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Introduction Dynamical systems

Dynamical systems

Much of Physics is deterministic (notable exception: quantum
mechanics): the initial condition of the system + some time evolution
rule (physical law) determines uniquely the evolution of the system
along time.

Definition

A dynamical system is a triple (S ,T, φ), where S is the state space, T is a
monoid which denotes the time, and φ : T× S → S is the evolution rule,
which has the following properties (φt(x) = φ(t, x))

1 φ0 : S → S is the identity

2 φt ◦ φs = φt+s for every t, s ∈ T
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Introduction Dynamical systems

In this talk we will study (ordinary) differential
equations
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Introduction Computability and computational complexity of ODEs

Computability and computational complexity of ODEs

This topic was already explored in the talk presented by
Amaury Pouly
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Asymptotic behavior of ODEs

Asymptotic behavior of ODEs

In dynamical systems theory there is a great interest in telling what
happens to a system “when time goes to infinity”.

Related problems can be found in applications (e.g. verification,
control theory):

Given an initial point x0, will the trajectory starting fromx0 eventually
reach some “unsafe region” (Reachability)?
How many attractors (“steady states”) a system has? Can we
characterize these attractors? Can we compute their basins of
attractions—set of points on which the trajectory will converge towards
a given attractor
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Asymptotic behavior of ODEs Computability of attractors

What about attractors?

Roughly, attractors are invariant sets to which nearby trajectories converge
(fragile attractors are usually dismissed). Types of attractors:

Fixed points

Periodic orbits (cycles)

Surfaces, manifolds, etc.

Strange attractors (Smale’s horseshoe, Lorenz attractor, etc.):
attractors with a fractal structure
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Asymptotic behavior of ODEs Computability of attractors

Fixed points

Theorem (Graça, Zhong, 2010)

Given as input an analytic function f , the problem of deciding the number
of equilibrium points of y ′ = f (y) is undecidable, even on compact sets.
However, the set formed by all equilibrium points is upper
semi-computable.

CCA 2013 Computability and computational complexity of the evolution of nonlinear dynamical systems 8



Asymptotic behavior of ODEs Computability of attractors

Idea of the proof

Noncomputability arises from non-continuity of the problem of finding
the number of zeros of the function f

Nonetheless, the set consisting of all zeros of f can be upper
semi-computed by discretizing the space into small squares. We can
find the minimum and maximum of f over these squares and decide
whether each square may have a zero.
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Asymptotic behavior of ODEs Computability of attractors

Periodic orbits

Theorem (Graça, Zhong, 2010)

Given as input an analytic function f , the problem of deciding the number
of periodic orbits of y ′ = f (y) is undecidable (on R2), even on compact
sets. However, the set formed by all hyperbolic periodic orbits is upper
semi-computable.
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Asymptotic behavior of ODEs Computability of attractors

Idea of the proof

Noncomputability arises from non-continuity problems related to the
periodic orbits

Nonetheless, the set consisting of all periodic orbits of f can be upper
semi-computed by discretizing the space into small squares and by
retaining only polygonal periodic orbits consisting of squares
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Asymptotic behavior of ODEs Computability of attractors

Strange attractors

Steve Smale’s 14th problem: does the Lorenz attractor exist?

x ′ = 10(y − x)

y ′ = 28x − y − xz

z ′ = xy − 8

3
z

Answer (W. Tucker, 1998): Yes! But is it computable? (open question)
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Asymptotic behavior of ODEs Computability of attractors

Theorem (Graça, Zhong, Buescu, 2012)

The Smale Horseshoe is a computable (recursive) closed set.
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Asymptotic behavior of ODEs Computability of attractors

Idea of the proof

We show that the complement of Smale’s horseshoe is computable by
using the following fact (Zhong, 1996): An open subset U ⊆ I is
computable if and only if there is a computable sequence of rational open
rectangles (having rational corner points) in I , {Jk}∞k=0, such that

(a) Jk ⊂ U for all k ∈ N,

(b) the closure of Jk , J̄k , is contained in U for all k ∈ N, and

(c) there is a recursive function e : N→ N such that the Hausdorff

distance d(I \ ∪e(n)
k=0Jk , I \ U) ≤ 2−n for all n ∈ N.
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Asymptotic behavior of ODEs Results about basins of attraction

Basins of attraction

Problem: can we tell to which attractor a trajectory starting in a given
initial point will converge?

Basins of attraction of a pendulum swinging over three magnets
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Asymptotic behavior of ODEs Results about basins of attraction

In some cases, the answer is YES (example: linear ODEs defined with
hyperbolic matrices)

There are related results on problems concerning control theory
(reachability) which state that this problem is undecidable for many
classes of systems

The idea behind those undecidability proofs is to simulate Turing
machines and reduce the above problem to the Halting Problem

But to simulate Turing machines the authors need to make
comparisons (e.g. if reading X , then do A, ...). This is achieved
through the use of a step function Θ, where Θ(x) = 0 if x < 0 and
Θ(x) = 1 if x ≥ 0 or some C k variant of the step function
(e.g. integrate Θ k times).

The above idea reduces to “gluing” different functions using a C k

joint

CCA 2013 Computability and computational complexity of the evolution of nonlinear dynamical systems 16



Asymptotic behavior of ODEs Results about basins of attraction

Theorem (Zhong, 2009)

There exists a computable C∞ dynamical system having a computable
hyperbolic equilibrium point such that its basin of attraction is recursively
enumerable, but is not computable.

But what if the system is analytic?

Recall that in analytic functions, local behavior determines global behavior
⇒ no C k gluing allowed, even if k = +∞

Theorem (Graça, Zhong)

There exists a computable analytic dynamical system having a computable
hyperbolic equilibrium point such that its basin of attraction is recursively
enumerable, but is not computable.
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Asymptotic behavior of ODEs Results about basins of attraction

Idea behind the proof

Simulate a Turing machine with an analytic map (use interpolation
techniques, and allow a certain error in the simulation—the map can
still simulate a Turing machine even if the initial point and/or the
dynamics are constantly perturbed. Use special techniques to keep
the error under control)

Suspend the previous map into an ODE. The classical suspension
technique does not work here because it is not constructive. Instead
we develop a new whole “computable” suspension technique which
allows to embed a computable map into a computable ODE, under
certain conditions

The previous ODE will simulate a Turing machine and we “massage”
the ODE so that the halting state corresponds to an hyperbolic fixed
point (the ODE simulation of TMs is robust to perturbations)

Then deciding which initial points will converge to the previous
hyperbolic fixed point is equivalent to solving the Halting Problem
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Other results about dynamical systems Hartman-Grobman theorem

What about tools to work with dynamical systems?

Near an hyperbolic fixed point, the flow defined by an ODE behaves
in a similar way to the flow of the linearized ODE (Hartman-Grobman
theorem).

What is the the connection between the computability of the original
nonlinear operator and the linear operator which results from it?
(asked by Pour-El & Richards in their book Computability in Analysis
and Physics)
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Other results about dynamical systems Hartman-Grobman theorem

Theorem (Graça, Zhong, Dumas, 2012)

Near a hyperbolic equilibrium point x0 of a nonlinear ODE ẋ = f (x), there
is a computable homeomorphism H such that H ◦φ = L◦H, where φ is the
solution to the ODE and L is the solution to its linearization ẋ = Df (x0) x.
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Other results about dynamical systems Hartman-Grobman theorem

Idea behind the proof

Problem: the classical proofs of the Hartman-Grobman theorem are
not constructive

We use the Banach fixed-point theorem (contraction mapping
principle) to compute the homeomorphism by starting with a
linearized version of the system and then adding nonlinear feedback

The main problem from the classical proofs is that they use
eigenvectors of Df (x0), but the process of finding eigenvectors is not
computable

We solve this problem by relying on a resolvent approach
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Other results about dynamical systems Computability of the stable/unstable manifolds

What about stable/unstable manifolds?

Let x0 be a hyperbolic fixed point

Stable manifold of x0: set of points which trajectory will converge
towards x0 as t → +∞
Unstable manifold of x0: set of points on which the trajectory will
converge towards x0 as t → −∞
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Other results about dynamical systems Computability of the stable/unstable manifolds

Theorem (Graça, Zhong, Buescu, 2012)

The stable and unstable manifold of an hyperbolic fixed point x0 can be
locally computed around x0, but not globally.
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Other results about dynamical systems Computability of the stable/unstable manifolds

Idea of the proof

The classical proof of the existence of the stable manifold relies on
finding the eigenvectors of Df (x0) which are associated to positive
eigenvalues

However the process of finding eigenvectors is not computable
because of continuity problems

We rely on resolvents to compute directly the stable manifold,
without needing to compute the eigenvectors of Df (x0)

The stable manifold is not globally computable because of continuity
problems arising in the context of global bifurcations like heteroclinic
bifurcations
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Other results about dynamical systems Computability of the stable/unstable manifolds
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Other results about dynamical systems Computability of the stable/unstable manifolds

Thank you!
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