably infinitely many copies of ω. This ensures

that the (smoothed) unproductive section of the configuration space of any Turing

machine will be isomorphic and preserves automaticity. We comment that adding

this redundancy preserves automaticity since the operation is a disjoint union of

automatic structures.

Smoothing out lengths of computation chains. We turn our attention to

the chains which have valid initial configurations at their base. The length of each

finite chain denotes the length of computation required to return a “yes” answer.

We will smooth out these chains by adding “fans” to each base. For this, we

connect to each base of a computation chain a structure which consists of countably

infinitely many chains of each finite length. To do so we follow Rubin [90]: consider

the structure whose domain is 0∗01∗ and whose relation is given by xEy if and only

if |x| = |y| and y is the least lexicographic successor of x. This structure has a

finite chain of every finite length. As in Lemma 1.10, we take the ω-fold disjoint

union of the structure and identify the bases of all the finite chains. We get a

“fan” with infinitely many chains of each finite size whose base can be identified

with a valid initial computation state. Also, the fan has an infinite component if

and only if Ri does not hold of the input tuple corresponding to the base. The

result is an automatic graph, Smooth(Ri) = (Di;Ei), which extends Conf(Mi).

Connecting domain symbols to the computations of the relation. We

apply the construction above to each Ri in the signature of C. Taking the union

33

of the resulting automatic graphs and adding vertices for the domain, we have

the structure (Σ∗ ∪ ∪iDi;E1, . . . , En) (where we assume that the Di are disjoint).

We assume without loss of generality that each Mi has a different initial state,

denoted by ιi. We add n predicates Fi to the signature of the automatic structure.

These predicates connect the elements of the domain of C with the computations

of the relations Ri:

Fi = {(x0, . . . , xmi−1, (λ ιi (x0, . . . , xmi−1), λ, λ)) : x0, . . . , xmi−1 ∈ Σ∗}.

Note that for x̄ ∈ Σ∗, Ri(x̄) is true if and only if Fi(x̄, (λ ιi x̄, λ, λ)) holds and all

Ei chains emanating from (λ ιi x̄, λ, λ) are finite. We have now concluded building

the automatic structure

A = (Σ∗ ∪ ∪iDi;E1, . . . , En, F1, . . . , Fn).

Two technical lemmas are used to show that the Scott rank of A is close to α:

Lemma 2.16. For x̄, ȳ ∈ Σ∗ and for ordinal α, if x̄ ≡αC ȳ then x̄ ≡αA ȳ.

Proof. Let X = domA \ Σ∗. We prove the stronger result that for any ordinal α,

and for all x̄, ȳ ∈ Σ∗ and x̄′, ȳ′ ∈ X, if the following assumptions hold

1. x̄ ≡αC ȳ;

2. 〈x̄′, Ei : i = 1 . . . n〉A ∼=f 〈ȳ
′, Ei, : i = 1 . . . n〉A (hence the substructures

generated by x̄′ and ȳ′ in A are isomorphic) with f(x̄′) = ȳ′; and

3. for each x′k ∈ x̄
′, i = 1, . . . , n and subsequence of indices of length mi,

x′k = (λ ιi x̄j , λ, λ) ⇐⇒ y′k = (λ ιi ȳj , λ, λ)

then x̄x̄′ ≡αA ȳȳ′. The lemma follows if we take x̄′ = ȳ′ = λ (the empty string).

34

The proof of this stronger statement goes by induction on α. If α = 0, we need

to show that for each i, k, k′, k0, . . . , kmi−1,

(∗) Ei(x
′
k, x

′
k′) ⇐⇒ Ei(y

′
k, y

′
k′),

and that

(∗∗) Fi(xk0 , . . . , xkmi−1
, x′k′) ⇐⇒ Fi(yk0, . . . , ykmi−1

, y′k′).

Statement (∗) follows by assumption 2, since the isomorphism must preserve the

Ei relations and maps x̄′ to ȳ′. Statement (∗∗) follows by assumption 3.

Assume now that α > 0 and that the result holds for all β < α. Let x̄, ȳ ∈ Σ∗

and x̄′, ȳ′ ∈ A satisfy assumptions 1, 2, and 3. We will show that x̄x̄′ ≡αA ȳȳ′. Let

β < α and suppose ū ∈ Σ∗, ū′ ∈ A. By assumption 1, there is v̄ ∈ Σ∗ such that

x̄ū ≡βC ȳv̄. By the construction (in particular, the smoothing steps), we can find

a corresponding v̄′ ∈ A such that assumptions 2, 3 hold. Applying the inductive

hypothesis, we get that x̄ūx̄′ū′ ≡βA ȳv̄ȳ′v̄′. Analogously, given v̄, v̄′ we can find the

necessary ū, ū′. Therefore, x̄x̄′ ≡αA ȳȳ′.

Lemma 2.17. If x̄ ∈ Σ∗ ∪ ∪iDi, there is ȳ ∈ Σ∗ with SRA(x̄x̄′ū) ≤ 2 + SRC(ȳ).

Proof. Let XP denote the subset of X = A \Σ∗ which corresponds to elements on

fans associated with productive chains of the configuration space. Let XU denote

the subset of X containing elements of the unproductive chains of the configuration

space. Thus, A = Σ∗ ∪ XP ∪ XU , a disjoint union. We will show that for each

x̄ ∈ Σ∗, x̄′ ∈ XP , ū ∈ XU there is ȳ ∈ Σ∗ such that SRA(x̄x̄′ū) ≤ 2 + SRC(ȳ).

Given x̄, x̄′, ū, let ȳ ∈ Σ∗ be a minimal element satisfying that x̄ ⊂ ȳ and that

x̄′ ⊂ 〈ȳ, Ei, Fi : i = 1 . . . n〉A. We will show that ȳ is the desired witness. First, we

observe that since the unproductive part of the structure is disconnected from the

35

productive elements we can consider the two independently. Moreover, because

the structure of the unproductive part is predetermined and simple, for ū, v̄ ∈ XU ,

if ū ≡1
A v̄ then (A, ū) ∼= (A, v̄). It remains to consider the productive part of the

structure.

Consider any z̄ ∈ Σ∗, z̄′ ∈ XP satisfying z̄′ ⊂ 〈z̄, Ei, Fi : i = 1 . . . n〉A. We

claim that SRA(z̄z̄′) ≤ 2 + SRC(z̄). It suffices to show that for all α, for all

w̄ ∈ Σ∗, w̄′ ∈ XP ,

z̄z̄′ ≡2+α
A w̄w̄′ =⇒ z̄ ≡αC w̄.

This is sufficient for the following reason. If z̄z̄′ ≡
2+SRC(z̄)
A w̄w̄′ then z̄ ≡

SRC(z̄)
C w̄

and hence (C, z̄) ∼= (C, w̄). From this automorphism, we can define an automor-

phism of A mapping z̄z̄′ to w̄w̄′ because z̄z̄′ ≡2
A w̄w̄′ and hence for each i, the

relative positions of z̄′ and w̄′ in the fans above z̄ and w̄ are isomorphic. There-

fore, 2 + SRC(z̄) ≥ SRA(z̄z̄′).

So, we now show that for all α, for all w̄ ∈ Σ∗, w̄′ ∈ XP , z̄z̄′ ≡2+α
A w̄w̄′

implies that z̄ ≡αC w̄. We proceed by induction on α. For α = 0, suppose that

z̄z̄′ ≡2
A w̄w̄′. This implies that for each i and for each subsequence of length mi

of the indices, the Ei-fan above z̄j has an infinite chain if and only if the Ei-fan

above w̄j does. Therefore, Ri(z̄j) if and only if Ri(w̄j). Hence, z̄ ≡0
C w̄, as required.

For the inductive step, we assume the result holds for all β < α. Suppose that

z̄z̄′ ≡2+α
A w̄w̄′. Let β < α and c̄ ∈ Σ∗. Then 2 + β < 2 + α so by definition there

is d̄ ∈ Σ∗, d̄′ ∈ XP such that z̄z̄′c̄ ≡2+β
A w̄w̄′d̄d̄′. However, since 2 + β > 1, d̄′

must be empty (elements in Σ∗ cannot be 1-equivalent to elements in XP). By

the induction hypothesis, z̄c̄ ≡βC w̄d̄. The argument works symmetrically if we are

given d̄ and want to find c̄. Thus, z̄ ≡αC w̄, as required.

36

Lemmas 2.16 and 2.17 may be combined to prove the main result about our

construction.

Theorem 2.18. Let C be a computable structure and construct the automatic

structure A from it as above. Then SR(C) ≤ SR(A) ≤ 2 + SR(C).

Proof. Let x̄ be a tuple in the domain of C. By the definition of Scott rank, SRA(x̄)

is the least ordinal α such that for all ȳ ∈ dom(A), x̄ ≡αA ȳ implies that (A, x̄) ∼=

(A, ȳ); and similarly for SRC(x̄). We first show that SRA(x̄) ≥ SRC(x̄). Suppose

SRC(x̄) = β. We assume for a contradiction that SRA(x̄) = γ < β. Consider an

arbitrary z̄ ∈ Σ∗ (the domain of C) such that x̄ ≡γC z̄. By Lemma 2.16, x̄ ≡γA z̄.

But, the definition of γ as the Scott rank of x̄ in A implies that (A, x̄) ∼= (A, z̄).

Now, C is Lω1,ω definable in A and therefore inherits the isomorphism. Hence,

(C, x̄) ∼= (C, z̄). But, this implies that SRC(x̄) ≤ γ < β = SRC(x̄), a contradiction.

The conclusion of the above argument is that for each x̄ ∈ Σ∗, SRA(x̄) ≥

SRC(x̄). Hence, since dom(C) ⊂ dom(A),

SR(A) = sup{SRA(x̄) + 1 : x̄ ∈ dom(A)}

≥ sup{SRA(x̄) + 1 : x̄ ∈ dom(C)}

≥ sup{SRC(x̄) + 1 : x̄ ∈ dom(C)} = SR(C).

In the other direction, we wish to show that SR(A) ≤ 2+SR(C). Suppose this

is not the case. Then there is x̄x̄′ū ∈ A such that SRA(x̄x̄′ū) ≥ 2 + SR(C). By

Lemma 2.17, there is ȳ ∈ Σ∗ such that 2+SRC(ȳ) ≥ 2+SR(C), a contradiction.

Recent work in the theory of computable structures has focussed on finding

computable structures of high Scott rank. Nadel [77] proved that any computable

structure has Scott rank at most ωCK1 + 1. Early on, Harrison [44] showed that

37

there is a computable ordering of type ωCK1 (1 + η) (where η is the order type of

the rational numbers). This ordering has Scott rank ωCK1 + 1, as witnessed by

any element outside the initial ωCK1 set. However, it was not until much more

recently that a computable structure of Scott rank ωCK1 was produced (see Knight

and Millar [67]). A recent result of Cholak, Downey, and Harrington gives the first

natural example of a structure with Scott rank ωCK1 : the computably enumerable

sets under inclusion [29].

Corollary 2.19. There is an automatic structure with Scott rank ωCK1 . There is

an automatic structure with Scott rank ωCK1 + 1.

We also apply the construction to [41], where it is proved that there are com-

putable structures with Scott ranks above each computable ordinal. In this case,

we get the following theorem.

Theorem 2.20. For each computable ordinal α, there is an automatic structure

of Scott rank at least α.

2.6 Cantor-Bendixson rank of automatic successor trees

In this section we show that there are automatic successor trees of high Cantor-

Bendixson (CB) rank. Recall the definitions of partial order trees and successor

trees from Section 2.1. Note that if (T ;≤) is an automatic partial order tree then

the associated successor tree (T ;S), where the relation S is defined by

S(x, y) ⇐⇒ (x < y) & ¬∃z(x < z < y),

is automatic.

38

Definition 2.21. The derivative of a (partial order or successor) tree T , d(T),

is the subtree of T whose domain is

{x ∈ T : x lies on at least two infinite paths in T}.

By induction, d0(T) = T , dα+1(T) = d(dα(T)), and for γ a limit ordinal, dγ(T) =

∩β<γd
β(T). The CB rank of the tree, CB(T), is the least α such that dα(T) =

dα+1(T).

The CB ranks of automatic partial order trees are finite [61]. We will show that

this is not true of automatic successor trees. The main theorem of this section pro-

vides a general technique for building trees whose CB ranks are predetermined.

Before we prove it, we give some examples of automatic successor trees with rela-

tively low CB ranks.

Example 2.22. There is an automatic partial order tree (hence an automatic

successor tree) whose CB rank is n for each n ∈ ω.

Proof. The tree Tn is defined over the n letter alphabet {a1, . . . , an} as follows.

The domain of the tree is a∗1 · · ·a
∗
n (put λ = a0

1). The order ≤n is the prefix partial

order. Therefore, the successor relation is given as follows:

S(aℓ11 · · ·a
ℓi
i) =















{aℓ11 · · ·a
ℓi+1
i , aℓ11 · · ·a

ℓi
i ai+1} if 1 ≤ i < n

{aℓ11 · · ·a
ℓi+1
i } if i = n

For example, the tree in the case where n = 2 is given in Figure 2.1.

Note that if n = 0 then the tree is empty, which is consistent with it having

CB rank 0. It is obvious that, for all n, Tn is an automatic partial order tree. The

rank of Tn can be shown, by induction, to be equal to n. The base case is easy.

39

λ
a1

a2
1

a3
1

a2

a2
2

a3
2

a1a2

a1a
2
2

a1a
3
2

.

. . .

. .
.

Figure 2.1: Automatic partial order tree with CB rank 2

Assume that CB(Tn) = n. Then Tn+1 is the tree Tn where a single infinite branch is

appended to each node. So d(Tn+1) = Tn and CB(Tn+1) = CB(Tn)+1 = n+1.

The following examples code the finite rank successor trees uniformly into one

automatic tree so as to push the rank higher. Our first example is an automatic

successor tree Tω+1 of rank ω + 1. The following lemma from [63] informs our

constructions:

Lemma 2.23 (Khoussainov, Rubin, Stephan; 2005). Suppose T is a countable

tree and CB(T) = α. If dα(T) = ∅ then T has at most countably many paths and

CB(T) is 0 or a successor ordinal. If dα(T) 6= ∅ then dα(T) and T both contain

uncountably many infinite paths.

Therefore, Tω+1 will have countably many paths. Later, we construct a tree of

rank ω which must embed the perfect tree because its CB rank is a limit ordinal.

Example 2.24. There is an automatic successor tree Tω+1 whose CB rank is ω+1.

Proof. Informally, this tree is a chain of trees of increasing finite CB ranks. Let

40

Tω+1 = ({0, 1}∗;S) with S defined as follows:






























S(1n) = {1n0, 1n+1} for all n

S(0u) = {0u0} for all u ∈ {0, 1}∗

S(1n0u) = {1n0u0, 1n−10u1} for n ≥ 1 and u ∈ {0, 1}∗

Intuitively, the subtree of rank n is coded by the set Xn of nodes which contain

exactly n 1s. By induction on the length of strings, we can show that range(S) =

{0, 1}∗ and hence the domain of the tree is also {0, 1}∗. The transitive closure of

the relation S satisfies the conditions of being a tree. Each of the clauses of the

successor relation is easy to recognise and hence Tω+1 is automatic. It remains

to compute the rank of Tω+1. We note that in successive derivatives, each of the

finite rank sub-trees Xn is reduced in rank by 1. Therefore dω(Tω+1) = 1∗. But,

since each point in 1∗ is on exactly one infinite path, dω+1(T) = ∅, and this is a

fixed-point. Thus, CB(Tω+1) = ω + 1, as required.

The following example gives a tree Tω of rank ω. The idea is to code the trees

Tn into the leftmost path of the full binary tree.

Example 2.25. There is an automatic successor tree Tω whose CB rank is ω.

Proof. The tree is the full binary tree, where at each node on the leftmost branch we

append trees of increasing finite CB rank. Thus, define Tω = ({0, 1}∗ ∪ {0, a}∗;S)

where S is given as follows:














































S(u1v) = {u1v0, u1v1} for all u, v ∈ {0, 1}∗

S(0n) = {0n+1, 0n1, 0na} for all n

S(au) = {aua} for all u ∈ {0, a}∗

S(0nau) = {0naua, 0n−1au0} for n ≥ 1 and u ∈ {0, a}∗

41

Proving that Tω is an automatic successor tree is a routine check. So, we need

only compute its rank. Each derivative leaves the right part of the tree (the full

binary tree) fixed. However, the trees appended to the leftmost path of the tree

are affected by taking derivatives. Successive derivatives decrease the rank of the

protruding finite rank trees by 1. Therefore, dω(Tω) = {0, 1}∗, a fixed point. Thus,

CB(Tω) = ω.

To extend these examples to higher ordinals, we consider the product opera-

tion on trees defined as follows. Let (T1;S1) and (T2;S2) be successor trees and let

r1 be the root of T1, r2 be the root of T2. The product of these trees is the tree

(T1 × T2;S×) with successor relation given by:

S×((x, y), (u, v)) ⇐⇒















y = r2 & [(u = x, S2(y, v)) ∨ (S1(x, u), y = v)]

y 6= r2 & [u = x, S2(y, v)].

Proposition 2.26. Assume that T1 and T2 are successor trees of CB ranks α and

β, respectively, each having at most countably many paths. Then T1 × T2 has CB

rank β + α. Moreover, if T1 and T2 are automatic successor trees then so is the

product.

Proof. Since automatic structures are closed under first-order definitions, if T1 and

T2 are automatic then so is (T1 × T2;S×). The definition of S× also guarantees

that the product structure is a successor tree. It remains to calculate its CB

rank. Notice that the product tree can be thought of as T1 where a copy of

T2 is attached to each node. Since dβ(T2) = ∅, dβ(T1 × T2) = T1. Therefore,

dβ+α(T1 × T2) = dαT1 = ∅ and the CB rank of the product tree is β + α.

The examples and the proposition above yield tools for building automatic

successor trees of CB ranks up to ω2. However, it is not clear that these methods

42

can be applied to obtain automatic successor trees of higher CB ranks. We will

see that a different approach to building automatic successor trees will yield all

possible CB ranks.

We are now ready for the main theorem of this section. As before, we will

transfer results from computable trees to automatic trees. We note that every

computable successor tree (T ;S) is also a computable partial order tree. Indeed,

in order to effectively check whether x ≺S y, we calculate the distances of y

and x from the root. If y is closer to the root or is at the same distance as x

then ¬(x ≺S y); otherwise, we start computing the trees above all z at the same

distance from the root as x is. Since y is farther away from the root than x, it must

appear in one of these trees. If it is in the subtree above x, we answer that x ≺S y;

if it appears in one of the other subtrees, ¬(x ≺S y). Thus, we have computed

the partial order associated with S. Hence, every computable successor tree is a

computable partial order tree. However, not every computable partial order tree

is a computable successor tree. We have the following inclusions:

Aut. PO trees ⊂ Aut. Succ. trees ⊂ Comp. Succ. trees ⊂ Comp. PO trees

Using techniques similar to those of Examples 2.24 and 2.25, we can recursively

code up computable trees of increasing CB rank. Hence, we have the following fact.

Fact 2.27. For each α < ωCK1 there is a computable successor tree of CB rank α.

Theorem 2.28. For α < ωCK1 there is an automatic successor tree of CB rank α.

Proof. Suppose we are given α < ωCK1 . Take a computable tree Rα of CB rank

α. We use the same construction as in the case of well-founded relations (see

the proof of Theorem 2.10). The result is a stretched out version of the tree Rα,

43

where between each two elements of the original tree we have a coding of their

computation. In addition, extending from each x ∈ Σ∗ we have infinitely many

finite computation chains. Those chains which correspond to output “no” are

not connected to any other part of the automatic structure. Finally, there is a

disjoint part of the structure consisting of chains whose bases are not valid initial

configurations. By the reversibility assumption, each unproductive component of

the configuration space is isomorphic either to a finite chain or to an ω-chain.

Moreover, the set of invalid initial configurations which are the base of such an

unproductive chain is regular. We connect all such bases of unproductive chains

to the root and get an automatic successor tree, Tα.

We now consider the CB rank of Tα. Note that the first derivative removes

all the subtrees whose roots are at distance 1 from the root and are invalid initial

computations. This occurs because each of the invalid computation chains has

no branching and is not connected to any other element of the tree. Next, if we

consider the subtree of Tα rooted at some x ∈ Σ∗, we see that all the paths which

correspond to computations whose output is “no” vanish after the first derivative.

Moreover, x ∈ d(Tα) if and only if x ∈ d(Rα) because the construction did not add

any new infinite paths. Therefore, after one derivative, the structure is exactly a

stretched out version of d(Rα). Likewise, for all β < α, dβ(Tα) is a stretched out

version of dβ(Rα). Hence, CB(Tα) = CB(Rα) = α.

Automatic successor trees have also been recently studied by Kuske and Lohrey

in [69]. Techniques similar to those above are used to show that the existence of an

infinite path in an automatic successor tree is Σ1
1-complete. In addition, Kuske and

Lohrey look at graph questions for automatic graphs and show that the existence

of a Hamiltonian path is Σ1
1-complete whereas the set cover problem is decidable.

44

2.7 Conclusion

In this chapter, we studied the complexity of automatic structures. In particu-

lar, we examined the differences in complexity between automatic and computable

structures. We showed that automatic well-founded partial orders are consider-

ably simpler than their computable counterparts, because the ordinal heights of

automatic partial orders are bounded below ωω. On the other hand, computable

well-founded relations, computable successor trees, and computable structures in

general can be transformed into automatic objects in a way which (almost) pre-

serves the ordinal height, Cantor-Bendixson rank, or Scott ranks. Therefore, the

corresponding classes of automatic structures are as complicated as possible.

45

Chapter 3

Algorithmic Properties of Unary

Automatic Structures

The results in this chapter were reported in [52]. This is joint work with Bakhadyr

Khoussainov and Jiamou Liu.

3.1 Introduction

We study the algorithmic properties of infinite graphs that result from a natural

unfolding operation applied to finite graphs. The unfolding process always pro-

duces infinite graphs of finite degree. Moreover, the class of resulting graphs is a

subclass of the class of automatic graphs. As such, any member of this class pos-

sesses all the known algorithmic and algebraic properties of automatic structures.

An equivalent way to describe these graphs employs automata over a unary alpha-

bet (see Theorem 3.11). Therefore, we call this class of graphs unary automatic

graphs of finite degree. Since these graphs are described by the unfolding oper-

ation (Definition 3.10) on a pair of finite graphs (D,F), this pair serves as a finite

representation of the infinite graph. The size of this pair is the sum of the sizes

of the deterministic automata that represent these graphs. We use this notion

of size in our complexity considerations, noting that we require the finite graph

presentations to be via deterministic unary automata. We are interested in the

following natural decision problems:

• Connectivity: given an automatic graph G, decide if G is connected.

46

• Reachability: given an automatic graph G and two vertices x and y of the

graph, decide if there is a path from x to y.

If we restrict to the class of finite graphs, these two problems are decidable

and can be solved in linear time on the sizes of the graphs. However, we are

interested in infinite graphs and therefore much more work is needed to investigate

the problems above. Moreover, the infinite graph context gives rise to the following

additional problems:

• Infinity Testing: given an automatic graph G and a vertex x, decide if the

component of G containing x is infinite.

• Infinite Component: given an automatic graph G, decide if G has an

infinite component.

For the full class of automatic graphs all of the above problems are undecidable.

In fact, exact bounds on undecidability are known: the connectivity problem is Π0
2-

complete; the reachability problem is Σ0
1-complete; the infinite component problem

is Σ0
3-complete; and the infinity testing problem is Π0

2-complete [90].

Unary automatic structures are all first-order definable in S1S (the monadic

second-order logic of the successor function on the natural numbers). Hence, each

of the problems above is decidable when restricted to the class of unary automatic

structures [11], [90]. Direct constructions using this definability in S1S yield al-

gorithms with nonelementary time complexity since one needs to transform S1S

formulas into automata [22]. However, we provide polynomial-time algorithms for

solving all the above problems for this class of graphs.

47

One might ask whether there is an intermediate class of automatic graphs

between unary automatic graphs and arbitrary automatic graphs. The following

example illustrates that, in the context of the graph problems we are considering,

any intermediate class would be intractable. Let G1∗2∗ be the class of graphs whose

set of nodes is 1∗2∗ = {1n2m : n,m ∈ N} and whose set of edges is finite automaton

recognisable. (In this notation, unary automatic graphs may be denoted G1∗ .) The

infinite grid

G2 = (N× N; {(〈i, j〉, 〈i′, j′〉 : (i = i′&j′ = j1) ∨ (i′ = i+ 1&j = j′)})

is in G1∗2∗ by the encoding (i, j) 7→ 1i2j. However, the monadic second order theory

of G2 is not decidable [101], and in particular, counter machines can be coded into

the grid. Hence, the reachability problem forG2 is not decidable. Thus, even in this

simple extension of G1∗ , the graph problems in question do not have algorithmic

solutions.

We now outline the rest of this chapter by explaining the main results. Sec-

tion 3.2 defines unary automatic graphs and provides a characterization theorem

(Theorem 3.4) for them. Section 3.3 introduces unary automatic graphs of finite

degree. The main result is Theorem 3.11 that explicitly provides an algorithm for

building unary automatic graphs of finite degree. This theorem is used throughout

the chapter. Section 3.4 is devoted to deciding the infinite component problem.

The main result is the following:

Theorem 3.13 The infinite component problem for unary automatic graph of finite

degree G is solved in O(n3), where n is the number of states of the deterministic

unary finite automaton recognising G.

In this section, we make use of the concept of oriented walk for finite directed

graphs. Section 3.5 is devoted to deciding the infinity testing problem. The main

48

result is the following:

Theorem 3.16 The infinity testing problem for unary automatic graph of finite

degree G is solved in O(n3), where n is the number of states of the deterministic

unary finite automaton A recognising G. In particular, when A is fixed, there is a

constant time algorithm that decides the infinity testing problem on G.

The fact that there is a constant time algorithm when A is fixed will be made

clear in the proof. The value of the constant is polynomial in the number of states

of A.

The reachability problem is addressed in Section 3.6. This problem has been

studied in [19], [40], [95] via the class of pushdown graphs. A pushdown graph

is the configuration space of a pushdown automaton. In [95], Thomas shows that

all unary automatic graphs are pushdown graphs. Given a pushdown graph G and

a node v, there is a finite automaton that recognises all nodes reachable from v.

The size of this automaton depends on the input node v (see [19],[40], [95]). Once

such an automaton is produced, checking the reachability problem for nodes v and

u amounts to running the automaton on u. This is an algorithm to decide the

reachability probelm for any unary automatic graph of finite degree. For brevity,

we will refer to this algorithm as the pushdown approach.

Theorem 3.19 gives an alternate solution to the reachability problem for unary

automatic graphs of finite degrees that improves on the pushdown approach in

several ways. In the pushdown approach, the finite automata constructed are

not uniform in v: different automata are built for different input nodes v. The

approach we present will be uniform in u and v. Moreover, the automata from

the pushdown approach are nondeterministic. The equivalent deterministic finite

49

automata are then exponential in the size of the representation of v, and hence the

pushdown approach uses exponential space. The algorithm presented in Section 3.6

constructs a deterministic automaton AReach that accepts the set of pairs {〈u, v〉 :

there is a path from u to v}. The size of AReach only depends on the number of

states of the automaton recognising the edge relation of the graph G; constructing

the automaton requires polynomial time in the size of this edge automaton. The

practical advantage of such a uniform solution is that once AReach is built, deciding

whether node v is reachable from u takes only linear time (details are in Section

3.6). The main result of this section is the following:

Theorem 3.19 Suppose G is a unary automatic graph of finite degree represented

by deterministic unary finite automaton A of size n. There exists a polynomial-

time algorithm that solves the reachability problem on G. For inputs u, v, the

running time of the algorithm is O(|u|+ |v|+ n4).

Finally, Section 3.7 solves the connectivity problem for G.

Theorem 3.25 The connectivity problem for unary automatic graph of finite degree

G is solved in O(n3), where n is the number of states of the deterministic unary

finite automaton recognising G.

3.2 Unary automatic graphs

This section presents definitions and background for infinite graphs presentable by

unary automata. We will assume throughout that the automata are deterministic.

This assumption influences the algorithms and the complexity results discussed in

this chapter. For a deterministic automaton, the following notion is well-defined.

50

Let q, q′ be states in a given automaton. The distance from q to q′ is the minimum

number of transitions required for A to go from q0 to q1.

Definition 3.1. An infinite structureA is unary automatic if it has an automata

presentation whose domain is 1∗ and whose relations are automatic.

Examples of unary automatic structures are (ω;S) and (ω;≤) (recall Section

1.2). The classes of unary automatic linearly ordered sets, permutation structures,

graphs, and equivalence structures have well understood characterizations [60],

[11]. For example, unary automatic linearly ordered sets are exactly those that are

isomorphic to a finite sum of orders of type ω, ω∗ (the order of negative integers),

and finite n. In particular, the ordinals with unary automata presentations are

exactly those below ω2.

Definition 3.2. A unary automatic graph is a graph (V ;E) whose domain is

1∗, and whose edge relation E is a regular binary relation over 1∗.

In the rest of this chapter, we focus on deterministic unary automatic struc-

tures. Hence, we will use the word “automatic” to mean deterministic unary

automatic. Moreover, all structures mentioned will be infinite unless explicitly

specified otherwise. Finally, we will focus on undirected graphs. The case of di-

rected graphs is an easy generalization of the methods discussed in this chapter,

but involves bulky notation.

Let G = (V ;E) be an automatic graph. Let A be an automaton recognising

E. We establish some terminology for the automaton A. The general shape of

A is given in Figure 3.1. Note that since E is a binary relation recognised by a

unary automaton, inputs to the automaton are finite words over {
(

1
1

)

,
(

⋄
1

)

,
(

1
⋄

)

}. All

the states reachable from the initial state by reading inputs of type
(

1
1

)

are called

51

(1, 1)-states. A tail in A is a sequence of states linked by transitions without

repetition. A loop is a sequence of states linked by transitions such that the last

state coincides with the first one, and there are no other repetitions. The set of

(1, 1)-states is a disjoint union of a tail and a loop. We call the tail the (1, 1)-tail

and the loop the (1, 1)-loop. Let s be a (1, 1)-state. All the states reachable

from s by reading inputs of type
(

1
⋄

)

are called (1, ⋄)-states. This collection of all

(1, ⋄)-states is also a disjoint union of a tail and a loop, called the (1, ⋄)-tail and

the (1, ⋄)-loop, respectively, of s. The (⋄, 1)-tails and (⋄, 1)-loops of (1, 1)-states

are defined in a similar matter.

(

1
1

) (

1
1

)

(

⋄
1

)

(

⋄
1

)

(

⋄
1

)

(

1
⋄

)

(

1
⋄

)

(

1
⋄

)

(

⋄
1

)(

⋄
1

) (

1
⋄

)(

1
⋄

)

(

⋄
1

)(

⋄
1

) (

1
⋄

)(

1
⋄

)

(

⋄
1

)(

⋄
1

)(

1
⋄

)(

1
⋄

)

(

1
1

)

(

1
1

)

(

1
1

)

Figure 3.1: A typical unary graph automaton

We say that an automaton is standard if the lengths of all its loops and tails

equal some number p, called the loop constant. If A is a standard automaton

recognising a binary relation, it has exactly 2p (1, 1)-states. On each of these

states, there is a (1, ⋄)-tail and a (⋄, 1)-tail of length exactly p. At the end of each

(1, ⋄)-tail and (⋄, 1)-tail there is a (1, ⋄)-loop and (⋄, 1)-loop, respectively, of size

52

exactly p. Therefore, if n is the number of states in A, then n = 8p2.

Lemma 3.3. Let A be an n state automaton recognising a binary relation E on

1∗. There exists an equivalent standard automaton with at most 8n2n states.

Proof. Let p be the least common multiple of the lengths of all loops and tails

of A. An easy estimate shows that p is no more than nn. One can transform A

into an equivalent standard automaton whose loop constant is p. Hence, there is

a standard automaton equivalent to A whose size is bounded above by 8n2n.

Our convention to restrict attention to undirected graphs simplifies the general

shape of the automaton. Indeed, we need only consider transitions labelled by
(

⋄
1

)

.

To see this, given an automaton with only
(

⋄
1

)

transitions, to include all symmetric

edges, add a copy of each
(

⋄
1

)

transition which is labelled with
(

1
⋄

)

.

We recall a characterization theorem of unary automatic graphs from [90]. Let

B = (B;EB) and D = (D;ED) be finite graphs. Let R1, R2 ⊂ D × B, and

R3, R4 ⊂ B × B. Consider the graph D followed by countably infinitely many

copies of B, ordered as B0,B1,B2, Formally, the vertex set of Bi is B × {i}

and we write bi = (b, i) for b ∈ B and i ∈ ω. The edge set Ei of Bi consists of

all pairs 〈ai, bi〉 such that (a, b) ∈ EB. Using the finite graphs and the four binary

relations as parameters we define the infinite graph, unwind(B,D, R̄), as follows:

the vertex set is D ∪B0 ∪B1 ∪B2 ∪ . . .; the edge set contains ED ∪E
0 ∪E1 ∪ . . .

as well as the following edges, for all a, b ∈ B, d ∈ D, and i, j ∈ ω:

• (d, b0) when (d, b) ∈ R1, and (d, bi+1) when (d, b) ∈ R2,

• (ai, bi+1) when (a, b) ∈ R3, and (ai, bi+2+j) when (a, b) ∈ R4.

53

Theorem 3.4 (Rubin; 2004). A graph is unary automatic if and only if it is

isomorphic to unwind(B,D, R̄) for some parameters B, D, and R̄. Moreover, if

A is a standard automaton representing G then the parameters B,D, R̄ can be

extracted in O(n2); otherwise, the parameters can be extracted in O(n2n), where n

is the number of states in A.

Another way of understanding unary automatic graphs is via their connection

with prefix-recognisable graphs. There is a tradition in the literature (see

[75], [25], and [76]) of studying classes of infinite graphs. In particular, Caucal

[26] proposed a hierarchy of graphs (Gn) and trees (Tn) which can be generated

from finite structures in a particular way. The main operation in going from

the graph hierarchy to the tree hierarchy is unfolding, defined by Courcelle and

Walukiewicz in [32]. The operation in the opposite direction is monadic second-

order definability. A good overview of these transformations and the intuition

behind Caucal’s hierarchy may be found in [96]. It is known that each graph in

Caucal’s hierarchy has a decidable MSO theory. The low levels of this hierarchy

are relevant to our discussion. The base of the tree hierarchy, T0, is the class of

finite trees. The class G0 consists of the class of finite graphs. T1 consists of all

regular trees (defined as infinite trees which have only finitely many nonisomorphic

subtrees). For example, the infinite binary tree belongs to the class T1. The class

G1 makes up an important class of graphs called the prefix-recognisable graphs

[25], defined as follows.

Definition 3.5. Let A be a finite set and Σ be a finite alphabet. A graph is

prefix-recognisable if it is isomorphic to a graph of the form (S; (Ea)a∈A) where

S is a regular language over Σ and each Ea is a finite union of relations of the form

W (V ×U) = {(wu,wv) : u ∈ U, v ∈ V, w ∈W} for regular languages U, V,W ⊆ Σ∗.

54

In [12], Blumensath studies the connection between automatic graphs and

prefix-recognisable graphs: the class of prefix-recognisable graphs is a proper sub-

set of the class of automatic graphs, while the class of unary automatic graphs is

a proper subset of the class of prefix-recognisable graphs. Therefore, the class of

unary automatic graphs falls into G1 of Caucal’s hierarchy.

Given a prefix-recognisable graph G, we say the prefix-recognisable pre-

sentation of G is a graph Gpr such that Gpr
∼= G and Gpr = (S; (Ea)a∈A) as in

Definition 3.5. Each prefix-recognisable presentation of G is given as a collection

of automata recognising S and sets U, V,W for each Ea, respectively. To show

that all unary automatic graphs are prefix-recognisable, [12] uses a MSO interpre-

tation of unary automatic structures in the infinite binary tree. Here we present

an alternative proof that directly constructs the prefix-recognisable presentation

of a unary automatic graph.

Theorem 3.6. Let G be a unary automatic graph represented by a standard au-

tomaton A with loop constant p. There is an algorithm that constructs its prefix-

recognisable presentation Gpr in time O(6p3).

Proof. In this proof, we use the notation from the definition of unwind(B,D, R̄).

From A we can compute the parameters B,D, R̄ of G in time O(p2). Note that

the number of vertices in each of B and D is p. Let Σ = {0, 1, 2}. We define the

set S and sets of edges Ed, Eb, E1, E2, E3, E4 as follows:

• S = {02m : m < p} ∪ {02p−1(01p−1)∗01n : n < p}

• Ed = {(02m, 02n) : (m,n) ∈ ED}

• Eb = {(02p−1(01p−1)i01m, 02p−1(01p−1)i01n) : (m,n) ∈ EB, i ≥ 0}

• E1 = {(02m, 02p−101n : (m,n) ∈ R1}

55

• E2 = {(02m, 02p−1(01p−1)i01n) : (m,n) ∈ R2, i > 0}

• E3 = {(02p−1(01p−1)i01m, 02p−1(01p−1)i+101n) : (m,n) ∈ R3, i ≥ 0}

• E4 = {(02p−1(01p−1)i01m, 02p−1(01p−1)i+j01n : (m,n) ∈ R4, i ≥ 0, j > 1}

The set of vertices in our graph Gpr is S, and the set of edges is the union of

all the edge relations defined above. By the construction, the finite graph D is

represented by the set {02m : m < p}, and for each i ≥ 0, the ith copy of B is

represented by {02p−1(01p−1)i01n : n < p}. The edge sets Ed and Eb respectively

represent ED and EB, and for 1 ≤ i ≤ 4, Ei represents Ri.

It is easy to see that G ∼= Gpr. We need to show that Gpr is prefix-recognisable.

By definition, S is a regular language. Notice also that each edge in ED ∪EB ∪ R̄

defines a relation in Gpr of the form W (U×V) where W,U, V are regular languages

over Σ. Since ED, EB and R̄ are finite sets, the edge relation of Gpr can be written

as a finite union of relations of the above form.

For each of the regular languages above, the automaton recognising the lan-

guage has O(p) transitions. Since the total number of edges in ED ∪ EB ∪ R̄ is

bounded above by 6p2, we need to construct at most 6p2 automata. Therefore the

total running time to construct Gpr is O(6p3).

3.3 Unary automatic graphs of finite degree

A graph is of finite degree if there are at most finitely many edges at each vertex.

We call a unary automaton recognising a binary relation a one-loop automaton

if its transition diagram contains exactly one loop, the (1, 1)-loop. Note that if a

loop has no accepting states then it is irrelevant to the language of the automaton

56

and we treat it as though it were missing. The general structure of one-loop

automata is given in Figure 3.2.

(

1
1

) (

1
1

) (

1
1

)

(

⋄
1

)

(

⋄
1

)

(

⋄
1

)

(

⋄
1

)

(

⋄
1

)

(

1
1

) (

1
1

)

(

1
1

)

(

1
1

)

(

1
1

)

Figure 3.2: A typical one-loop automaton

We will always assume that the lengths of all the tails of the one-loop automata

are not bigger than the size of the (1, 1)-loop.

Proposition 3.7. Let G = (V ;E) be a unary automatic graph, then G is of finite

degree if and only if there is a one-loop automaton A recognising E.

Proof. Suppose that A is not a one-loop automaton. Then there is a state q on the

(1, 1)-tail or (1, 1)-loop of A which has a (⋄, 1)-loop. Let i be the distance between

the initial state of A and q; let j be the distance between q and the first accepting

state on the (⋄, 1)-loop from q; and, let k be the size of q’s (⋄, 1)-loop. Then the

tuples 〈1i, 1i+j+nk〉 (for any n) are all accepted by the automaton, and hence G is

not of finite degree. The converse is similar.

By Lemma 3.3, transforming a given automaton to an equivalent standard

automaton may increase the number of states exponentially. However, there is

57

only polynomial blow up if A is a one-loop automaton.

Lemma 3.8. If A is a one-loop automaton with n states, there exists an equivalent

standard one-loop automaton with loop constant p ≤ n.

Proof. Let l be the length of the loop in A and t be the length of the longest tail

in A. Define p to be the least multiple of l such that p ≥ t. It is easy to see

that p ≤ l + t ≤ n. One can transform A into an equivalent standard one-loop

automaton whose loop constant is p.

Note that the equivalent standard automaton has 2p (1,1)-states. From each

of them there is a (1, ⋄)-tail of length p and a (⋄, 1)-tail of length p. Hence the

automaton has 4p2 states. By the above lemma, we always assume the input

automaton A is standard. In the rest of the chapter, we will state all results

in terms of the loop constant p instead of n, the number of states of the input

automaton. Since p ≤ n, for any constant c > 0, an O(pc) algorithm can also be

viewed as an O(nc) algorithm.

Given two unary automatic graphs of finite degree G1 = (1∗;E1) and G2 =

(1∗;E2), we can form the union graph G1⊕G2 = (1∗;E1∪E2) and the intersection

graph G1⊗G2 = (1∗;E1∩E2). Automatic graphs of finite degree are closed under

these operations. Indeed, let A1 and A2 be one-loop automata recognising E1 and

E2 with loop constants p1 and p2, respectively. The usual product construction for

building union and intersection automata produces a one-loop automaton whose

loop constant is p1 · p2. We introduce another operation: consider the new graph

G′1 = (1∗;E ′
1) where the set E ′

1 of edges is defined as follows: a pair 〈1n, 1m〉 is in

E ′ if and only if 〈1n, 1m〉 /∈ E and |n−m| ≤ p1. The relation E ′
1 is recognised by

the same automaton as E1, modified so that all (⋄, 1)-states that are final declared

58

non-final, and all the (⋄, 1)-states that are non-final declared final. Thus, we have

the following proposition:

Proposition 3.9. If G1 and G2 are unary automatic graphs of finite degree then

so are G1 ⊕ G2, G1 ⊗ G2, and G′1.

Now our goal is to recast Theorem 3.4 for graphs of finite degree. Our analysis

will show that, in contrast to the general case for automatic graphs, the parameters

B, D, and R̄ for graphs of finite degree can be extracted in linear time.

Definition 3.10 (Unfolding Operation). Let D = (VD;ED) and F = (VF ;EF) be

finite graphs. Consider the finite set ΣD,F consisting of all mappings η : VD →

P(VF), and the finite set ΣF consisting of all mappings σ : VF → P(VF). An

infinite sequence α = ησ0σ1 . . . where η ∈ ΣD,F and σi ∈ ΣF for each i, defines the

infinite graph Gα = (Vα;Eα) as follows:

• Vα = VD ∪ {(v, i) : v ∈ VF , i ∈ ω}.

• Eα = ED ∪ {(d, (v, 0)) : v ∈ η(d)} ∪ {((v, i), (v′, i)) : (v, v′) ∈ EF , i ∈ ω} ∪

{((v, i), (v′, i+ 1)) : v′ ∈ σi(v), i ∈ ω}.

Thus, Gα is obtained by taking D together with an infinite disjoint union of F

and adding edges between D and the first copy of F according to the mapping η,

and edges between successive copies of F according to σi.

Figure 3.3 illustrates the general shape of a unary automatic graph of finite

degree that is built from D, F , η, and σω, where σω is the infinite word σσσ · · · .

Theorem 3.11. A graph of finite degree G = (V ;E) has a unary automata presen-

tation if and only if there exist finite graphs D,F and mappings η : VD → P (VF)

and σ : VF → P (VF) such that G is isomorphic to Gησω .

59

. . .

D F F F

η
σ
σ

σ
σ

η

Figure 3.3: Unary automatic graph of finite degree Gησω

Proof. Let G = (V ;E) be a unary automatic graph of finite degree and A be an

automaton recognising E. In linear time in the number of states of A, A can be

transformed into a one-loop automaton. So, assume without loss of generality that

A is a one-loop automaton with loop constant p. Label the states of A as follows:

q0 is the starting state, q1, . . . , qp−1 are successive states of the (1, 1)-tail. Define

the finite graph D by VD = {q0, q1, . . . , qp−1}, and for 0 ≤ i ≤ j < p, (qi, qj) ∈ ED

if and only if there is a final state qf on the (⋄, 1)-tail out of qi, and the distance

from qi to qf is j− i. Similarly, define F by VF = {q′0, . . . , q
′
p−1} where q′0, . . . , q

′
p−1

are all states on the (1, 1)-loop, and the edge relation EF is analogous to ED. For

m,n ∈ {0, . . . , p− 1}, put q′n in η(qm) if and only if there exists a final state qf in

the (⋄, 1)-tail of qm, and the distance from qm to qf is p+ n−m. The mapping σ

is constructed in a similar manner by reading the (⋄, 1)-tails out of the (1, 1)-loop.

It is clear from this construction that the graphs G and Gησω are isomorphic.

Conversely, suppose we are given a graph Gησω . Relabel VD = {q0, . . . , qℓ−1},

VF = {q′0, . . . , q
′
p−1}. A one-loop automaton A recognising the edge relation of

Gησω is constructed as follows. The (1, 1)-tail of the automaton is {q0, . . . , qℓ−1}

and the (1, 1)-loop is {q′0, . . . , q
′
p−1}, both in natural order. The initial state is q0.

If for some i < j, {qi, qj} ∈ ED , then put a final state qf on the (⋄, 1)-tail starting

from qi such that the distance from qi to qf is j − i. If q′j ∈ η(qi), then repeat the

process but make the corresponding distance p + j − i. The set of edges EF and

60

mapping σ are treated in a similar manner by putting final states on the (⋄, 1)-tails

from the (1, 1)-loop. Again, it is easy to see that A represents a unary automatic

graph that is isomorphic to Gησω .

The proof of the above theorem also gives us the following corollary.

Corollary 3.12. If G is a unary automatic graph of finite degree, the parameters

D, F , σ and η can be extracted in O(p2) time, where p is the loop constant of the

one-loop automaton representing the graph. Furthermore, |VF | = |VD| = p.

3.4 Deciding the infinite component problem

We continue the convention that any input graphs we consider are undirected. A

component of a graph is the transitive closure of a vertex under the edge relation.

The infinite component problem asks whether a given graph has an infinite

component.

Theorem 3.13. The infinite component problem for unary automatic graph of

finite degree G is solved in O(p3), where p is the loop constant of the automaton

recognising G.

By Theorem 3.11, let G = Gησω . We assume without loss of generality that

D = ∅ and G = Gσω , since Gησω has an infinite component if and only if Gσω has

one. Let F i be the ith copy of F in G. Let xi be the copy of vertex x in F i. We

will define a finite directed graph Fσ as an auxiliary tool in our analysis of the

undirected input graph G. Let Fσ = (V σ;Eσ) be defined as follows. Each node

in V σ represents a distinct connected component of F . For simplicity, we assume

that |V σ| = |VF | and hence use x to denote its own component in F . The case

61

in which |V σ| < |VF | can be treated in a similar way. For x, y ∈ VF , put the

pair 〈x, y〉 ∈ Eσ if and only if y′ ∈ σ(x′) for some x′ and y′ that are in the same

components as x and y, respectively. Constructing Fσ requires finding connected

components of F and hence takes time O(p2). To prove Theorem 3.13, we will

make essential use of the following definition, which is discussed in [45].

Definition 3.14. An oriented walk in a directed graph H is a subgraph P of

H that consists of a sequence of nodes v0, ..., vk such that for 1 ≤ i ≤ k, either

〈vi−1, vi〉 or 〈vi, vi−1〉 is an edge in H, and for each 0 ≤ i ≤ k, exactly one of

〈vi−1, vi〉 and 〈vi, vi−1〉 belongs to P. An oriented walk is an oriented cycle if

v0 = vk and there are no repeated nodes in v1, ..., vk.

In an oriented walk P, an edge 〈vi, vi+1〉 is called a forward arc and 〈vi+1, vi〉 is

called a backward arc. The net length of P, denoted disp(P), is the difference

between the number of forward arcs and the number of backward arcs. Note that

the net length can be negative. The next lemma establishes a connection between

oriented cycles in Fσ and infinite components of G.

Lemma 3.15. G contains an infinite component if and only if there is an oriented

cycle in Fσ whose net length is positive.

Proof. Suppose there is an oriented cycle P from x to x in Fσ of net length

m > 0. For all i ≥ p, P defines the path Pi in G from xi to xi+m where Pi lies in

F i−p∪· · ·∪F i+p. Therefore, for a fixed i ≥ p, all vertices in the set {xjm+i : j ∈ ω}

belong to the same component of G. In particular, this implies that G contains an

infinite component.

Conversely, suppose there is an infinite component C in G. Since F is finite,

there must be some x in VF such that there are infinitely many copies of x in C.

62

Let xi and xj be two copies of x in C such that i < j. Consider a path between xi

and xj . We can assume that on this path there is at most one copy of any vertex

y ∈ VF apart from x (otherwise, choose xj to be the copy of x in the path that has

this property). By definition of Gσω and Fσ, the node x must be on an oriented

cycle of Fσ with net length j − i.

Proof of Theorem 3.13. By the equivalence in Lemma 3.15, it suffices to give an

algorithm that decides if Fσ contains an oriented cycle with positive net length.

But, the existence of an oriented cycle with positive net length is equivalent to the

existence of an oriented cycle with negative net length. Therefore, Algorithm 3.1

finds oriented cycles with nonzero net length. For each node x in Fσ, we search

for an oriented cycle of positive net length from x by creating a labelled queue of

nodes Qx which are connected to x.

At each point in Algorithm 3.1 where we are building a queue for node x and

processing z, both d(z) and d′(z) represent net lengths of paths from x to z. We

claim that the algorithm returns YES if and only if there is an oriented cycle in

Fσ with nonzero net length. Suppose Algorithm 3.1 returns YES. Then, there is

a base node x and a node z such that d(z) 6= d′(z). This means that there is an

oriented walk P from x to z with net length d(z) and there is an oriented walk

P ′ from x to z with net length d′(z). Consider the oriented walk P
←−
P ′, where

←−
P ′

is the oriented walk P ′ in reverse direction. Clearly this is an oriented walk from

x to x with net length d(z) − d′(z) 6= 0. If there are no repeated nodes in P
←−
P ′,

then it is the required oriented cycle. Otherwise, let y be a repeated node in P
←−
P ′

such that no nodes between the two occurrences of y are repeated. Consider the

oriented walk between these two occurrences of y, if it has a nonzero net length,

then it is our required oriented cycle; otherwise, we disregard the part between the

63

Algorithm 3.1: Oriented-Cycle

1: while there is node x ∈ F σ for which a queue has not been built, do

2: Initialize queue Qx as empty.

3: Put d(x) = 0, put x into Qx, mark x as unprocessed.

4: for all y unprocessed in Qx do

5: for all z ∈ {z : 〈y, z〉 ∈ Eσ ∨ 〈z, y〉 ∈ Eσ} do

6: if 〈y, z〉 ∈ Eσ then

7: Set d′(z) = d(y) + 1.

8: if z /∈ Qx then

9: Set d(z) = d′(z), put z into Qx, mark z as unprocessed.

10: else

11: if d(z) 6= d′(z) then

12: return YES

13: if 〈z, y〉 ∈ Eσ then

14: Set d′(z) = d(y)− 1.

15: if z /∈ Qx then

16: Set d(z) = d′(z), put z into Qx, mark z as unprocessed.

17: else

18: if d(z) 6= d′(z) then

19: return YES

20: Mark y as processed.

21: return NO

64

two occurrences of z and make the oriented walk shorter without altering its net

length.

Conversely, suppose there is an oriented cycle P = x0, . . . , xm of nonzero net

length where x0 = xm. We assume for a contradiction that Algorithm 3.1 returns

NO. Consider how the algorithm acts when we pick x0 at step (1). For each

0 ≤ i ≤ m, one can prove the following statements by induction on i.

(∗) xi always gets a label d(xi)

(∗∗) d(xi) equals the net length of the oriented walk from x0 to xi in P.

By the description of Algorithm 3.1, x0 gets the label d(x0) = 0. Suppose

(∗), (∗∗) hold for xi, 0 ≤ i < m. At the next stage of the algorithm, the algorithm

labels all nodes in {z : 〈z, xi〉 ∈ E
σ or 〈xi, z〉 ∈ E

σ}. In particular, it calculates

d′(xi+1). By the inductive hypothesis, d′(xi+1) is the net length of the oriented walk

from x0 to xi+1 in P. If xi+1 already has a label d(xi+1) and d(xi+1) 6= d′(xi+1), then

the algorithm would return YES. Therefore d(xi+1) = d′(xi+1). By assumption on

P, d(xm) 6= 0. However, since x0 = xm, the induction gives that d(xm) = d(x0) = 0.

This is a contradiction, and thus Algorithm 3.1 is correct.

To summarize, the following algorithm solves the infinite component problem.

Let A be a given automaton (with loop constant p) which recognises the unary

automatic graph G of finite degree. Recall that p is also the cardinality of VF . We

first compute Fσ, in time O(p2). We then run Oriented-Cycle to decide whether

Fσ contains an oriented cycle with positive net length. For each node x in Fσ, the

process runs in time O(p2). Since Fσ has p nodes, this takes time O(p3).

Note that Lemma 3.15 holds even when |VF | > |F/ ∼comp |. Therefore, a slight

65

modification to the algorithm above solves this case as well.

3.5 Deciding the infinity testing problem

We next turn our attention to the infinity testing problem for unary automatic

graphs of finite degree. Recall that this problem asks for an algorithm that, given

a vertex v and a graph G, decides if v belongs to an infinite component of G. We

prove the following theorem.

Theorem 3.16. The infinity testing problem for unary automatic graphs G of

finite degree and input vertex v is solved in O(p3), where p is the loop constant of

the automaton A recognising G. In particular, when A is fixed, there is a constant

time algorithm that decides the infinity testing problem on G for any given input

vertex v.

For a fixed input xi, we have the following lemma.

Lemma 3.17. If xi is connected to some yj such that |j − i| > p, then xi is in an

infinite component of G.

Proof. Suppose such a yj exists. Let P be a path from xi to yj in G. Since p = |VF |,

there is z ∈ VF such that zs and zt appear in P with s < t. Therefore all nodes in

the set {zs+(t−s)m : m ∈ ω} are in the same component as xi.

Let i′ = min{p, i}. To decide if xi and yj are in the same component, we

run a breadth first search in G starting from xi and going through all vertices in

F i−i
′

, . . . ,F i+p. The algorithm is presented as Algorithm 3.2.

66

Algorithm 3.2: FiniteReach

1: Initialize the queue Q to be empty. Put the pair (x, 0) into Q and mark it as

unprocessed.

2: for all unprocessed pairs (y, d) ∈ Q do

3: for all edges e = 〈y, z〉 or e = 〈z, y〉 in Eσ do

4: if e = 〈y, z〉 then

5: Set d′ = d+ 1.

6: else

7: Set d′ = d− 1.

8: if −i′ ≤ d′ ≤ p and (z, d′) is not in Q then

9: Put (z, d′) into Q and mark (z, d′) as unprocessed

10: Mark (y, d) as processed.

Thus, yj is reachable from xi on the graph G restricted on F i−i
′

, . . . ,F i+p

if and only if after running FiniteReach on the input xi, the pair (y, j − i)

is in Q. When running the algorithm we only use the exact value of the in-

put i when i < p (we set i′ = p − 1 whenever i ≥ p), so the running time of

FiniteReach is bounded by the number of edges in G restricted to F0, . . . ,F2p.

Therefore the running time of FiniteReach is O(p3). Define Bxi = {y : (y, p) ∈

Q after running FiniteReach on xi}.

Lemma 3.18. Let x ∈ VF . xi is in an infinite component if and only if Bxi 6= ∅.

Proof. Suppose there is some y ∈ Bxi. Then there is a path from xi to yi+p and,

by Lemma 3.17, xi is in an infinite component. Conversely, if xi is in an infinite

component, there must be a vertex in F i+p reachable from xi. Let yi+p be such a

vertex. There must be a path from xi to yi+p such that yi+p is the first vertex in

67

F i+p appearing on this path. Then y ∈ Bxi.

Proof of Theorem 3.16. We assume the input vertex xi is presented as the pair

(x, i). The above lemma suggests a simple algorithm to check if xi is in an infinite

component.

Algorithm 3.3: InfiniteTest

1: Run FiniteReach on vertex xi, computing Bxi while building Q.

2: for all y ∈ Bxi do

3: if there is some edge 〈y, z〉 ∈ Eσ then

4: return YES

5: return NO

Running FiniteReach takes O(p3) and checking for edge 〈y, z〉 takes O(p2).

The running time is therefore O(p3). If the graph and its presentation A are fixed

and we are given any input vertex v = xi, since x is bounded by p checking whether

xi belongs to an infinite component takes constant time.

3.6 Deciding the reachability problem

The reachability problem on a graph G is: given two vertices xi, yj in G, decide

if xi and yj are in the same component. We prove the following theorem.

Theorem 3.19. Suppose G is a unary automatic graph of finite degree represented

by an automaton A with loop constant p. There exists a polynomial-time algorithm

that solves the reachability problem on G. For inputs u and v, the running time of

the algorithm is O(|u|+ |v|+ p4).

68

We restrict to the case when G = Gσω . The proof can be modified to work in

the more general case, G = Gησω .

Since, by Theorem 3.16, there is an O(p3)-time algorithm to check if xi is in a

finite component, we can work on the two possible cases separately. We first deal

with the case in which xi is in a finite component. By Lemma 3.17, xi and yj are

in the same (finite) component if and only if after running FiniteReach on the

input xi, the pair (y, j − i) is in the queue Q.

Corollary 3.20. If all components of G are finite and we represent (xi, yj) as

(xi, yj, j − i), then there is an O(p3)-algorithm deciding if xi and yj are in the

same component.

Now, suppose that xi is in an infinite component. We start with the following

question: given y ∈ VF , are xi and yi in the same component in G? To answer

this, we present an algorithm that computes all vertices y ∈ VF whose ith copy lies

in the same G-component as xi. The algorithm is similar to FiniteReach, except

that it does not depend on the input i. Lines 8 to 9 in Algorithm 3.2 are changed

to the following:

if −p ≤ d′ ≤ p and (z, d′) is not in Q then

Put (z, d′) into Q and mark (z, d′) as unprocessed

We use this modified algorithm to define the set Reach(x) = {y : (y, 0) ∈

Q}. Intuitively, we can think of the algorithm as a breadth first search through

F0∪ · · · ∪F2p which originates at xp. Therefore, y ∈ Reach(x) if and only if there

exists a path from xp to yp in G restricted to F0 ∪ · · · ∪ F2p.

Lemma 3.21. Suppose xi is in an infinite component. The vertex yi is in the same

component as xi if and only if yi is also in an infinite component and y ∈ Reach(x).

69

Proof. Suppose yi is in an infinite component and y ∈ Reach(x). If i ≥ p, then the

observation above implies that there is a path from xi to yi in F i−p ∪ · · · ∪ F i+p.

So, it remains to prove that xi and yi are in the same component even if i < p.

Since y ∈ Reach(x), there is a path P in G from xp to yp. Let ℓ be the least

number such that F ℓ ∩ P 6= ∅. If i ≥ p − ℓ, then it is clear that xi and yi are in

the same component. Thus, suppose that i < p − ℓ. Let z be such that zℓ ∈ P .

Then P is P1P2 where P1 is a path from xp to zℓ and P2 is a path from zℓ to yp.

Since xi is in an infinite component, it is easy to see that xp is also in an infinite

component. There exists an r > 0 such that all vertices in the set {xp+rm : m ∈ ω}

are in the same component. Likewise, there is an r′ > 0 such that all vertices

in {yp+r
′m : m ∈ ω} are in the same component. Consider xp+rr

′

and yp+rr
′

.

Analogous to the path P1, there is a path P ′
1 from xp+rr

′

to zℓ+rr
′

. Similarly, there

is a path P ′
2 from zℓ+rr

′

to yp+rr
′

. We describe another path P ′ from xp to yp as

follows. P ′ first goes from xp to xp+rr
′

, then goes along P ′
1P

′
2 from xp+rr

′

to yp+rr
′

and finally goes to yp. Notice that the least ℓ′ such that Fℓ′ ∩ P
′ 6= ∅ must be

larger than ℓ. We can iterate this procedure of lengthening the path between xp

and yp until i < p− ℓ′, as is required to reduce to the previous case.

To prove the implication in the other direction, we assume that xi and yi are in

the same infinite component. Then yi is, of course, in an infinite component. We

want to prove that y ∈ Reach(x). Let i′ = min{p, i}. Suppose there exists a path

P in G from xi to yi which stays in F i−i
′

∪· · ·∪F i+p. Then, indeed, y ∈ Reach(x).

On the other hand, suppose no such path exists. Since xi and yi are in the same

component, there is some path P from xi to yi. Let ℓ(P) be the largest number

such that P ∩ F ℓ(P) 6= ∅. Let ℓ′(P) be the least number such that P ∩ F ℓ
′(P) 6= ∅.

We are in one of two cases: ℓ(P) > i + p or ℓ′(P) < i − p. We will prove that

70

if ℓ(P) > i + p then there is a path P ′ from xi to yi such that ℓ(P ′) < ℓ(P) and

ℓ′(P ′) ≥ i−p. The case in which ℓ′(P) < i−p can be handled in a similar manner.

Without loss of generality, we assume ℓ′(P) = i since otherwise we can change

the input x to satisfy the assumption. Let z be a vertex in F such that zℓ(P) ∈ P .

Then P is P1P2 where P1 is a path from xi to zℓ(p) and P2 is a path from zℓ(p)

to yi. Since ℓ(P) > i + p, there must be some sj and sj+k in P1 such that

k > 0. For the same reason, there must be some tm and tm+n in P2 such that

n > 0. Therefore, P contains paths between any consecutive pair of vertices in the

sequence (xi, sj, sk+j, zp, tm+n, tm, yi). Consider the following sequence of vertices:

(xi, sj, tm+n−k, tm−k, sj−n, sj+k−n, tm, yi).

It is easy to check that there exists a path between each pair of consecutive vertices

in the sequence. Therefore the above sequence describes a path P ′ from xi to yi.

Also, ℓ(P ′) = ℓ(P)− n. Moreover, since ℓ′(P) = i, ℓ′(P ′) > i− p. Therefore P ′ is

our desired path.

We can extend the definition of Reach and σ to subsets of VF by taking the

the union of Reach(x) or σ(x) for each x in the subset. We inductively define a

sequence Cl0(x), Cl1(x), . . . such that each Clk(x) is a subset of VF . Let Cl0(x) =

Reach(x) and for k > 0, we define Clk(x) = Reach(σ(Clk−1(x))). The following

lemma is immediate from this definition.

Lemma 3.22. Suppose xi is in an infinite component. Then xi and yj are in

the same component of G if and only if yj is also in an infinite component and

y ∈ Clj−i(x).

We can use Lemma 3.22 to define a näıve algorithm that solves the reachability

problem on inputs xi, yj; this is Algorithm 3.4.

71

Algorithm 3.4: Naı̈veReach

1: if xi is in an infinite component of G then

2: if yj is in an infinite component of G then

3: Compute Clj−i(x).

4: if y ∈ Clj−i(x) then

5: return YES

6: else

7: return NO

8: else

9: return NO

10: else if yj is in a finite component of G then

11: Run FiniteReach on input xi.

12: if (y, j − i) ∈ Q then

13: return YES

14: else

15: return NO

16: else

17: return NO

The worst case complexity of Algorithm 3.4 is as follows. The set Cl0(x) can be

computed in time O(p3). Given Clk−1(x), we can compute Clk(x) in time O(p3) by

computing Reach(y) for any y ∈ σ(Clk−1(x)). Therefore, the total running time

of Naı̈veReach on input xi, yj is (j− i) · p3. We want to replace the multiplication

with addition.

From Lemma 3.18, xi is in an infinite component in G if and only if FiniteReach

finds a vertex yi+p connecting to xi. Now, suppose that xi is in an infinite compo-

72

nent. We can use FiniteReach to find such a y and a path from xi to yi+p. On

this path, there must be two vertices zi+j , zi+k with 0 ≤ j < k ≤ p. Let r = k− j.

Note that r can be computed from the algorithm. It is easy to see that all vertices

in the set {xi+mr : m ∈ ω} belong to the same component.

Lemma 3.23. Cl0(x) = Clr(x).

Proof. By definition, y ∈ Cl0(x) if and only if xp and yp are in the same component

of G. Suppose that there exists a path in G from xp to yp. Then there is a path

from xp+r to yp+r. Since xp and xp+r are in the same component of G, xp and yp+r

are in the same component. Hence y ∈ Clr(x). For the reverse inclusion, suppose

y ∈ Clr(x). Then there exists a path from xp to yp+r. Therefore, xp+r and yp+r are

in the same component. Since r ≤ p, xp and yp are in the same component.

Using the above lemma, we define a new algorithm, Reach, on inputs xi, yj by

replacing lines 3 to 7 from Algorithm 3.4 with

if xi and yj belong to infinite components then

Compute Cl0(x), . . . , Clr−1(x).

if there is k < r such that j − i = k mod r and y ∈ Clk(x) then

return YES

else

return NO

Proof of Theorem 3.19. Suppose the input vertices are xi and yj. By Lemma 3.22

and Lemma 3.23, the algorithm Reach returns YES if and only if xi and yj are in

the same component. Since r ≤ p, calculating Cl0(x), . . . , Clr−1(x) requires time

O(p4). Therefore the running time of Reach on input xi, yj is O(i+ j + p4).

73

In fact, the algorithm produces a number k < p such that in order to check if xi

and yj (j > i) are in the same component, we need to test if j−i < p and if j−i = k

mod p. Therefore if G is fixed and we compute Cl0(x), . . . , Clrx−1(x) for all x

beforehand, then deciding whether two vertices u, v belong to the same component

takes linear time. The above proof can also be used to build an automaton that

decides reachability uniformly:

Corollary 3.24. Given a unary automatic graph G of finite degree represented

by an automaton with loop constant p, there is a deterministic automaton with at

most 2p4 + p3 states that solves the reachability problem on G. The time required

to construct this automaton is O(p5).

Proof. For all 0 ≤ x < p, i ∈ ω, let the string 1ip+x represent the vertex xi in G.

Supposing ip + x ≤ jp + y, we construct an automaton AReach that accepts the

pair 〈1ip+x, 1jp+y〉 if and only if xi and yj are in the same component in G.

1. AReach has a (1, 1)-tail of length p2. Label the initial state by q0 and the

states on the tail by q0, q1, . . . , qp2−1. These states represent vertices in

F0,F1, . . . ,Fp−1.

2. From qp2−1, there is a (1, 1)-loop of length p. We call the states on the loop

q′0, q
′
1, . . . , q

′
p−1. These states represent vertices in Fp.

3. For 0 ≤ x, i < p, there is a (⋄, 1)-tail from qip+x of length p2 − x. We denote

the states on this tail by q1
ip+x, . . . , q

p2−x
ip+x . These states represent vertices in

F i,F i+1, . . . ,F i+p−1.

4. For 0 ≤ x, i ≤ p, if xi is in an infinite component, then there is a (⋄, 1)-loop

of length rp from qp
2−x
ip+x . The states on this loop are called q̌1

ip+x, . . . , q̌
rp
ip+x.

These states represent vertices in F i+p, . . . ,F i+p+r−1.

74

5. For 0 ≤ x ≤ p, if xp is in a finite component, then there is a (⋄, 1)-tail from

q′x of length p2. These states are denoted q̂1
x, . . . , q̂

p2

x and represent vertices

in Fp, . . . ,F2p−1.

6. If xp is in an infinite component, from q′x, there is a (⋄, 1)-loop of length rp.

We write these states as q̃1
x, . . . , q̃

rp
x .

The final (accepting) states of AReach are defined as follows:

1. States q0, . . . , qp2−1, q
′
0, . . . , qp−1 are final.

2. For i < p, if xi is in a finite component, run the algorithm FiniteReach on

input xi and declare state qjp+y−xip+x final if (y, j) ∈ Q.

3. For i < p, if xi is in an infinite component, compute Cl0(x), . . . , Clr−1(x).

(a) Make state qjp+y−xip+x final if yi+j is in an infinite component and y ∈

Clj(x).

(b) Make state q̌jp+y−xip+x final if y ∈ Clj(x)

4. If xp is in a finite component, run the algorithm FiniteReach on input xp

and make state q̂jp+y−xx final if (y, j) ∈ Q.

5. If xp is in an infinite component, compute Cl0(x), . . . , Clr−1(x). Declare state

q̃jp+y−xx final if y ∈ Clj(x).

One can show thatAReach is the desired automaton. To compute the complexity

of building AReach, we summarize the computation involved.

1. For all xi in F0 ∪ · · · ∪ Fp, decide whether xi is in a finite component. This

takes time O(p5) by Theorem 3.16.

75

2. For all xi in F0 ∪ · · · ∪ Fp such that xi is in a finite component, run

FiniteReach on input xi. This takes time O(p5) by Corollary 3.20.

3. For all x ∈ VF such that xp is in an infinite component, compute the sets

Cl0(x), . . . , Clr−1(x). This requires time O(p5) by Theorem 3.19.

Therefore the running time required to construct AReach is O(p5).

3.7 Deciding the connectivity problem

Finally, we present a solution to the connectivity problem on unary automatic

graphs of finite degree. Recall that a graph is connected if there is a path between

any pair of vertices. The construction of AReach from the last section suggests an

immediate solution to the connectivity problem.

Algorithm 3.5: Naı̈veConnect

1: Construct the automaton AReach.

2: if all states in AReach are accepting states then

3: return YES

4: else

5: return NO

Naı̈veConnect runs in time O(p5). However, the structural properties of finite

degree unary automatic graphs suggest that a more intuitive algorithm might be

used to efficiently solve the connectivity problem. Indeed, this is the case.

Theorem 3.25. Given a unary automatic graph G of finite degree, we can check

if it is connected in time O(p3), where p is the loop constant of the automaton

76

recognising the graph.

Observe that if G is infinite (as we assume it to be) but does not contain an

infinite component, then G is not connected. This can be checked in O(p3) by

Theorem 3.13. Therefore, we assume that G contains an infinite component C.

Lemma 3.26. For all i ∈ N, there is a vertex in F i belonging to C.

Proof. Since C is infinite, there is a vertex xi and s > 0 such that all vertices in

{xi+ms : m ∈ ω} belong to C and i is the least such number. By minimality, i < s.

Take a walk along the path from xi+s to xi. Let ys be the first vertex in F s that

appears on this path. It is easy to see that y0 must also be in C. Therefore C has

a non-empty intersection with each copy of F in G.

Pick an arbitrary x ∈ VF and run FiniteReach on x0 to compute the queue

Q. Set R = {y ∈ VF : (y, 0) ∈ Q}.

Lemma 3.27. Suppose G contains an infinite component, then G is connected if

and only if R = VF .

Proof. Suppose there is a vertex y ∈ VF −R. Then there is no path in G between

x0 to y0. Otherwise, we can shorten the path from x0 to y0 using an argument

similar to the proof of Lemma 3.21, and show the existence of a path between

x0 to y0 in the subgraph restricted on F0, . . . ,Fp. Therefore G is not connected.

Conversely, if R = VF , then every set of the form {y ∈ VF : (y, i) ∈ Q} for i ≥ 0

equals VF . By Lemma 3.26, all vertices are in the same component.

Proof of Theorem 3.25. By Lemma 3.27, Algorithm 3.6 decides the connectivity

problem on G.

77

Algorithm 3.6: Connectivity

1: if algorithm from Theorem 3.13 says that G contains an infinite component

then

2: Pick x ∈ VF and run FiniteReach on x0. Let C = {y : (y, 0) ∈ Q}

3: if C = VF then

4: return YES

5: else

6: return NO

7: else

8: return NO

Solving the infinite component problem takes O(p3) by Theorem 3.13. Running

algorithm FiniteReach also takes O(p3). Therefore Connectivity takes O(p3).

3.8 Conclusion

In this chapter we addressed algorithmic problems for graphs of finite degree that

have automata presentations over a unary alphabet. We provided polynomial-

time algorithms that solve connectivity, reachability, infinity testing, and infinite

component problems. There are are many other algorithmic problems for finite

graphs that can be studied for the class of unary automatic graphs. These, for

example, may include finding spanning trees for automatic graphs, studying the

isomorphism problems, and other related issues.

78

Chapter 4

Automatic Decision Procedures

This chapter discusses decision procedures for various logical theories using au-

tomata theoretic methods. Recently, such decision procedures have led to appli-

cations in computer science. In particular, we will see how decision procedures

associated with automatic structures give rise to alternate solutions for linear pro-

gramming problems. Linear programming involves finding optimal solutions to

systems of constraint equations. If the solutions are required to have integer values,

linear programming is used in discrete optimization problems and control theory,

in modern compilers for such tasks as dependence analysis for loop transforma-

tion [84], and for verification of hardware design [21], [28]. Moreover, if variables

may range over either real numbers or the integers we have applications in hybrid

systems and timed systems. In each of these settings, linear programming corre-

sponds to a fragment of the first-order theory of a particular logical structure. We

examine this theory more closely, and look at decision procedures via quantifier

elimination and automata. While many of the results presented in Sections 4.1

and 4.2 have previously appeared, we provide an exposition of them as a coherent

whole. Moreover, some of the theorems have thus far only been published as parts

of extended abstracts in which major proofs were omitted; for completeness, we

provide these proofs. The automata approach is extendible to other natural the-

ories. In particular, Sections 4.3 and 4.4 present new decision procedures for the

first-order theories of the valued field of the p-adic numbers and formal Laurent

series with coefficients in finite fields, equipped with a valuation.

79

4.1 ILP and Presburger arithmetic

Linear programming problems involve the optimization of a linear quantity based

on a system of linear equations defining the feasible domain of solutions. This

abstraction arose from many disparate problems in transportation routing, supply

chain, and military applications (to name a few). In 1939, Kantorovich first de-

fined linear programming in the context of optimizing the allocation of resources.

Later but independently, in 1947, the common features of many such problems

were isolated and Dantzig began in earnest the study of linear programming as a

subject. More recently, linear programming has been applied extensively in com-

piler design. To optimize the use of data stored in cache, loop transformations

may be automatically applied to high level code. However, checking if such loop

transformations preserve the semantics of the code can be formulated as a linear

programming problem; if they are legal, finding the transformed loop bounds can

be done via the enumeration of solutions of a linear programming problem.

A linear programming problem is specified as the simultaneous solution of a

system of linear equations and inequalities in a way which minimizes or maximizes

a linear cost function. The standard form of the problem consists of the linear

objective (or cost) function c · x, the system of inequalities Ax ≤ b, and non-

negative variables x ≥ 0. If the solution is required to be integer valued, the

problem is an instance of Integer Linear Programming (ILP).

Fourier-Motzkin elimination of variables [33] was the original method for solving

systems of linear equations. An extension of Fourier-Motzkin for integers has been

implemented as the Omega test [84]. Given a system of linear equations and

inequalities over integer variables, the method first uses Gaussian elimination and

the greatest-common-denominator test to get solutions for the equations (if they

80

exist). If there are no solutions, then the system is unsatisfiable. However, if

there are solutions to the equations in the system, the variables in the inequalities

are parametrized by these solutions, and Fourier-Motzkin elimination is used to

project each variable out of the remaining inequalities. The projected variable is

expressed in terms of maxima and minima involving expressions in the still-free

variables. At the end, we remain with inequalities involving a single variable and

integers. This is easy to simplify, and then ripple the effect to all the variables.

The Simplex method, invented by Dantzig in the late 1940s, takes a more

geometric view of the problem. Each linear inequality in an ILP problem defines a

half-space of Zn. Therefore, the feasibility region is a convex polytope in Zn. It is

not hard to see that if optimal solutions exist, they are at vertices of this region.

The Simplex method looks for optimal solutions among these vertices. Both the

Simplex method and the Omega test are conservative: they may claim a solution

exists to a system of equations even if there is no actual integer solution.

In recent years, much work has been done on linear programming and ILP. In

particular, the ellipsoid method in the late 1970s showed that linear programming

(over the real numbers) has worst-case polynomial-time complexity as compared

to ILP which is NP-complete. In the 1980s, interior point methods began emerging

and are still actively studied. In the following, we examine ILP both from logical

and automata theoretic perspectives.

Recall from Example 1.11 that Presburger arithmetic is the first-order theory

of (N; +,≤, 0, 1). Note that in some practical applications, Presburger arithmetic

is taken to be the first-order theory of (Z; +,≤, 0, 1). However, this amounts to a

simple reduction and does not affect decidability or complexity results. The atomic

formulas are linear equations and inequalities of the form a1x1 + · · · + anxn =

81

c or a1x1 + · · · + anxn ≤ c, where 〈a1, . . . , an〉 ∈ Zn and c ∈ Z. Note that

scalar multiplication is used as a notational abbreviation for a fixed number of

iterations of the addition function. Similarly, the relations >, >,< are all definable

in Presburger arithmetic. Hence, the system of constraints in an ILP problem can

be defined in the quantifier-free fragment of Presburger arithmetic. The existence

of an optimal value for the objective function can be tested by deciding a first-

order sentence of Presburger arithmetic. Moreover, a witness to this sentence solves

the ILP problem. Thus, a decision procedure for Presburger arithmetic yields a

solution of any ILP problem. Conversely, one can use ILP to formulate a decision

procedure for the quantifier-free fragment of Presburger arithmetic (see Jaroslaw

[50] and Brinkmann and Drechsler [21]). Each quantifier-free formula is translated

to disjunctive normal form and each disjunct is tested for satisfiability using ILP.

In 1927, Presburger [83] gave a quantifier elimination decision procedure for the

full first-order theory of this arithmetic. The algorithm was improved by Cooper

[31] and by Reddy and Loveland in 1978 [86] for formulas with bounded quantifier

alternations. Büchi [22] began the tradition of translating arithmetic statements

to automata. Boudet and Comon [20] gave a more efficient translation, which was

further improved by Wolper and Boigelot in [102], [103]. As Theorems 4.1 and 4.5

and Algorithms 4.1 and 4.2, we present this last algorithm, a slight modification

of which was implemented in [17]. To apply the automata translation to compiler

applications of ILP, the set of solutions of a formula need to be enumerated. We

demonstrate how to do this at the end of this section. In Sections 4.2, 4.3, and

4.4, we will see that this automata approach is amenable to extension for more

complicated theories.

Given a formula ϕ(x1, . . . , xn) in Presburger arithmetic, we will construct a

82

finite automaton Aϕ accepting the set {〈x1, . . . , xn〉 ∈ Zn : (x1, . . . , xn) � ϕ}.

Questions about the satisifiability of the formula and its witnesses (as in the ILP

context) will then be easy to answer using automata theoretic techniques. We

encode integers in base 2 representation with most significant bit first, and using

2’s complement for negative numbers. Hence, a word b1 · · · bn encodes the value

−b12
n−1 + b22

n−2 + · · · + bn−12
1 + bn. A given formula ϕ may have multiple free

variables. Correspondingly, solutions will be vectors of integers. We represent such

vectors as vectors of encoded integers, all of which have equal length (we repeat

the sign bit in the encoding of each component of the vector as many times as

necessary to ensure encodings of equal length). The associated automaton Aϕ will

be synchronous and have as many input tapes as the number of free variables in

ϕ. Moreover, we require that arbitrary repetitions of the sign bit in the encoding

of integers will not affect whether the input vector is accepted or rejected by Aϕ.

The following method generalizes easily to any fixed base r.

Base case, Part 1: Automata for Equations. Let ϕ be a1x1 + · · ·+ anxn = c

for a = 〈a1, . . . , an〉 ∈ Zn and c ∈ Z. Let a ·x abbreviate a1x1 + · · ·+ anxn; ϕ may

be written as a · x = c. Each state of Aϕ will represent the value of a · x derived

from the currently known value of x. Transitions between states will then reflect

the contribution of the most recently learned bit of x to the computation. Thus,

let A1
ϕ = (Z ∪ {ι}, ι, δ1, {c}), where

δ1(s,b) =















−a · b if s = ι

2s+ a · b if s ∈ Z

The transition function uses the encoding of integers: after the first bit, we tran-

sition in a way which amounts to shifting the current value of the computation to

the left and adding the newest input bit. Observe that Aϕ is deterministic. The

following theorem from [102] which proves the connection between the language

83

of A1
ϕ and tuples satisfying ϕ appeared in an extended abstract without explicit

proof.

Theorem 4.1 (Wolper, Boigelot; 1995). For w ∈ Σ∗, w ∈ L(A1
ϕ) if and only if

w encodes a solution x to ϕ ≡ a · x = c.

Proof. We prove the stronger statement: for w ∈ Σ∗ and s ∈ Z ∪ {ι}, there is

a run of A1
ϕ on w ending at state s if and only if w encodes a solution x to the

equation a · x = s. We go by induction on |w|. Suppose w = σ0, encoding the

vector x = 〈−σ0,1, . . . ,−σ0,n〉. Then the run of A1
ϕ is sis1 where s1 = −a · σ0.

Thus, s1 = −a · 〈−σ0,1, . . . ,−σ0,n〉 = a · x, as required. For the inductive step,

suppose that for any encoding σ0 . . . σm of y, y satisfies a ·y = s if and only if the

run of A1
ϕ on σ0 . . . σm ends at s. Let w = σ0 . . . σmσm+1. Then w encodes the

vector x = 2y + σm+1. The run of A1
ϕ on w is the result of appending the state s′

to the run on σ0 . . . σm, where by the definition of the transition function,

s′ = 2s+ a · σm+1 = 2(a · y) + a · σm+1 = a · (2y + σm+1) = a · x

as required.

The definition of A1
ϕ does not yield a finite automaton: the state space of A1

ϕ

is an infinite set. However, the accepting state s is not reachable from any state

whose absolute value is sufficiently large. Therefore, all such states can be pruned

from A1
ϕ to yield a true finite automaton. Formally, let ||a||1 =

∑n
i=1 |ai| and

suppose |s| > max (|c|, ||a||1). Then note that for any b ∈ Σ,

|2s+ a · b| ≤ 2|s|+ |a · b| ≤ 2|s|+ ||a||1.

Therefore, any transition from state s satisfying the above conditions leads to a

state s′ such that |s′| > |c|. In turn, s′ satisfies the same magnitude conditions as

84

s and hence transitions from it also move away (in absolute value) from c. Thus,

for any state s such that |s| > max (|c|, ||a||1), there is no path from s to c. In

light of this, define A2
ϕ to be the automaton whose states are (Z ∩ {s : |s| ≤

max (|c|, ||a||1)}) ∪ {ι, s+, s−} and whose transition function is

δ2(s,b) =















































−a · b if s = ι,

s′ if s′ = 2s+ a · b, s′ ≤ max (|c|, ||a||1) ,

s+ if 2s+ a · b > max (|c|, ||a||1) ,

s− if 2s+ a · b < −max (|c|, ||a||1) .

Note that a version of Theorem 4.1 where A1
ϕ is replaced by A2

ϕ holds because

modifying the transition function as above does not affect which words are accepted

by the automaton. The finite automaton A2
ϕ is deterministic but is not minimal.

To eliminate those states from which the accepting state is not reachable, we

construct the automaton backwards and only include the necessary states. Thus,

we arrive at Algorithm 4.1 from [103].

Let Aϕ be the automaton whose states are given by the value of H at the end of

this algorithm, initial state ι, F = {c} and whose transitions are given by D. The

underlying graph of Aϕ is a subgraph of that of A2
ϕ and hence Aϕ is deterministic.

Moreover, L(Aϕ) = L(A2
ϕ) and A2

ϕ is a minimal complete automaton.

Base case, Part 2: Automata for Inequalities. Let ψ be a1x1+ · · ·+anxn ≤ c

for a = 〈a1, . . . , an〉 ∈ Zn and c ∈ Z. As before, ψ may be written as a · x ≤ c.

Similar reasoning as in the equation case applies here. Thus, we define

A1
ψ =

(

(Z ∩ {s : |s| ≤ max (|c|, ||a||1)}) ∪ {ι, s+, s−}, si, δ
′1, {c}

)

,

where

δ′1 = δ2 ∪ {(s,b, s′) : there is some s′′ ≤ s such that δ2(s,b) = s′′}.

85

Algorithm 4.1: MinAutomatonEquation

1: Initialize a list of states H to {ι, c, s+, s−}; initialize a list of active states L to

{c}; create a table D for transitions.

2: while L 6= ∅ do

3: Remove a state s from L.

4: for all b ∈ {0, 1}n do

5: if s−a·b
2
∈ Z and s′ = s−a·b

2
is not already in H then

6: Add s′ to H and L

7: Add a transition labelled by b from s′ to s to D.

8: if s = −a · b then

9: Add a transition labelled by b from si to s to D.

Thus, A1
ψ has the same set of states, initial state, and accepting states as the

automaton Aϕ if ϕ is an equation with the same coefficients as ψ. However, A1
ψ

has more transitions. As an aside, note that if A2
ψ is defined to have domain

{s ∈ Z : |s| ≤ max (|c|, ||a||1)} ∪ {ι, s+, s−}, initial state si, transition function

δ2, and accepting set {s ∈ S : s ∈ Z and s ≤ c} then L(A1
ψ) = L(A2

ψ). In the

following, we will be composing automata end-to-end so A1
ψ will be more useful

than A2
ψ because it has only one accepting state.

It is possible to prune the automaton A1
ψ as we did in the case of automata

representing equations. The algorithm in this case is Algorithm 4.2.

Let Aψ be the automaton with states H , initial state ι, accepting state c,

and transitions D ∪ {(s,b, s′) : there is some s′′ ≤ s such that (s,b, s′′) ∈ D}.

Note that Aψ is not deterministic. However, deterministic automata are much

more efficient to implement and manipulate. In general, determinizing a finite

86

Algorithm 4.2: MinAutomatonInequality

1: Initialize a list of states H to {ι, c, s+, s−}; initialize a list of active states L to

{c}; create a table D for transitions.

2: while L 6= ∅ do

3: Remove a state s from L.

4: for all b ∈ {0, 1}n do

5: if ⌊s−a·b
2
⌋ is not already in H then

6: Add s′ = ⌊s−a·b
2
⌋ to H and L

7: Add a transition labelled by b from s′ to s to D.

8: if s = −a · b then

9: Add a transition labelled by b from si to s to D.

automaton comes at an exponential cost in the size of the state space. However,

the automata corresponding to linear inequalities are of a particular kind.

Definition 4.2 (Wolper, Boigelot; 2000). Given a non-deterministic finite au-

tomaton A = (S, ι, δ, F), for each s ∈ S let As = (S, s, δ, F). Then A is said to be

ordered if there is a constant-time decidable strict total order ≺ on S (or S \ {ι})

such that if s1 ≺ s2, then L(As1) (L(As2).

Theorem 4.3 (Wolper, Boigelot; 2000). There is a linear-time algorithm which,

from a given non-deterministic ordered finite automaton, finds an equivalent de-

terministic automaton with the same number of states.

Proof. Without loss of generality, we can remove transitions from a state on a

given input to all but the ≺-greatest one, since the set of words accepted from

all other states is a subset of those accepted from it. Since this algorithm merely

removes transitions at each state, it takes linear time in the size of the automaton.

87

Moreover, it produces a deterministic finite automaton with the same set of states

as the original non-deterministic finite automaton.

Lemma 4.4. The finite automaton Aψ defined above is ordered under s1 ≺ s2 ⇐⇒

s1 > s2 (where < is the order on the integers).

Proof. This follows from the interpretation of the states as labels for the right-hand

side of an inequality whose left hand side is a · x and analysing the relationship of

words starting at p, q for p < q.

Let δ′det(s,b) = min{δin(s,b)} and define Adetψ be the finite automaton ob-

tained from Aψ by replacing the transition relation by δ′det. Then Adetψ is a deter-

ministic finite automaton and the following theorem is proved.

Theorem 4.5 (Wolper, Boigelot; 2000). L(Adetψ) is all binary encodings of vectors

in Zn satisfying ψ.

Inductive step. Given a general formula of Presburger arithmetic, we will build

an automaton whose language is all binary encodings of vectors of integers sat-

isfying the formulas. We use standard constructions for Boolean operations of

languages of deterministic finite automata. Suppose ξ ≡ ¬ϕ, where ϕ is a formula

for which we have already built a finite automaton, Aϕ. The formulas ξ and ϕ

have the same free variables. Assume without loss of generality that they each

have n free variables. Then

{w ∈ ({0, 1}n)∗ : w encodes a vector satisfying ψ} =

({0, 1}n)∗ \ {w ∈ ({0, 1}n)∗ : w does not encode a vector satisfyingψ}

since any word over {0, 1}n encodes some vector of integers. Hence, Aξ is the

complement automaton of Aϕ. By similar arguments, if ξ ≡ ϕ ∧ ψ let Aξ =

88

Aϕ ∩ Aψ, and if ξ ≡ ϕ ∨ ψ let Aξ = Aϕ ∪ Aψ. Thus, we obtain finite automata

corresponding to any quantifier-free formula of Presburger arithmetic. This is

sufficient to represent any ILP system.

The connection between automata and formulas of Presburger arithmetic can

be extended to include quantified formulas. This work parallels the original au-

tomata decision procedures of Büchi [22], [23] and Rabin [85] which were described

in general by Khoussainov and Nerode [56]. Suppose ξ ≡ ∃xiϕ, assume that ϕ has

n free variables and let Aϕ be the finite automaton corresponding to ϕ. We would

like to define an automaton over {0, 1}(n−1) whose language is

{w ∈
(

{0, 1}(n−1)
)∗

: (∀0 ≤ j < n)(∃σj ∈ {0, 1}) such that if w′ is defined

by inserting σj in ith position of component j of w, it is in L(Aψ)}

But, this is (almost) exactly the projection operation applied to finite automata

(see Section 1.2). The slight modification we must make is that the finite au-

tomaton resulting from projection may no longer accept all encodings of vectors

satisfying ϕ. To illustrate this, consider the case where 〈10, 2〉 is encoded in the

language of Aψ, as 〈0m01010, 0m00010〉. After projecting out the first variable,

only encodings of 2 with at least three leading zeroes are included in the language.

To ensure that the automata we build for existential formulas accepts any encoding

(as required), we can apply the following modification to the projection construc-

tion: for each b ∈ {0, 1}(n−1), add to δ(si,b) any states which are reachable from

si by bk for some finite k.

Note that the resulting finite automaton is non-deterministic. Hence, in order

for the induction to go through (since our algorithm for complementation requires

that the finite automaton be deterministic), we must determinize the resulting

finite automaton. In the setting of quantified formulas, the trick with ordered

89

automata no longer works and we incur exponential growth in the size of the set

of states. For universally quantified formulas, we first convert to the equivalent

existential formula (∀x ϕ ≡ ¬∃x(¬ϕ)) and then apply automata transformations

as above.

The connection between first-order logic and automata can be further exploited

in applications of ILP. To our knowledge, this is the first time these algorithms

have appeared in the literature. One example is in model checking. If ILP or

Presburger arithmetic is used to formulate model checking problems, we need to

decide if a particular formula is satisfiable in a given structure. To do this, we

construct the finite automaton corresponding to the formula and ask whether the

language of the automaton is empty. Recall that the emptiness question is de-

cidable in linear time in the number of states of the automaton. However, the

state space of the automaton constructed for a given formula may have exponen-

tial blow up. Hence, satisfiability corresponds to non-emptiness of a particular

automaton. Moreover, if L(Aϕ) is not empty, the algorithm for checking this gives

an example of a word accepted Aϕ. A quick translation from the binary encoding

give a vector of integers satisfying ϕ. This witness may be useful in debugging.

Another example is in the context of compiler optimizations. When a system of

linear equations or inequalities is used to generate loop bounds for loop nests un-

der affine loop transformations, all solutions to the system must be enumerated.

Given Ai ≤ b, a description of the original loop bounds, and an invertible linear

transformation u = T i on the indices of the loops, we get the system: AT−1u ≤ b.

This is a system of linear inequalities. Bounds on the values of components of

U correspond to bounds for the transformed loop nests. We can formulate this

question in Presburger arithmetic. Suppose that

ϕ(x1, . . . , xn) ≡ (a1,1x1 + · · ·+ a1,nxn ≤ b1) ∧ · · · ∧ (am,1x1 + · · ·+ am,nxn ≤ bm),

90

abbreviated as ϕ(x) ≡ Ax ≤ b. To get bounds on x1, we define the formulas

ψ1(x1) ≡ ∃x2 . . . xn(ϕ(x1, . . . , xn) ∧ ∀y(ϕ(y, x2, . . . , xn)→ x1 ≤ y)),

ψ′
1(x1) ≡ ∃x2 . . . xn(ϕ(x1, . . . , xn) ∧ ∀y(ϕ(y, x2, . . . , xn)→ y ≤ x1)).

Any value satisfying ψ1 (respectively ψ′
1) is the minimum (respectively maximum)

value of x1 which might satisfy ϕ. By the translation to automata discussed above,

we can build Aψ1
, Aψ′

1
and check for satisfiability. If they are satisfied, then we

explicitly get (from the accepting path through the automaton) bounds for x1. Let

m1,M1 be these bounds. For any subsequent variable, we define similar formulas

ψk, ψ
′
k with parameters m1, . . .mk−1,M1, . . . ,Mk−1:

ψk(xk) ≡∃xk+1 . . . xn∀x1 . . . xk−1([m1 ≤ x1 ≤M1 ∧ · · · ∧mk−1 ≤ xk−1 ≤Mk−1]→

[ϕ(x1, . . . , xn) ∧ ∀y(ϕ(x1, . . . , xk−1, y, xk+1, . . . , xn)→ xk ≤ y)])

ψ′
k(xk) ≡∃xk+1 . . . xn∀x1 . . . xk−1([m1 ≤ x1 ≤M1 ∧ · · · ∧mk−1 ≤ xk−1 ≤Mk−1]→

[ϕ(x1, . . . , xn) ∧ ∀y(ϕ(x1, . . . , xk−1, y, xk+1, . . . , xn)→ y ≤ xk)])

Again, we get formulas in one free variable that represent the bounds on the

current variable. Once these formulas are converted to equivalent automata, we

can quickly find an encoding for this bound, and hence its value. Thus, the ease

with which the automata formulation handles quantified statements allows it to

generate bounds for vectors satisfying constraint equations.

The size of the automaton Aϕ built for a formula ϕ of Presburger arithmetic

is crucial for the performance of this approach to solving ILP problems. The

existence of solutions of systems of equations is checked by answering the emptiness

question for such an Aϕ, and this is done in linear time in the size of Aϕ. Wolper

and Boigelot [103] give a nonelementary (unbounded tower of exponentials) upper

bound on the size of the finite automaton generated by a Presburger formula. More

91

recently, Klaedtke [65] proposed some optimizations to the translation algorithm

in [103] and proved that the tight worst-case upper bound on the size of such finite

automata for Presburger formulas is triply exponential. The improved algorithm

was implemented in LIRA [7]. It is worth mentioning that automata techniques

for ILP and compiler optimizations allow calculations involving arbitrarily large

numbers with full precision.

4.2 MILP and (R; Z,+ ≤, 0, 1)

Mixed integer linear programming (MILP) is a framework in which we have

constraint equations with variables that may vary over the real numbers or over the

integers. As mentioned earlier, these types of systems are used to represent hybrid

systems (in which a continuous system is interacting with a discrete program,

inducing both continuous and logical constraints). The projection and elimination

(Fourier-Motzkin) method has recently been extended to the mixed integer case

[9]. This approach uses a predicate to indicate whether a variable ranges over

integers only and then combines the Fourier-Motzkin and Omega tests to project

variables out one at a time. One implementation of this algorithm is integrated into

the Cooperating Validity Checker [35]. This particular implementation includes

proof-production: if the checker claims there is no solution to a particular system,

it gives a proof of this claim which can be externally verified. Such proofs help in

identifying false positive replies of the decision procedure, but still do not give an

example of a solution.

Analogous to the role Presburger arithmetic played in expressing ILP systems,

the quantifier-free fragment of the first-order theory of the real numbers with the

92

integers as a distinguished subset and with addition and order (R; Z,+,≤, 0, 1)

suffices to formulate MILP questions. There is a rich tradition of studying this

theory. In 1999, Weispfenning [100] gave a quantifier elimination for first-order

statements of (R; Z,+,≤, 0, 1). This is related to Robinson and Zakon’s complete

first-ordered axiomatisations [87] of ordered abelian groups.

Boigelot, Bronne, and Rassart [15] and Boigelot and Wolper [18] gave an au-

tomata theoretic decision procedure for the first-order theory of (R; Z,+,≤, 0, 1).

A real number can be expressed in base 2 as a finite word over {0, 1} followed by

a separator symbol (⋆) and then an infinite expansion of the fractional part. As in

the Presburger arithmetic case, we present an algorithm using base 2 expansions

which generalizes easily to base r representations of real numbers. Thus, real vec-

tors with n components are encoded as w = wI ∗wF where wI ∈ ({0, 1}n)∗ and

wF ∈ ({0, 1}n)ω. We require that the lengths of the integer part of the encoding of

all components of the vector be the same. Negative numbers are represented with

2’s complement notation. If α ∈ {0, 1, ⋆}ω is a valid encoding of a real number, we

write [α]2 for the value encoded by α. There are infinitely many such encodings for

each vector of real numbers: the leading bit (sign bit) may be repeated arbitrarily

many times; and, any fraction which has a finite representation has two encodings,

one with infinitely many zeroes as its tail and one with infinitely many ones as its

tail.

The basic objects, therefore, are infinite strings. Thus, we use Büchi automata

to work on these strings (recall the definitions from Section 1.2). We restrict to a

particular class of Büchi automata, defined in [15], which are especially well-suited

for working on encodings of real numbers.

Definition 4.6. A Real Vector Automaton (RVA) for vectors in Rn is a Büchi

93

automaton over Σ = ({0, 1, ⋆})n such that every word w accepted by the automa-

ton is of the form wI ⋆ wF where wI ∈ ({0, 1}n)∗ and wF ∈ ({0, 1}n)ω, and for

every vector x ∈ Rn, either all encodings of x are accepted, or none are.

Slight modifications of the algorithms for Büchi automata show that given two

RVA, we can construct a RVA corresponding to either the union or the intersection

of their languages. Likewise, RVA recognisable languages are closed under comple-

mentation. As an example, Figure 4.1 depicts a RVA which accepts the language

{w : w is an encoding for 0.5}.

⋆

0
1

0

0

1

Figure 4.1: A RVA representing {1
2
}.

Recall that in this section we are looking at connections between automata

theoretic techniques, MILP, and the first-order theory of (R; Z,+,≤, 0, 1). Since

we have an automata representation of real numbers, it is prudent to check if the

integers are a recognisable subset in this presentation. It is, in fact, easy to see

that this is the case. Figure 4.2 gives the RVA whose language is the set of all

encodings of integers.

Boigelot, Bronne, and Rassart [15] and Boigelot and Wolper [18] adapted the

strategy from Section 4.1 to define an automata theoretic decision procedure for

the first-order theory of (R; Z,+,≤, 0, 1). Given a first-order formula in (R; Z,+,≤

, 0, 1), we construct a RVA representing the set of all vectors in Rn satisfying the

formula. We proceed inductively, at each step building the RVA in two parts: one

94

⋆

0, 1
0

1

0

1

Figure 4.2: A RVA representing Z.

accepting the integer parts of solutions, and one accepting the fractional parts.

Base case, Part 1: Automata for Equations. Suppose ϕ ≡ a · x = c for a, c

as before. We write x = xI+xF, where xI ∈ Zn and xF ∈ [0, 1]n. For any encoding

w of x, w = wI ⋆wF and wI ⋆ 0ω is an encoding for xI, 0 ⋆wF is an encoding for

xF. Define m =
∑

ai<0 ai, M =
∑

ai>0 ai. As each component of the vector xF is

in the interval [0, 1], and a · xI + a · xF = c, we have

m ≤ a · xF ≤M and c−M ≤ a · xI ≤ c−m

Since all components of xI are integers, gcd(a1, . . . , an)|a ·xI. Thus, if L is the set

of all encodings of vectors x satisfying ϕ,

L =
⋃

d:χ(d) holds

({wI : a · [wI ⋆ 0ω]2 = d} · {⋆n} · {wF : a · [0 ⋆wF]2 = c− d})

where wI ∈ ({0, 1}n)∗, wF ∈ ({0, 1}n)ω, and

χ(d) ⇐⇒ ([c−M ≤ d ≤ c−m] ∧ (∃i ∈ Z)(d = i · gcd(a1, . . . , an))).

Thus, the RVA representing the set of vectors satisfying ϕ can be decomposed into

at most m+M RVA, each of which consists of

1. A finite automaton over Σ = {0, 1}n accepting all wI ∈ Σ∗ such that a · [wI ⋆

0ω]2 is a solution to some linear equation,

95

2. a transition between the finite automaton from (1) and the Büchi automaton

from (3) when read ⋆n, and

3. a Büchi automaton over Σ = {0, 1}n accepting all wF ∈ Σω such that a · [0 ⋆

wF]2 is a solution to some linear equation.

Integer Part

Automaton

Fractional Part

Automaton
⋆

Figure 4.3: The decomposition of RVA.

The techniques from Section 4.1 may be used to construct the integer part

automaton. We now define Büchi automata recognising the fractional solutions

x ∈ [0, 1]n to a · x = c − d for a given d. For convenience, we write k = c − d.

Each state in the automaton will correspond to an integer s such that any vector

x ∈ [0, 1]n encoded by a path starting at that state and continuing infinitely long

satisfies a ·x = s. The states in the automata will be labelled by integers in [m,M]

and all the states are accepting states; the initial state is ι = k. For s ∈ [m,M]

and b ∈ {0, 1}n we define δ(s,b) = 2s−a ·b if m ≤ 2s−a ·b ≤ M , and δ(s,b) = ∅

otherwise. We call the above Büchi automaton AF,kϕ for ϕ ≡ a · x = c and a given

value of k. Note that any infinite run on AF,kϕ is an accepting run. The theorem

below is suggested by the results in [15] and [18] but is not made explicit in either.

Theorem 4.7. Given ϕ ≡ a · x = c, d such that χ(d) holds, k = c − d , and

α ∈ ({0, 1}n)ω, then α ∈ L(AF,kϕ) if and only if a · [α]2 = k.

Proof. For the forward direction, suppose that x ∈ [0, 1]n is such that a ·x = k and

[w]2 = x. To show there is an infinite run of AF,kϕ on w it suffices to prove that

96

at each state s of the run, on input wi, 2s− a ·wi ∈ [m,M]. We go by induction

and prove the additional statement that if we transition to s′ from s and if y, z

are encoded by paths labelled by bits in w starting from s, s′ (respectively), then

if a · y = s it must be that a · z = s′. For the base case, since ι = k and w0 is the

vector of most significant bits of an encoding of a solution to a · x = k, we have

1

2
a · [w0]2 + a · [0 ⋆ 0wtail]2 = k.

By definition of m and M and since [wtail]2 can be at most 1
2
,

m

2
≤ a · [0 ⋆ 0wtail]2 ≤

M

2
.

Therefore, m ≤ 2k − a · [w0]2 ≤M and there is a transition out of ι on the initial

input of w. We now prove the second statement required in the base case. Let

s1 = δ(k,w0). Any path from s1 is labelled by a word u such that if v labels a path

starting at k and going to s1, v = w0u. If v,u are fractional binary representations

of y, z respectively, y = 1
2
(w0 + z). Hence, if a · y = k,

a · z = 2a · y − a ·w0 = 2k − a ·w0 = s1.

Thus, if y satisfies a · y = k and is encoded by a path starting at state k and if z

is encoded by the tail of the path starting at s1 (truncating the first bit), then z

satisfies a · z = s1.

For the inductive step, we suppose that the current state of AF,kϕ is some si and

the current input bit is wi. By the inductive hypothesis, at each previous state

there was a transition out of the state on the input bit. Hence we have a path

through states k, s1, s2, . . . , si labelled by the first i bits of w. Moreover, there is

a relationship between words starting at each previous state and the satisfiability

of a linear equation whose left hand side is a · x. The current input is the (i+ 1)st

bit, wi, of an encoding of a solution to a · x = k. By the inductive hypothesis, it

97

is also the most significant bit of an encoding of a solution to the linear equation

a · x = si. As before, m ≤ 2si − a · wi ≤ M and hence δ gives a transition

out of si. Let si+1 = δ(si,wi). The second part of the inductive claim is proved

similarly. Hence, the induction holds and we have shown that if w is an encoding

of a solution to a · x = k then there is a run of AF,kϕ on w which is successful.

Conversely, suppose ρ = k, s1, s2, . . . is a successful run of AF,kϕ on given input

w ∈ ({0, 1}n)ω. We will prove that w encodes a solution to a · x = k. Since ρ is

successful, there is some accepting state which appears infinitely often in ρ.

Lemma 4.8. Suppose the states s and s′ are connected by a path b0, . . . ,bj. If

α, α′ ∈ ({0, 1}n)ω label paths starting at s, s′ (respectively) and α = b0 · · ·bjα
′ then

a · [α]2 − s =
a · [α′]2 − s

′

2j+1
.

Proof. We proceed by induction on j. For j = 0, [α]2 = 1
2
([α′]2 + b0). Moreover,

by the transition relation, s′ = 2s−a ·b0. Hence, a · [α]2−s = 1
2
(a · [α′]2−s

′). For

the inductive step, we have that states s and s′ are connected by a path labelled

by b0, . . . ,bj+1 and that α, α′ label paths starting at s, s′ (respectively) such that

α = b0, . . . ,bj, α
′. Let s′′ be such that δ(s′′,bj) = s′ and let α′′ = bj · α

′. The

base case of the induction gives that a · [α′′]2− s
′′ = 1

2
(a · [α′]2− s

′). Moreover, the

states s and s′′ are connected by a path of length j, hence the inductive hypothesis

implies that a · [α]2 − s = 1
2j (a · [α

′′]2 − s
′′). Putting these together, we get the

desired result.

Let s′ be a state appearing infinitely often in ρ. There are are infinitely many

indices ℓj for which s′ = sℓj . We write ρℓj for the sequence of states in the ρ

beginning with sℓj (the tail of the run) and we write αℓj for the corresponding

98

sequence of transition labels. By Lemma 4.8, for each ℓj,

a · [α]2 − k =
a · [αℓj]2 − s

′

2ℓj+1
.

But, |a · [αℓj]2 − s
′| ≤ |a · [αℓj]2|+ |s

′| ≤ 2M , and therefore a · [α]2 − k ≤
M

2ℓj
for all

j. Hence, a · [α]2 − k = 0, as required.

We now summarize the construction of RVA for equations. Given ϕ ≡ a ·x = c,

we compute gcd(a1, . . . , an) and m =
∑

ai<0 ai, M =
∑

ai>0 ai. For each d a

multiple of gcd(a1, . . . , an) satisfying c − M ≤ d ≤ c − m we build a RVA as

follows. The integer part of the automaton is a finite automaton with a single

accepting state which accepts all encodings of integer vectors satisfying a · x = d.

The fractional part of the automaton is AF,c−dϕ from above. There is a transition

labelled by ⋆n from the accepting state of the integer part of the automaton to

the initial state of the fractional part of the automaton. The resulting automaton

is a RVA whose language is a subset of all encodings of real numbers satisfying

a ·x = c. Once RVA are built for each d, the union automaton is taken and is Aϕ.

A few optimizations may be made in the construction of Aϕ. First, notice

that the states and transitions can be shared among the integer part automata for

various values of d, and likewise among the fractional part automata for various

values of d. Figure 4.4 demonstrates this sharing of states. Also, computing the

greatest common divisor may be costly time-wise. We may relax the condition

on the value of d and only require it to be between c − M and c − m. This

would result in more transitions between the integer and fractional parts of Aϕ.

The benefit of such an optimization would depend on the relative sizes of the

coefficients a1, . . . , an, c.

We include in Figure 4.5 a fully worked example of a RVA representing the

99

ι

d1

dℓ

c− d1

c− dℓ

Transitions
depend only

on a · b

Transitions
depend only

on a · b

⋆

...

⋆

Figure 4.4: Sharing states in Aϕ.

equation x+ y = 3. Note the decomposition into integer and fractional parts, and

the reuse of states and transitions.

ι 0I

−1I

2I

1I

3I

1F

2F

0F

(

0
0

)

(

0
1

)

,
(

1
0

)

(

0
0

)

(

0
1

)

,
(

1
0

)

(

0
1

)

,
(

1
0

)

(

1
1

)

(

0
0

)

⋆

⋆

⋆

(

1
1

)

(

1
1

)

(

0
1

)

,
(

1
0

)

(

0
1

)

,
(

1
0

)

(

0
0

) (

0
0

)

(

1
1

)

Figure 4.5: A RVA representing the equation x+ y = 3.

Base case, Part 2: Automata for Inequalities. The construction for inequal-

ities is very similar to what we saw in Part 1 above. Let ϕ ≡ a1x1 + · · ·+anxn ≤ c,

which we abbreviate as a · x ≤ c. As before, we partition the set of all encodings

of solutions:

⋃

d:χ(d) holds

({wI : a · [wI ⋆ 0ω]2 ≤ d} · {⋆n} · {wF : a · [0 ⋆wF]2 ≤ c− d})

100

where wI ∈ ({0, 1}n)∗, wF ∈ ({0, 1}n)ω, and χ(d) ⇐⇒ (c−M ≤ d ≤ c−m).

Again, we can construct the RVA for ϕ by concatenating finite automata accept-

ing encodings of integer solutions to some linear inequality with Büchi automata

representing sets of vectors in [0, 1]n which satisfy some linear inequality. Since

finite automata for inequalities were discussed in Section 4.1, it suffices to modify

the construction from Part 1 of the base case to obtain Büchi automata accept-

ing the fractional solutions of inequalities. Given k, we define AF,kϕ = ({m,m +

1, . . . ,M}, k, δ, {m,m + 1, . . . ,M}), where for each s ∈ {m, . . . ,M},b ∈ {0, 1}n,

δ(s,b) = 2s− a · b if m ≤ 2s− a · b (and empty otherwise).

We give evidence for the correctness of this definition; a full proof of correctness

parallels that in Part 1 of the base case. Suppose s, s′ ∈ {m, . . . ,M} are connected

by a transition on input b and let α, α′ be words labelling paths starting at s, s′

(respectively) such that α = bα′. Hence [α]2 = 1
2
(b + [α′]2). If a · [α]2 ≤ s,

s ≥ a · [α]2 =
1

2
(b + [α′]2) =

1

2
(2s− s′ + [α′]2)

and a · [α′]2 ≤ s′ This supports the intuition that for each s ∈ {m, . . . ,M}, the

vectors encoded by infinite paths starting from s satisfy a · x ≤ s. For s′ > α′,

note that since x ∈ [0, 1]n, the set of solutions to a · x ≤ s′ is the same as the set

of solutions to a · x ≤ α′.

Before we generalize the automata constructions above to arbitrary first-order

formulas of (R; Z,+,≤, 0, 1), let us examine the structure of the RVA built so far.

A notion from Büchi automata theory [93], [94] will be relevant.

Definition 4.9 (Staiger, Wagner; 1974. Staiger; 1983.). A Büchi automaton is

weak if there is a partition of its states S into disjoint subsets Q1, . . . , Qm such

that for each Qi either Qi ⊂ F or Qi ∩ F = ∅; and such that there is a partial

order on {Q1, . . . , Qm} with Qj ≤ Qi if Qj is reachable from Qi.

101

Theorem 4.10 (Boigelot, Jodogne, Wolper; 2001). The RVA constructed above for

equations and inequalities with real-valued free variables are weak Büchi automata.

Proof. Suppose the RVA A = (S, ι, δ, F) has been constructed as above. Partition

the set of states S into strongly connected components. Note that each strongly

connected component will be either entirely within the integer part of the RVA

or entirely within the fractional part of the RVA. By definition, all nodes in the

integer part are non-accepting and all nodes in the fractional part are accepting.

Hence, the first requirement of Definition 4.9 is met. To fulfill the second con-

dition, consider the reachability relation on the strongly connected components.

By definition of strongly connected, this relation is reflexive, anti-symmetric, and

transitive. Hence, it is a partial order and respects reachability.

Weak Büchi automata have properties which can be used to control the size

of RVA built for general first-order formulas. First, we note that the simple prod-

uct construction for union and intersection preserves weakness of Büchi automata.

Moreover, to complement a deterministic weak Büchi automata, it is sufficient to

switch all accepting and non-accepting states (as in the deterministic finite au-

tomata case, but unlike deterministic Büchi automata). This complementation

operation has no cost in terms of size of the automaton. Recall that in general,

we cannot determinize Büchi automata. In order to apply the efficient comple-

mentation, we need to obtain deterministic weak Büchi automata. The following

definition and theorems tell us that we will be able to do just this.

Definition 4.11. A co-Büchi automaton is defined by (S, ι, δ, F) similarly to a

Büchi automaton, except that a computation on an infinite word α is successful it

it infinitely often avoids the set of accepting states.

102

It is not hard to see that, given a weak Büchi automaton, switching the accept-

ing states with non-accepting states yields a co-Büchi automaton which accepts

exactly the same infinite words. Even though general Büchi automata cannot be

determinized, the following theorem from [74] and [68] shows that each weak Büchi

automaton has an equivalent deterministic Büchi automaton.

Theorem 4.12 (Miyano, Hayashi; 1984. Kupferman, Vardi; 1997). Weak Büchi

automata can be determinized by a “breakpoint” construction.

Proof. We fix a finite alphabet Σ. Let A = (S, ι, δ, F) be a weak Büchi automaton

over Σ, so A′ = (S, ι, δ, S \ F) is the equivalent weak co-Büchi automaton. We

define the deterministic Büchi automaton A′′ = (S ′′, ι′′, δ′′, F ′′) as follows. Put

S ′′ = 2S × 2S, ι′′ = ({ι}, ∅), F ′′ = 2S × {∅}. To define the transition function we

use the following auxiliary sets which may be associated to any subsets Q,R of S:

TQ = {p ∈ S : ∃q ∈ Q (p ∈ δ(q, a))} and UQ,R = {p ∈ S : ∃r ∈ R (p ∈ δ(r, a))}.

For (Q, ∅) ∈ S ′′ and a ∈ Σ, let δ′′((Q, ∅), a) = (TQ, TQ ∩ F). For (Q,R) ∈ S ′′

with R 6= ∅ and a ∈ Σ, put δ′′((Q,R), a) = (TQ, UQ,R ∩ F). A breakpoint of a

run of A′′ occurs when the run enters a state of the form (Q, ∅). Intuitively, if

A′′ is in state (Q,R) then R is the set of states of A reachable in A′ by a run

whose corresponding run in A′′ hasn’t passed through a state in F ′ since the last

breakpoint. It is easy to see that L(A′′) = L(A′) = L(A).

While Theorem 4.12 does not produce a weak deterministic automaton, if we

apply it to a RVA we get something almost as good.

Definition 4.13. A Büchi automaton is called inherently weak if its underlying

directed graph has no reachable strongly connected components which include both

accepting and non-accepting states.

103

A deterministic inherently weak Büchi automaton, is easily transformed into

a deterministic weak Büchi automaton: for each state, if it is in a strongly con-

nected component with at least one accepting state, add it to the set of accepting

states. The following theorem from [16] uses a topological characterization of sets

of infinite words recognisable by inherently weak Büchi automata.

Theorem 4.14 (Boigelot, Jodogne, Wolper; 2001). Every deterministic RVA rep-

resenting a set first-order definable in (R; Z,+,≤, 0, 1) is inherently weak.

Thus far, we have produced deterministic RVA representing sets of solutions

to linear equations and inequalities in (R; Z,+,≤, 0, 1). These RVA are inherently

weak by Theorem 4.14 and since they are deterministic, they can be assumed to be

weak Büchi automata. Therefore, the union, intersection, and complementation

constructions are efficient and we have RVA for sets definable in the quantifier-free

fragment of the first-order logic of (R; Z,+,≤, 0, 1). Note that to ensure that the

complement language of a RVA accepts only strings which correspond to encodings

of real vectors, we intersect the complement automaton with the RVA for Rn.

To build automata for existential formulas, we use the projection operation. The

resulting automaton is not necessarily deterministic but is still weak. As in Section

4.1, we add transitions from the initial state to some of its reachable states to ensure

that this weak Büchi automaton is a RVA. The resulting weak RVA accepts exactly

all encodings of solutions to the existential formula. Thus, all first-order formulas of

(R; Z,+,≤, 0, 1) have corresponding RVA. As in the case of Presburger arithmetic,

the translation of formulas into automata solves the satisfiability problem. In

particular, checking for the existence of a lasso in the corresponding RVA gives

a witness corresponding to a rational solution if a formula is indeed satisfiable.

Several automata implementations are available for deciding the first-order theory

of (R; Z,+,≤, 0, 1): LASH [17], LIRA [7], and MONA [66] are popular examples.

104

4.3 Automata and the p-adics

The p-adic numbers are defined as completions of the rational numbers with re-

spect to the p-adic norms. They were introduced by Hensel in 1897 [46] and

explored further in his book of 1908 [47]. The study of the p-adic numbers was

originally motivated by analogy to power series, but has since become central in

algebraic number theory. For a fixed prime p, the p-adic valuation ordp : Q → Z

is defined as follows: for m,n ∈ Z6=0, ordp(0) = ∞, ordp(m) = max{r : pr|m},

ordp(
n
m

) = ordp(n)− ordp(m). The corresponding p-adic norm for x ∈ Q is given

by |0|p = 0 and |x|p = p−ordpx (for x 6= 0). Completing Q with respect to | · |p

yields the field of p-adic numbers, Qp. The ring of p-adic integers, Zp, consists of

those p-adic numbers with norm less than or equal to 1: Zp = {x ∈ Qp : |x|p ≤ 1}.

In the following, p-adic expansions will come into play (in the same way that base

2 expansions were key in Sections 4.1 and 4.2). Every p-adic number has a unique

p-adic expansion

x = x−rp
−r + x−r+1p

−r+1 + · · ·+ x−1p
−1 + x0 + x1p+ x2p

2 + · · ·

with xi a natural number between 0 and p−1 for all i, and x−r 6= 0 where r = |x|p.

Moreover, x ∈ Zp if and only if its p-adic expansion contains no negative powers

of p. A good introduction to the p-adic numbers is the textbook [42].

It is natural to wonder about the first-order theory of p-adic fields, as we did

about Presburger arithmetic and other structures in previous sections. In [4], Ax

and Kochen give a complete and computable axiomatisation of the first-order the-

ory of the valued field Qp with the valuation group Zp. Moreover, they show in

[3], [4] that the first-order theory of Qp is decidable. A similar result was proved

independently by Ershov in [39]. This early work used abstract tools of model the-

ory, including ultraproducts and model-completeness, which imply decidability but

105

are not constructive. Cohen’s 1969 paper [30] uses primitive recursive quantifier

elimination to explicitly give a decision procedure for the first-order theory of Qp.

Weispfenning [97], [98] simplified Cohen’s proof and weakened some hypotheses.

Moreover, he explored the complexity of the quantifier elimination [99]: there are

double exponential time and double exponential space procedures for elimination

of quantifiers in linear formulas; and these are the best bounds possible. In that

paper, Weispfenning also proves that the full quantifier elimination for the theory

of Qp takes double exponential space. In [36], Dubhashi gives similar complex-

ity results for a different fragment of the theory of Qp, one that can be seen as

analogous to Presburger arithmetic. Also, he shows that the full quantifier elim-

ination for the first-order theory of Qp (augmented with an additional relation)

takes double exponential time and double exponential space.

In this section, we give an alternate proof of the decidability of the first-order

theory of Qp using automata techniques. As in Section 4.1, we restrict our attention

to Qp with addition and the distinguished ring of integers (analogous to addition

and order), but not including multiplication. We provide translation schemes from

the p-adics to automata. Then, the techniques discussed in the previous section

yield decision procedure for the first-order theories of the corresponding structure.

We note that, as presented, these decision procedures have nonelementary time

and space complexity. However, it is possible that an analysis analogous to that of

Klaedtke’s in the Presburger arithmetic case [65] may bring down this complexity.

Theorem 4.15. There is an algorithm which, given any first-order formula of

(Qp; Zp,+, 0, 1), produces an automaton whose language represents exactly those

p-adic numbers satisfying the formula.

Corollary 4.16. The first-order theory of (Qp; Zp,+, 0, 1) is decidable.

106

To prove Theorem 4.15, we need to specify how we will encode p-adic numbers.

Given x ∈ Qp with p-adic expansion x−rp
−r + x−r+1p

−r+1 + · · · + x−1p
−1 + x0 +

x1p+ x2p
2 + · · · , we represent it by the infinite string x−r · · ·x−1 ⋆ x0x1 · · · . Note

that each p-adic number is represented by an infinite string over {0, 1, . . . , p−1, ⋆}.

Each p-adic number has infinitely many representations corresponding to a padding

of 0s as coefficients of p−t for large t. However, unlike the case of real numbers,

each p-adic numbers has a unique “fractional” representation. As before, when we

encode vectors of p-adic numbers we require that they have a common least power

of p; that is, the ⋆ symbol appears at the same position in all components. Since

we use infinite strings to represent p-adic numbers, the automata translation needs

to use automata on infinite strings. To make the translation smoother, we recall a

variant of Büchi automata.

Definition 4.17. A Müller automaton over a finite alphabet Σ is given by

M = (S, ι,∆,F) where S is a finite set of states, ι is the designated initial state,

∆ : S × Σ → S is the transition function, and F ⊂ P(S) is the set of accepting

sets of states. Inputs to M are infinite words α ∈ Σω. The computation of M

on input α is an infinite sequence of states s0, s1, s2 . . . such that s0 = ι and for

each i, (si, σi, si+1) ∈ ∆. A computation of M is successful if the set of states

that it enters infinitely many times is a member of F ; α is accepted byM if the

computation ofM on α is successful.

Implicit in the definition is that any Müller automaton is deterministic. More-

over, we note that any deterministic Büchi automaton can be transformed into

an equivalent Müller automaton by setting F = {X ⊂ S : X ∩ F 6= ∅}. Mc-

Naughton’s fundamental theorem [73] says that any Büchi recognisable language

is Müller recognisable and vice versa. For more on properties of automata on

infinite words, see [57].

107

Our strategy will be to translate the atomic formulas of (Qp; Zp,+, 0, 1) to

equivalent Müller automata. By closure properties of Büchi (and hence Müller)

recognisable languages, any first-order formula will then be associated with an

automaton. Notice that the set Zp is recognised by the automaton ({ι, f}, ι, δ, {f})

where δ(ι, 0) = ι, δ(ι, ⋆) = f , and for b ∈ {0, . . . , p − 1}, δ(f, b) = f . Since

we have a representation for the domain and for Zp, it remains to specify the

Müller automaton recognising the graph of addition. For brevity, we will give the

automata for x+y = 0 where p = 2. It is not hard (but notationally cumbersome)

to generalize to several variables. The transition relation for the automaton for

x + y = 0 is represented in Figure 4.6; the accepting sets of states are F =

{{0}, {1}, {0, 1}}.

ι

0

1

fail

(

0
0

)

(

1
1

)

(

1
1

)

(

0
0

)

,
(

1
1

)

(

0
0

)

,
(

0
1

)

,
(

1
0

)

,
(

1
1

)

,
(

⋆

⋆

)

(

0
1

)

,
(

1
0

)

,
(

⋆

⋆

) (

0
1

)

,
(

1
0

)

(

0
0

)

,
(

⋆

⋆

)

(

0
1

)

,
(

1
0

)

Figure 4.6: A Müller automaton representing p-adic solutions to x+ y = 0.

For general p, more states must be added to represent a possible carry value

of 0, . . . , p− 1. In this case, transitions will be based on the sum of the input bits

and carry, mod p. The translation of first-order formulas of (Qp; Zp,+, 0, 1) to

automata is now complete.

108

4.4 Automata and formal power series

The connection between the p-adic numbers and formal power series leads naturally

to another arena where automata techniques may be used. A formal power series

over a field F is an infinite sum
∑

i aix
i where ai ∈ F and where convergence

considerations are ignored. Thus, a formal power series can be thought of as

an infinite sequence of coefficients {ai}. To strengthen the analogy with p-adic

numbers, we consider formal Laurent series, in which finitely many negative

powers of x are allowed:
∑

i>−r

aix
i. In this case, we can represent the series as

an infinite sequence with a distinguished symbol ⋆ to distinguish coefficients of

negative powers from those of positive powers a−r, a−r+1, . . . , a−1, ⋆, a0, a1, We

use the notation from [37] and denote by F [[x]] the set of all formal power series

over F and by F ((x)) the set of all formal Laurent series over F . In particular,

consider the case where F is the finite field Fp for some prime p. A valuation

may be associated with the set of formal Laurent series, ord : Fp((x)) → Z where

ord

(

∑

i>−r

aix
i

)

= min{n : an 6= 0}. The “ring of integers” then becomes Fp[[x]].

Addition and multiplication may be defined on the set of formal Laurent series by

treating them as generalizations of polynomials: addition is performed term-by-

term, and the multiplication operation is a more complicated version of polynomial

multiplication.

Theorem 4.18. The first-order theory of (Fp((x)); Fp[[x]],+, 0) is decidable. In

particular, there is an algorithm which produces from a first-order formula in

this language a Büchi automaton encoding all tuples satisfying the formula in

(Fp((x)); Fp[[x]],+, 0).

Proof. As in the p-adic case, it suffices to provide a representation of elements of

109

Fp((x)) in which Fp[[x]] is a recognisable subset and + is a recognisable operation.

We have already alluded to the solution: any formal Laurent series is represented

as an infinite string over the alphabet {0, . . . , p− 1, ⋆}. It is easy to build an au-

tomaton recognising correctly formed strings and an automaton recognising strings

representing formal power series (no nonzero coefficient may appear before ⋆). It

remains to exhibit an automaton recognising the addition operation. Figure 4.7

presents a Büchi automaton recognising the graph of addition for p = 2.

ι

0

B

@

0

0

0

1

C

A
,

0

B

@

0

1

1

1

C

A
,

0

B

@

1

0

1

1

C

A
,

0

B

@

1

1

0

1

C

A
,

0

B

@

⋆

⋆

⋆

1

C

A

0

B

@

0

0

0

1

C

A
,

0

B

@

0

1

1

1

C

A
,

0

B

@

1

0

1

1

C

A
,

0

B

@

1

1

0

1

C

A
,

0

B

@

0

0

1

1

C

A
,

0

B

@

0

1

0

1

C

A
,

0

B

@

1

0

0

1

C

A
,

0

B

@

1

1

1

1

C

A
,

0

B

@

⋆

⋆

⋆

1

C

A

0

B

@

0

0

1

1

C

A
,

0

B

@

0

1

0

1

C

A
,

0

B

@

1

0

0

1

C

A
,

0

B

@

1

1

1

1

C

A

Figure 4.7: A Büchi automaton recognising the graph of addition for p = 2.

4.5 Conclusion

This chapter began by discussing the interactions of the first-order theories of

(Z; +,≤, 0, 1) and (R; Z,+,≤, 0, 1) with solutions to integer and mixed-integer lin-

ear programming problems. We saw that the logical formulation of linear pro-

gramming problems allows extensions using first-order definitions, and that the

associated automata can be used to solve these extensions as well. The translation

paradigm was used to provide a new decision procedure for the first-order theory

of (Qp; Zp,+, 0, 1). We also adapted it for formal power series and formal Laurent

series over a finite field and thus gave a decision procedure for the first-order theory

of these objects under addition.

110

BIBLIOGRAPHY

[1] P.A. Abdulla, K. Čerāns, B. Jonsson, and Y. Tsay. Algorithmic analysis of
programs with well quasi-ordered domains. Information and Computation,
160:109–127, 2000.

[2] L. Aceto, A. Burgueno, and K.G. Larsen. Model checking via reachability
testing for timed automata. In B. Steffen, editor, Proceedings of 4th
International Conference on Tools and Algorithms for Construction and
Analysis of Systems, volume 1384 of LNCS, pages 263–280.
Springer-Verlag, 1998.

[3] J. Ax and S. Kochen. Diophantine problems over local fields I. American
Journal of Mathematics, 87(3):605–630, July 1965.

[4] J. Ax and S. Kochen. Diophantine problems over local fields II: A complete
set of axioms for p-adic number theory. American Journal of Mathematics,
87(3):631–648, July 1965.

[5] V. Bárány. A hierarchy of automatic words having a decidable MSO
theory. In D. Caucal, editor, Online Proceedings of 11th Journées
Montoises, Rennes, 2006.

[6] V. Bárány. Automatic Presentations of Infinite Structures. Diploma thesis,
DWTH Aachen, September 2007.

[7] B. Becker, C. Dax, J. Eisinger, and F. Klaedtke. LIRA: Linear integer/ real
arithmetic solver. http://lira.gforge.avacs.org/, June 2007.

[8] C.H. Bennett. Logical reversibility of computation. IBM Journal of
Research and Development, pages 525–532, 1973.

[9] S. Berezin, V. Ganesh, and D.L. Dill. Online proof-producing decision
procedure for mixed-integer linear arithmetic. In H. Garavel and
J. Hatcliff, editors, Proceedings of 9th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, volume 2619
of LNCS, pages 521–537. Springer-Verlag, April 2003.

[10] A. Blaas and Y. Gurevich. Program termination and well partial orderings.
ACM Transactions on Computational Logic, pages 1–25, December 2006.

111

[11] A. Blumensath. Automatic Structures. Diploma thesis, RWTH Aachen,
October 1999.

[12] A. Blumensath. Prefix-recognisable graphs and monadic second-order logic.
Technical Report AIB-2001-06, RWTH Aachen, May 2001.

[13] A. Blumensath and E. Grädel. Automatic structures. In Proceedings of
15th IEEE Symposium on Logic in Computer Science, pages 51–62. IEEE
Computer Society, 2000.

[14] A. Blumensath and E. Grädel. Finite presentations of infinite structures:
Automata and interpretations. Theory of Computing Systems, 37:641–674,
2004.

[15] B. Boigelot, L. Bronne, and S. Rassart. An improved reachability analysis
method for strongly linear hybrid systems (extended abstract). In
O. Grumberg, editor, Proceedings of 9th International Conference on
Computer Aided Verification, volume 1254 of LNCS, pages 167–177.
Springer-Verlag, June 1997.

[16] B. Boigelot, S. Jodogne, and P. Wolper. On the use of weak automata for
deciding linear arithmetic with integer and real variables. In R. Goré,
A. Leitsch, and T. Nipkow, editors, Proceedings of 1st International Joint
Conference on Automated Reasoning, volume 2083 of LNCS, pages
611–625. Springer-Verlag, June 2001.

[17] B. Boigelot, L. Latour, and A. Legay. LASH: The Liège automata-based
symbolic handler.
http://www.montefiore.ulg.ac.be/~boigelot/research/lash.

[18] B. Boigelot and P. Wolper. Representing arithmetic constraints with finite
automata: An overview. In P.J. Stuckey, editor, Proceedings of 18th
International Conference on Logic Programming, volume 2401 of LNCS,
pages 1–19. Springer-Verlag, July 2002.

[19] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown
automata: Application to model-checking. In A.W. Mazurkiewicz and
J. Winkowski, editors, Proceedings of 8th International Conference on
Concurrency Theory, volume 1243 of LNCS, pages 135–150.
Springer-Verlag, 1997.

[20] A. Boudet and H. Comon. Diophantine equations, Presburger arithmetic,
and finite automata. In H. Kirchner, editor, Proceedings of 21st

112

International Colloquium on Trees in Algebra and Programming, volume
1059 of LNCS, pages 30–43. Springer-Verlag, 1996.

[21] R. Brinkmann and R. Dreschler. RTL-datapath verification using integer
linear programming. In Proceedings of Design Automation Conference,
2002: 7th Asia and South Pacific and the 15th International Conference on
VLSI Design. IEEE Computer Society, January 2002.

[22] J.R. Büchi. Weak second-order arithmetic and finite automata. Zeitschrift
Math. Logik und Grundlagen det Mathematik, pages 66–92, 1960.

[23] J.R. Büchi. On a decision method in restricted second order arithmetic. In
Proceedings of International Congress in Logic, Methodology and
Philosophy of Science, 1960, pages 1–12, 1962.

[24] W. Calvert, S.S. Goncharov, and J.F. Knight. Computable structures of
Scott rank ωCK1 in familiar classes. In Advances in Logic (Proceedings of
North Texas Logic Conference, October 8-10, 2004), volume 425 of
Contemporary Mathematics, pages 49–66. American Mathematical Society,
2007.

[25] D. Caucal. On infinite transition graphs having a decidable monadic
theory. In F.M. auf der Heide and B. Monien, editors, Proceedings of 23rd
International Colloquium on Automata, Languages, and Programming,
volume 1099 of LNCS, pages 194–205. Springer-Verlag, July 1996.

[26] D. Caucal. On infinite graphs having a decidable monadic theory. In
K. Diks and W. Rytter, editors, Proceedings of 27th International
Symposium on Mathematical Foundations of Computer Science, volume
2420 of LNCS, pages 165–176. Springer-Verlag, August 2002.

[27] D. Cenzer and J.B. Remmel. Polynomial-time versus recursive models.
Annals of Pure and Applied Logic, 54:17–58, 1991.

[28] K. Chakrabarty. Design on system-on-a-chip test access architecture using
integer linear programming. In Proceedings of 18th IEEE VLSI Test
Symposium, pages 127–134. IEEE Computer Society, April 2000.

[29] P.A. Cholak, R.G. Downey, and L.A. Harrington. On the orbits of
computable enumerable sets. Bulletin of Symbolic Logic, 14(1):69–87,
March 2008.

113

[30] P.J. Cohen. Decision procedures for real and p-adic fields. Communications
on Pure and Applied Mathematics, 22:131–151, 1969.

[31] D. Cooper. Theorem-proving in arithmetic without multiplication. In
B. Meltzer and D. Michie, editors, Proceedings of the Seventh Annual
Machine Intelligence Workshop, volume 7 of Machine Intelligence, pages
91–101. Edinburgh University Press, 1972.

[32] B. Courcelle and I. Walukiewicz. Monadic second-order logic, graph
coverings and unfoldings of transition systems. Annals of Pure and Applied
Logic, 92:35–62, 1998.

[33] G.B. Dantzig and B.C. Eaves. Fourier-Motzkin elimination and its dual.
Journal of Combinatorial Theory (A), 14:288–297, 1973.

[34] C. Delhommé. Automaticité des ordinaux et des graphes homogènes. C.R.
Académie des sciences Paris, Ser. I, 339:5–10, 2004.

[35] D.L. Dill, S. Berezin, and C. Barrett. CVC Lite: Cooperating validity
checker. http://chicory.stanford.edu/CVC.

[36] D.P. Dubhashi. Algorithmic Investigations in p-Adic fields. PhD thesis,
Cornell University, August 1992.

[37] S. Eilenberg. Automata, Languages, and Machines (Vol. A). Academic
Press, New York, 1974.

[38] D.B.A. Epstein, M.S. Paterson, G.W. Camon, D.F. Holt, S.V. Levy, and
W.P. Thurston. Word Processing in Groups. A.K. Peters, Ltd., Natick,
Massachussetts, 1992.

[39] Yu.L. Ershov. On elementary theories of local fields. Algebra in Logika,
4:5–30, 1965.

[40] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms
for model checking pushdown systems. In Proceedings of 9th International
Conference on Computer Aided Verification, volume 1855 of LNCS, pages
232–247. Springer-Verlag, 2000.

[41] S.S. Goncharov and J.F. Knight. Computable structure and non-structure
theorems. Algebra and Logic, 41(6):351–373, 2002.

114

[42] F.Q. Gouvea. p-adic Numbers: An Introduction. Universitext.
Springer-Verlag, 2nd edition, 1997.

[43] V.S. Harizanov. Pure computable model theory. In Yu.L. Ershov, S.S.
Goncharov, A. Nerode, and J.B. Remmel, editors, Handbook of Recursive
Mathematics, volume 1, pages 3–114. North-Holland, Amsterdam, 1998.

[44] J. Harrison. Recursive pseudo well-orderings. Transactions of the American
Mathematical Society, 131(2):526–543, 1968.

[45] P. Hell and J. Nešetřil. Graphs and Homomorphisms. Oxford University
Press, 2004.

[46] K. Hensel. Über eine neue begründung der theorie der algebraischen zahlen.
Jahresbericht der Deutschen Mathematiker-Vereinigung, 6(3):83–88, 1897.

[47] K. Hensel. Theorie der algebraischen zahlen i. Teubner, Leipzig, 1908.

[48] T. Hirst and D. Harel. Taking it to the limit: On infinite variants of
NP-complete problems. Journal of Computer and System Science,
53:180–193, 1996.

[49] B.R. Hodgson. On direct products of automaton decidable theories.
Theoretical Computer Science, 19:331–335, 1982.

[50] R.G. Jeroslow. Logic-based decision support: mixed integer model
formulation. North-Holland, 1989.

[51] B. Khoussainov, J. Liu, and M. Minnes. Deciding the isomorphism problem
for classes of unary automatic structures. In Preparation.

[52] B. Khoussainov, J. Liu, and M. Minnes. Unary automatic graphs: An
algorithmic perspective. In M. Agrawal et al., editor, Proceedings of 5th
Conference on Theory and Applications of Models of Computation, volume
4978 of LNCS, pages 548–559. Springer-Verlag, 2008.

[53] B. Khoussainov and M. Minnes. Model theoretic complexity of automatic
structures (extended abstract). In M. Agrawal et al., editor, Proceedings of
5th Conference on Theory and Applications of Models of Computation,
volume 4978 of LNCS, pages 520–531. Springer-Verlag, 2008.

115

[54] B. Khoussainov and M. Minnes. Three lectures on automatic structures. In
Proceedings of Logic Colloquium 2007. Cambridge University Press, 2008.

[55] B. Khoussainov and M. Minnes. Model theoretic complexity of automatic
structures. Annals of Pure and Applied Logic, To appear, 2008.

[56] B. Khoussainov and A. Nerode. Automatic presentations of structures. In
D. Leivant, editor, International Workshop on Logic and Computational
Complexity, volume 960 of LNCS, pages 367–392. Springer-Verlag, 1995.

[57] B. Khoussainov and A. Nerode. Automata Theory and its Applications.
Birkhauser, Boston, Massachusetts, 2001.

[58] B. Khoussainov and A. Nerode. Open questions in the theory of automatic
structures. Bulletin of the European Association for Theoretical Computer
Science, (94):181–204, February 2008. Presented at Dagstuhl Seminar 7441.

[59] B. Khoussainov, A. Nies, S. Rubin, and F. Stephan. Automatic structures:
Richness and limitations. In Proceedings of 19th IEEE Symposium on Logic
in Computer Science, pages 44–53, Turku, Finland, July 2004. IEEE
Computer Society.

[60] B. Khoussainov and S. Rubin. Graphs with automatic presentations over a
unary alphabet. Journal of Automata, Languages and Combinatorics,
6(4):467–480, 2001.

[61] B. Khoussainov, S. Rubin, and F. Stephan. On automatic partial orders. In
Proceedings of 18th IEEE Symposium on Logic in Computer Science, pages
168–177. IEEE Computer Society, June 2003.

[62] B. Khoussainov, S. Rubin, and F. Stephan. Definability and regularity in
automatic structures. In Proceedings of 21st International Symposium on
Theoretical Aspects of Computer Science, volume 2996 of LNCS, pages
440–451. Springer-Verlag, 2004.

[63] B. Khoussainov, S. Rubin, and F. Stephan. Automatic linear orders and
trees. ACM Transactions on Computational Logic, 6(4):675–700, 2005.

[64] B. Khoussainov and R.A. Shore. Effective model theory: The number of
models and their complexity. In S.B. Cooper and J.K. Truss, editors,
Models and Computability, Invited papers from Logic Colloquium ’97,

116

volume 259 of LMSLNS, pages 193–240. Cambridge University Press,
Cambridge, England, 1999.

[65] F. Klaedtke. On the automata size for Presburger arithmetic. In
Proceedings of 19th IEEE Symposium on Logic in Computer Science, pages
110–119, Turku, Finland, July 2004. IEEE Computer Society.

[66] N. Klarlund and A. Møller. The MONA project.
http://www.brics.dk/mona/index.html, May 2008.

[67] J.F. Knight and J. Millar. Computable structures of rank ωCK1 . Submitted
to Journal of Mathematical Logic; Posted on arXiv 25 Aug 2005.

[68] O. Kupferman and M.Y. Vardi. Weak alternating automata are not that
weak. In Proceedings of 5th Israeli Symposium on Theory of Computing
and Systems, pages 147–158. IEEE Computer Society, June 1997.

[69] D. Kuske and M. Lohrey. Hamiltonicity of automatic graphs. In
Preparation, 2008.

[70] J. Liu. Automatic Structures (provisional title). PhD thesis, University of
Auckland, In process.

[71] M. Lohrey. Automatic structures of bounded degree. In M.Y. Vardi and
A. Voronkov, editors, Proceedings of 10th International Conference on
Logic for Programming Artificial Intelligence and Reasoning, volume 2850
of LNAI, pages 344–358, 2003.

[72] M. Makkai. An example concerning Scott heights. Journal of Symbolic
Logic, 46(2):301–318, June 1981.

[73] R. McNaughton. Infinite games played on finite graphs. Annals of Pure
and Applied Logic, 65:149–184, 1993.

[74] S. Miyano and T. Hayashi. Alternating finite automata on ω-words.
Theoretical Computer Science, 32:321–330, 1984.

[75] C. Morvan. On rational graphs. In J. Tiuryn, editor, Proceedings of 3rd
International Conference on Foundations of Software Science and
Computation Structures, volume 1784 of LNCS, pages 252–266.
Springer-Verlag, 2000.

117

[76] D. Muller and P. Schupp. The theory of ends, pushdown automata, and
second-order logic. Theoretical Computer Science, 37:51–75, 1985.

[77] M.E. Nadel. Scott sentences and admissible sets. Annals of Mathematical
Logic, 7:267–294, 1974.

[78] A. Nerode and J.B. Remmel. Polynomial time equivalence types. In Logic
and Computation, Proceedings of a Workshop held at Carnegie Mellon
University 1987, volume 106 of Contemporary Mathematics, pages 221–249.
American Mathematical Society, 1990.

[79] A. Nies. Describing groups. Bulletin of Symbolic Logic, 13(3):305–339, 2007.

[80] A. Nies and P. Semukhin. Finite automata presentable abelian groups. In
S.N. Artemov and A. Nerode, editors, Proceedings of Logical Foundations of
Computer Science, volume 4514 of LNCS, pages 422–436. Springer-Verlag,
2007.

[81] A. Nies and R.M. Thomas. FA presentable groups and rings. To appear in
Journal of Algebra, 2008.

[82] G.P. Oliver and R.M. Thomas. Automatic presentations for finitely
generated groups. In V. Diekert and B. Durand, editors, Proceedings of
22nd International Symposium on Theoretical Aspects of Computer Science,
volume 3404 of LNCS, pages 693–704. Springer-Verlag, 2005.

[83] M. Presburger. Uber die vollstandigkeit eines gewissen systems der
arithmetic ganzer zahlen, in welchem die addition als einzige operation
hervortritt. Compte Rendus des Congrès des Mathématiques des pays Slavs,
1929.

[84] W. Pugh. The Omega test: A fast and practical integer programming
algorithm for dependence analysis. Communications of the ACM, pages
102–114, August 1992.

[85] M.O. Rabin. Decidability of second-order theories and automata on infinite
trees. Transactions of the American Mathematical Scociety, 141:1–35, July
1969.

[86] C.R. Reddy and D.W. Loveland. Presburger arithemtic with bounded
quantifier alternation. In Proceedings of 10th ACM Symposium on Theory
of Computing, pages 320–325. ACM, May 1978.

118

[87] A. Robinson and E. Zakon. Elementary properties of ordered abelian
groups. Transactions of the American Mathematical Society, 96(2):222–236,
August 1960.

[88] H. Rogers, Jr. Theory of Recursive Functions and Effective Computability.
McGraw-Hill Book Company, 1967.

[89] J. Rotman. An Introduction to the Theory of Groups. Springer-Verlag,
1994.

[90] S. Rubin. Automatic Structures. PhD thesis, University of Auckland, 2004.

[91] S. Rubin. Automata presenting structures: A survey of the finite string
case. Bulletin of Symbolic Logic, 14(2):169–209, June 2008.

[92] D. Scott. Logic with denumerably long formulas and finite strings of
quantifiers. In J. Addison, L. Henkin, and A. Tarski, editors, The Theory of
Models, pages 329–341. North-Holland, 1965.

[93] L. Staiger. Finite-state ω-languages. Journal of Computer and System
Science, 27:434–448, 1983.

[94] L. Staiger and K. Wagner. Automatentheoretische und automatenfreie
charakterisierungen topologischer klassen regulärer folgenmengen. Elektron.
Informationsverarb. Kybernetik, 10(7):379–392, 1974.

[95] W. Thomas. A short introduction to infinite automata. In W. Kuich,
G. Rozenberg, and A. Salomaa, editors, Proceedings of 5th International
Conference in Developments in Language Theory, volume 2295 of LNCS,
pages 130–144. Springer-Verlag, 2002.

[96] W. Thomas. Constructing infinite graphs with a decidable MSO-theory. In
B. Rovan and P. Vojtas, editors, Proceedings of 28th International
Symposium on Mathematical Foundations of Computer Science, volume
2747 of LNCS, pages 113–124. Springer-Verlag, 2003.

[97] V. Weispfenning. On the elementary theory of Hensel fields. Annals of
Mathematical Logic, 10(1):59–93, 1976.

[98] V. Weispfenning. Quantifier elimination and decision procedures for valued
fields. In G.H. Muller and M.M. Richter, editors, Models and Sets:

119

Proceedings of Logic Colloquium ’83, volume 1103 of Lecture Notes in
Mathematics, pages 419–472, Aachen, 1984. Springer-Verlag.

[99] V. Weispfenning. The complexity of linear problems in fields. Journal of
Symbolic Computation, 5(1-2):3–27, February-April 1988.

[100] V. Weispfenning. Mixed real-integer linear quantifier elimination (extended
version). In Proceedings of International Symposium on Symbolic and
Algebraic Computation, pages 129–136. ACM, 1999.

[101] S. Wöhrle and W. Thomas. Model checking synchronized products of
infinite transition systems. In Proceedings of 19th IEEE Symposium on
Logic in Computer Science, pages 2–11, Turku, Finland, July 2004. IEEE
Computer Society.

[102] P. Wolper and B. Boigelot. An automata-theoretic approach to Presburger
arithmetic constraints (extended abstract). In A. Mycroft, editor,
Proceedings of 2nd International Static Analysis Symposium, volume 983 of
LNCS, pages 21–32. Springer-Verlag, September 1995.

[103] P. Wolper and B. Boigelot. On the construction of automata from linear
arithmetic constraints. In S. Graf and M. Schwartzbach, editors,
Proceedings of 6th International Conference Tools and Algorithms for the
Construction and Analysis of Systems, volume 1785 of LNCS, pages 1–19.
Springer-Verlag, March 2000.

120

