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Introduction 
~-·---

A natural way of stuclyi:ng the computability of an alge­

braic structure or process is to apply some of the theory of 

the recursive functions to the algebra under consideration 

through the manufacture of appropriate coordinate systems 

from the natural numbers. Let us say an algebraic structure 

ZL = (A; a 1, ••• ,ak). is coiiD2._uta12.,1.~ if it possesses a recur­

sive coordinate system in the following precise sense: 

associated to ZG there is a pair (a,O) consisting of a 

recursive set of natural numbers 0 and a surjection 

a . n _.A so that (i) the relation defined on 0 by n -. a 

iff a(n) = a(m) in lL is recursive, and (ii) each of the 

operations of ?I ....._, may be effectively followed in 0 
' 

that 

is, for each (say) r-ary operation a on A there is an 

r argument recursive function o on 0 which commutes the 

diagram A r ~ A wherein 

ar I - I a 

or ~o 

r 
a is r-fold ax ••• x a. 

m 

Trus concept of a computable algebraic system is the 

independent technical idea of M.O. Rabin [18] and A.I. Mal'cev 

[14]. From these first papers one may learn of the strength 

and elegance of the general method of coordin13.tising; note-

worthy for us is the fact that computability is a finitenes~ 

co.Pq.i t:!:..Q1! of Algebra - an isomorphism invariant possessed of 

all finite algebraic systems - and that it serves to set 

upon an algebraic foundation the combinatorial idea that a 

system can be combinatorially presented and have effectively 

decidable term or word problem. 
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A point of departure for this paper is P~bin's article 

in which he announced his discovery that a finitely generated 

group of matrices over any field is computable as a group 

[18t p. 351]. The principal purpose of this paper is to give 

Rabin's proof of this fact and to study a family of gene­

ralisations of his result in a direction away from groups 

(of matrices over a field) toward general algebraic structures 

(embedded in the affine spaces over a field); we propose to 

prove the following results. 

Let F be a field and let Fn denote the space of all 

n-tuples of elements of F , the p~dim~~sional ~ffine s.~ce 

over F • 

A mapping f : A c Fn ~ Jf11 is said to be ]Ol:J21..,9mict_l 

over F if the m coordinate functions f. : A~ F into 
-~~- l 

which it decomposes may be defined by polynomials inn argu­

ments over F • Thinking of a general algebraic structure 

embedded in Fn : 

The Affine Theorem 

Let 2L = (A; a 1, ••• ,crk) be a universal algebra with domain 

A c Fn and operations a. 
l 

polynomial over F • If 

finitelv generated then ll is computable as an algebra. 

iS 

This represents a direct generalisation of Rabin's 

theorem to ~eneral affi~e systems (as we might refer to such 

l.L ) and is, along with Rabin's theorem, of some consider­

able algebraic interest since such structures are ubiquitous 

in mathematics, but the practical significance of the theorem 

may only partially engage us here (I have written about this 
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in [26]). Some deeper theoretical results are possible: 

A . f ·. A .~ Fn _,., Fm . 11 b s . d t b 1 t mapp1ng ~ ~ Wl e a1 o e e emen ar2 

or first-o2:~r ~lge~ra~~ if its m coordinate functions 

may be defined by first-order expressions of the theory of 

fields. Then 

.1.~J?...e.f_:!._!labili_t.,.Y., The,.Q_re,!a__J2£._A_lgebraically c.~sed Fi~~ 

Let F be algebraiCally closed. Let U. be an alge-

braic structure within 
·n 
F whose operations are elementary 

algebraic. If tl is finitely generated then li is com­

putable. 

The key to this theorem is A. Tarski's technique for the 

effective elimination of quantifiers from the first-order 

expressions of the theory of algebraically closed fields 

[23]. The strategy of its proof suggests that an a11alogous 

result might be true for real closed fields for which elimi­

nation of quantifiers is also possible; this eventuality is 

analysed and ruled out because of the singular behaviour of 

the algebra of fields with orderings. A 11best possible 11 

result is this: 

A mapping f : A c Fn ~ ~ will be said to be ~l§F~FY2rJ[ 

or firJL~-or~ ,~eom~tFi~ if its m coordinate functions may 

be defined by first-order expressions of the theory of fields 

with orderings .. 

~~j.J~f~.Jlilijx ~T.l?:_e_C?,F_e.EL.f.9-E._lli.~ 

Let R be the field of real numbers. Let ll be an 

algebraic structure within JR.n whose operations are elemen-

tary geometric. If 1j,_ is finitely generated by vectors 
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involving computable real numbers only, then tl is compu­

table. 

The argument which leads to this theorem involves work 

of A. Lachlan and E. v·J". Madison, see [ 10] and [ 12]. 

. These three theorems are proved in sections numbered 

two, three and four respectively. In passing, one or two 

illustrative applications are included which I hope may be of 

some independent interest. Section one is a resume of the 

ideas and results we shall need. 

The principal results \vere determined while I was a resarch 

student at the University of Bristol, England. I am indeed 

in the debt of my supervisor, Dr. J.P. Cleave, for his en­

couragement and guidance. I wish to thank Prof. Habin for 

explaining his proof of his theorem and Prof. J.C. Shepherdson 

for bringing to my attention the work of Lachlan and Madison. 

I am happy to express my gratitude to Prof. J.E. Fenstad and 

his colleagues at Oslo for their hospitality, and to the 

Officers of the Hoyal Society, London for the indispensible 

support of a fellowship through their European Programme. 

~1..:___.R.re...E_?.rato.E,Y___<?_<_:mce,.E_ts __ ~§-~ resul tE_ ~o~t comput~le_ a?:-se_-:: 

.EEi c .E,YS t 9,!0-S ~.2__s~~~l ~ f :!-e l9J.. 

Here is collected together most, although not all, of the 

technicalities and theorems we employ in our proofs, this 

material concerns universal algebras, general sets, rings and 

fields. Ideally, the prospective reader ought to be familiar 

with the papers of Rabin and Mal•cev and with a paper of 
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A. Frohlich and J.C. Shepherdson [7] and ought not to expect 

illumination from these notes. 

JrJ,~,~p'~'R,© stand for the natural m.unbers, the integers, 

the integers modulo p , the rational numbers, the reals, and 

the complex nmnbers respectively. 

Co~~;abl~~iy~r~~lbhgebra~ 

For the theory of universal algebras we depend upon the 

books of P.M. Cohn [41 and Mal'cev [15]. For the theory of 

computable vniversal algebras we shall cite [14] whilst 

habitually borrowing from [25]. 

A ~~tiP!?; a of an algebra V... = (A; cr 1, •.• ,crk) 

consists of a surjection a : Oa c N ~A together with numerical 

functions cr 1, ••• ,crk which traclf the operations of 'Ll in 

the set of codes 0 0 precisely, for cr. an r.-ary opera-a' l l 

tion on A, cr. 
l 

is an ri-ary operation on oa and the dia-

Ari cr· 
;.A commutes for i 1 , ••• 'k (Clearly, gram l = • 

jari ja 
ori cr· 

> 0 l 
a a. 

a coordinatisation of l~ is an algebra of natural numbers 

(Oa; cr1, ••• ,crk) and an epimorphism a: Oa ~ tl.) The 

congruence on 00 induced by a. we denote 

n = m iff a(n) = a(m) in 1t. 
a. 

a 
for n,m E Oa 

(A coordinatisation a will be variously called a ~~bering 

or a .£~~'ill' its domain will be usually denoted Oa and we 

will operate an important technical convention in avoiding 

the number 0 in our coordinate systems so if 0 is a set 

of codes then 0 ~ 0 • ) 
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A coordinatisation a is §ffectiv~ if the set of numbers 

is recursive and the tracking functions (J. 
~ 

are recursive. 

U is gomJ2~t~.l?J.._e. u.nder coordi11..a tisa tion a iff a is 

effective and the relation a 
is recursive. 

Let 1t contain 1.f as a subalgebra. If 1.l is com­

putable under a then to say that 'LP is an (a.-)s.,omJ2utable 

')\ ,..-1,n 
~~balgeqr~ of ~ means that the preimage ~ u is recur-

sively enumerable. 

1 .. 1 Lemma A finitely generated subalgebra of a compu-

table algebra is a computable subalgebra. 

See Mal'cev [14, p. 193]. 

Let ().._ be an arbitrary algebraic structure. 'U. is 

said to be J_~a])~ 2-~~~ut~-~l~ iff every finitely generated 

subalgebra of 11 is a computable algebra. (This idea we 

use in a rather superficial way, it is an interesting finite­

ness condition for uncountable structures [25, 26]~) 

Finally, we would do well to explain the elaborate process 

of constructing an effective coordinate system for a structure 

ll based upon a set of generators. Working within an arbi-

trarily chosen species of structures of signature 'T , recall 

the ~ce~ .?-e}J_cri~tip__EE. of its systems, [4, p. 116] and [15, p. 111]. 

Let X be an non-empty set. The 

are inductively defined by declaring (i) any element of X 

is a term and (ii) if t 1, ••• ,tr are terms and a is an 

r-ary operation symbol for the species then cr(t 1, ••• ,tr) is 

a term and (iii) nothing beyond the stipulations of clauses 

(i) and (ii) is a term. 
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Let T(X) denote the set of all terms over X , T(X) 

is an algebra of the species since clause (ii) asserts j_t 

is closed under the application of operation symbols; two 

terms are equal iff they are syntactically identical. 

Clearly T(X) represents by construction the form~l skeleton 

of any algebra of the species genel~ted by X • Define term 

~~~ L: T(X) ~lli in the usual manner: the elements of 

X are terms of length= 0, if t = cr(t 1, ••• ,tr) then 

L(t) = max(L(t1), ••• ,L(tr))+1 • 

The term algebras are uniquely determined by the cardi­

nality of their generating sets: for X,Y sets, T(X) is 

isomorphic to T(Y) iff card(X) = card(Y) ~ this cardinal 

is called theE~ of the term algebra, see [4, p. 117]. 

The term algebras enjoy the following universal mapping 

property: if 10_ is an algebl~ of the species and X is 

any non-empty set then any map cp X ~ ~ extends uniquely 

to a homomorphism ~ ~ T(X) ~~cL (the term algebras are free 

algebras for the species), see [4, p. 120]. Through this 

property we describe the combinatorial form of 'Ll • We 

X 1 X • i r: I l is = l~ i . ~ J 

available for each cardinality (we shall need only finite sets). 

Let {ai : i E I} be a generating set for 'tl and define from 

the given indexing I the ~ubsitution {un~ti~n Xi~ ai , 

this extends to a homomorphism v of T(X) onto 1l , this 

epimorphism we refer to as a v~luation ~· 

Quite easily, the term algebras of finite and countably 

infinite rank can be shown to be computable~ We shall assume 

y 

* 
of each 
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T(X) • By this is understood a computable numbering 

y* Oy* ~ T(X) with the special feature that it has asso­

ciated to it a recursive decompos.iion function which tells of 

an element n E 0 whether or not it labels an indeterminate 
y* 

and.if it does, it can tell which or, if it does not, it can 

provide a decompo~ion into codes for the subterms of y (n) • 

* 
To be more precise, a recursive function d : ]ijX 0 ~ m is 

y* 
hypothesised with the following properties if d(O,n) = 0 

then y (n) =Xi where i = d(1,n) , if d(O,n) = i and 

* 
1 < i < k then y (n) = cr.(y d(1,n), ••• ,y d(r~,n)) • From 

~a i(- J. * * ... 
this term length is computable. The standard coding of Mal'cev, 

which uses the arithmetic of prime numbers, is an example of 

such a numbering [14, p. 202]. It is worth mentioning that it 

is possible to prove that standard coordinatisations of T{X) 

as defined, compose an equivalence class of codings under the 

natural concept of identity between numberings, that of their 

pec~~y~ ~udyal~ll~ [14, p. 188], so our ~ce of standard 

coding is immaterial, see [25]. 

Now given an algebra 2L and an indexed set of generators 

{ai : i E I} we construct the standard numbering of U 

defined by the generating set (together with its indexing) 

by taking the standard term algebra of rank = card(!) (in 

the species of U ) with its standard computable numbering 

y and defining the valuation map v : T(X) ~ ZL from the 

* 
generating set, and then composing y = vy * Oy * -+ U ; y 

is our required effective coordinatisation. This procedure 

demonstrates that, theoretically, one's idea as to the com­

plexity of a system U can be reduced to that of the equality 
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relation between its elements. 

Sets 

If X and Y are sets computable under a and ~ 

respectively and rp : X ~ Y then cp is co_lll~~~il.PJ3 ~;l;.:t.h 

.re~U2 .. ~__,£_ __ ~_nd ~~il if there is a recursive function 

f : '\x ~ 0[3 

commutes, X 

which tracks ~ : so that the following diagram 

If X is a computable set under a then the set 

FinSeq(X) of all finite sequences of the elements of X 

is a computable set. The truth of this is evident if one 

thinks of a method of coding by prime numbers, for example, 

of coding by n1 nr 
2 ' ••• 'Pr As in the 

case of T(X) it is worth pointing out that precisely what 

we are interested in is any coding of FinSeq(X) in which X 

and all its cartesian products are computable subsets. So 

it is that we arrive at the idea that a standard coordinatisa-

tion ~ of FinSeq(X) derived from a coordinatisation a 

of X is a numbering to which there is associated a recursive 

unpacking function u: EXOP ~ oau{o} which calculates the 

a- code of the i-th entry of the sequence with B-code n to 

be u(i,n) and from v'rhich sequence length may be effectively 

calculated. J_<?.,..£.Ol_l~t:r:.,v;..ctive±l._ manipulate ___ J'il):i te se9Jl~~E. 

..2.,ne .. needs_..len_g_t~ ...... .?UCL~~~i~.!g_b=~_sonstr~ti v_e. Under 

this formalisation of a standard coding, the procedure of 

coordinatising sets of sequences can be sho~m to be unique up 
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to the coordinatisation of X , see [26]. 

~ings and field~ 

For the algebra of fields we depend on van der Waerden's 

[28] to which reference can be made for any concept or result 

in this paper which may be unfamiliar. It vms a fine study 

of the computability of field-theoretic constructions by 

Frohlich and Shepherdson which first demonstrated the signi­

ficance of the idea. of analysing the complexity of general 

algebraic processes in terms of recursive function theory, 

so stimulating the general programmes of Rabin and Mal'cev. 

Fortunately for the reader, their paper is required reading 

for ours. 

We shall need the following theorems about computing in 

rings and fields. 

1.2 Lemma If R is a computable commutative ring then 

the polynomial ring R[x1, ••• ,X J over R is . n 

computable containing R as a computable 

subring and the evaluation action e(p,£) = p(£) 

is computable R[X1 , ••• ,Xn]x Rn ~ R. 

See [7, pp. 412-413]; the uniformity of calculating polynomials 

we must leave to the reader. By working through the basic 

constructions of field theory, following [7], one is led to 

this theorem which is our basic tool. 

1.3 Le:roma Let E be an extension field of a computable 

field P • Any extension of F by a finite 

number of elements of E is computable and 

contains F as a computable subfield. 
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The proof of this contains some important points and should be 

reconstructed from t7, pp. 413-414]. The result is essentially 

proved in van der Waerden's [27, pp. 134-135]. Finally, we shall 

need the harder theorem of Rabin [18, pp. 354-356], 

If F is a computable field then its algebraic 

closure F is a computable field and contains 

F as a computable subfield. 

2. The Affine Theorem 

2.1 Rabin's Theorem 

A finitely generated group of matrices over any field is 

computable. 

Here is the proof. Let F be a field. F possesses a computable 

subfield in its prime subfield which is isomorphic to the finite 

field ~ or to the rationals Q according as the characteristic 
p 

of F is the prime p or 0 (28, pp. 110-111]; let this prime 

field be denoted C • 

Let A1 , ••• ,Am be a finite set of nXn matrices over F 

generating a group G • We extend the computable field C by 

all the mn2 elements of F making up the generators of G • 

That is, form the extension 

E = c({ak(i,j) : 1 ~ k ~ m & 1 ~ i,j < n}) 

where ak(i,j) is the (i,j)-th entry of Ak • 

E is computable by lemma 1.3 and so G now appears as a 

finitely generated group of matrices over a computable field E , 
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such an object is computable because the ring M(n,E) of all 

nXn matrices over E is computable (clearly) and the group 

GL(n,E) of all non-singular matrices over E is computable 

(for A E GL(n,E) iff det(A) f 0) and G is a finitely 

generated subgroup of GL(n,E) , computable by lemma 1.1. 

Reflecting on the mechanisms in the proof, in the context 

of a general kind of algebraic structure derived from the opera­

tions of a field, leads to the following result: 

2.2 Theorem Let F be a field and let U = (A; cr 1 , ••• ,crk) 

be a finitely generated univerS~l algebra whose 

domain A is a subset of Fn and ·whose ope­

rations cri may be defined by polynomials over 

the prime subfield of F • Then U is a com­

putable algebra. 

We shall concentrate on proving the above statement and obtain 

the Affine Theorem from its argument on completion. 

We start by providing ~ with an effective coordinatisation. 

Let 1 1 n 
1~1' ••• ,_?.-tl:f c AC F be a set of generators for 21... • Con-

struct the term algebra T(X) on m indeterminates together 

with its standard computable numbering y and define from the 

* 
generating set the valuation v : T(X) ~ lt. Exactly as 

explained in the section of preliminaries, we have the standard 

coordinatisation y of U derived from the given generating 

set; the theorem is proved on showing that the relation 
y 

is recursive on OY 

Intuitively the plan of the proof is analogous to that of 

Rabin's Theorem: take the prime subfield C of F and extend 

it by all the elements of F making up the generators of 2L 
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to form a computable field E The purpose is to claim that 

LL may be thought of as an algebra within the computable 

affine space and, specificallyy that this makes it comput-

able. Technically it is this transition which is no longer clear 

and requires precise demonstration: it must be shown that U is 

effectively embedded in En • Thus if we let f3 r denote a 

suitable computable coordinate system for En then we must 

prove the following 

2.3 Basic Lemma There is a recursive function g 

that for nE '\ .. y (n) = 13 g (n) • 

2.4- Corollary 
y 

is recursive. 

Proof: 

Consider 

(J . Ar ~A . 
tions \vhich 

Consider the relation on OY~ 

n -ym iff y (n) = y (m) 

iff y (n) = y (m) 

iff y (n) = y (m) 

iff pg(n) = !3g(m) 

iff g(n) =:;$g(m) • 

in 

as 

as 

u 
' 

elements of Fn 

elements of En 

by the Basic Jjemma, 

So -y is reduced to =~3 and hence is recursive. 

Q.E.D. 

the assumed properties of u. An r-ary operation 

of u will decompose into n coordinate func-

write 1 n 
0 Ar ~ F The elements of we a , ••• ,a 0 . 

Ar on which these coordinate functions are defined are essen-

tially rn-tuples of elements of F and the hypothesis that 

cr is polynomial over the prime subfield C of F is precisely 

that there are n polynomials pi from c[x1, ••• ,xrn] 
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defining these cri on A , that is, for each i = 1, ••• ,n 

cri(!) = pi(2S), for all xE Ar • The assumption that each ope­

ration of Z& be polynomial leads to k n-tuples of many ar-

gt~ent polynomials over C , therefore. 

Let C now be extended by the coordinates of the generators. 

Let a .. be the j-th entry of a. and set E = C({a .. : 1 < i < m 
lJ -l lJ ~~ 

& 1 ~ j ~ n}); E is computable under a say. We can arrange 

for n 
~ = a. : 0[3 to be a computable coordinate 

system for its n-dimensional affine space. 

We claim that A c En and that it is possible to pass 

effectively from the y-labels for elements of A to their 

[3-labels; this is the Basic Le~~. 

A c~ 2.5 Lemma 

Proof: By induction on the length of terms we show that for 

each tE T(X) , v(t) E En; this is formally the observation that 

given elements of En as genera tors the operations of U , 

being polynomial over C , pick out only elements of Fn which 

also. lie in En • 

~sis. The generators of 2L lie in En by construction so 

the terms of length zero all map into En • 

l!lductioi!:, st~. Assume that all terms of length <1 map into 

En under v , let t be any term of length 1 . Breaking 

t down into its component subterms write t = cr(t 1, ••• ,tr) 

say. Now v(t) = v(cr(t 1, ••• ,tr)) = cr(vt 1, ••• ,vtr) since v 

is a homomorphism. Let vti = z. 
~·1. 

for 1 < i < r and let 

z = (~1' • •• '~~r) E Ar • We know zE Ern for, by the induction 

hypothesis, the ti map into En under v . Claim: 

cr(z)E En. Consider the coordinate functions for cr • For 
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where z. = (z. 1 , ••• ,z.) 
=•J J Jn 

for Clearly this is 

an element of E since 
i 

p is a polynomial over C < E 

acting exclusively on elements of E Hence the claim and, by 

the inductionprinciple, the lemma. 

Q.E.D. 

To show the exchange of labels is effective we work with the 

elements of ZL through T(X) • Each term, being an inductive 

construction from x1 , ••• , ~ and the operations a 1, ••• ,a k , 

is now thought of as essentially a function of m arguments 

t(X1, ••• ,Xm) defined on A • The polynomial definition of the 

a. entails that the course of construction of each t leads 
1 

explicitly to ann-tuple of polynomials over C in mn arguments 

which defines t as a function of m arguments on A • This 

decomposition is formally described as a computable association 

D: t ~ Pt = (p~, ••• ,p~) as follows. 

The set of n-tuples of polynomials over C in mn indeter­

minates P = c[x1, ••• ,Xmn]n is a computable set; this is clear 

since a multiargument polynomial ring over a computable field 

is computable (len:nna ·1. 2) and so cartesian products can be taken 

to construct a computable coordinate system y 1 : r 1 ~ P • 

To say that the decomposition is explicit is to say that there 

is a recursive function d : '\ ~ r 
1 

tracking 
D ' that is, 

commuting the following diagram, T(X) D 
>P 0 the truth of 

' 

y ·I }1 
'\ d> r1 
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this statement is clear from the inductive definition of D • 

Now if D(t) = Pt then v(t) = D(t)(§l1,. •• ,am) = Pt(§l1, ••• ,am) • 

The function g calculating a label for t (~ 1 , ••• ,.§m) in 0~ 

is the tracking map of the procedure of decomposing a term t 

to its polynomial form D(t) and directly evaluating that 

polynomial form on the generators in 

cedure exactly. 

n E . Here is this pro-

The evaluating action of c[x1 , •• ,x ] on 
Dl1 

E is computable 

as it is part of the action of E[x1, ••• ,xmn] on E (lemma 

1. 2). From e define a general process A : px En x ••• x En ~ En 

by 

A ( P 1 ' • • • ' P n '~ 1 ' • • • ' ·~m ) = ( e ( P 1 ' ~ ,. • • ' 3.m ) ' • • • ' e ( P n ' x 1 ' • • • ' ~) ) 
'\. 

and let it be recursively tracked by a ,so that the following 

• Now apply this 

A over P on them-tuple (~ 1 , ••• ,am) :write this restriction 

A and let it be computed by a • To complete the argument, 

take g = ad and, to see that this proves the Basic Le~~, 

consider ADy in the following diagram 
~-

u i 

t 
y D ) p ., 

d 
1 

"0 ~ r1 
a 

>,00 Y .... - ----- -··""""' g 
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By the upper route, An v (n) = P y * ( n) (,9; 1 ' • • • ' am) 
* 

= vy (n) 

* 
= y(n) . 

By the lower route, ADy (n) = Ay4d(n) 

* 
= f3ad(n) 

= ~ g(n) 

So y = ~g and the theorem is proved. 

Q.E.D. 

To obtain the-stronger statement of the Affine Theorem, 

wherein arbitrary polynomials are allowed to define the ope­

rations of the structure ~ , consider the stage in the proof 

at which E is constructed. Since U is finitary at most a 

finite number of elements of F will appear in the collection 

of polynomials used for its operations, these coefficients may 

be included along with the coordinates of the generators in 

extending C to the computable affine space required to enclose 

And from the Affine Theorem may be deduced a possibly more 

useful, though equivalent, result in which the field F is replaced 

by a commutative integral domain R • To see this is to notice 

that if ?1. is an affine system over R then it is an affine 

system over the quotient field Q of R (precisely: U c Rn c Qn 

and operations polyn_omial over R are polynomial over Q ) so 

the Affine Theorem applies to show computability. The ring of 

real-valued analytic fm~ctions on an open subset of JR11 is an 

integral domain whose quotient field is not encom1tered naturally 

(contrast this. with the complex case however). Actually some­

thing much stronger is tr.1e by significantly more complicated 
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constructions: apy f~i~ely generated affin~_s1t~~m over __ ~~ 

§rbitra..±:;y comm~!.illY-v_ing i.~omputabl~ (see [26]). 

Let us illustrate the Affine Theorem with some applications. 

First, structures made from matrices over fields are going to 

be affine: if 2£ consists of n x n matrices vrith entries from 

F then 1J_ 
2 

lies within pn so providing the operations 

involved are poly~omial over F - for example, operations 

polynomial over M(n,F) - then finitely generated substructures 

of 2{ will be computable. In particular: any finitely generated 
~---=--- - ---=~ .......... 

rin&, _g;£_<?_UJ'~!J~=;:_~ which is linear, in _t:q,e sepse .tb.at_i t 

~Y be faith:t:ul_l,rl::~r.:'esel~ted i,n some M(n_,F) ...Lis com.Q.utable. 

Doubtless the reader can compose his or her own examples of matric 

structures. 

Secondly, indeed canonically, there are the natural affine 

systems of Algebraic Geometry. For F a field an §)-fi_ebraic 

group G over F can be defined to be a group whose domain 
~~ .. 

G c Fn , for some n > 0 , is the set of zeros of a finite 

collection of polynomials over F (precisely: there exist 

p 1, ••• ,pkE F[X1, ••• ,X] such that G = {xE Fn: p.(x) = 0 for n ~ 1~ 

1 < i < ld) and whose operations are definable by polynomials 

over F • We may generalize this familiar concept to indefinite 

structures by adding the hypothesis that the domains of our 

affine systems be such closed sets, and declare al~truct~~ 

.§].gebr~c in t._p.e sense _of Al,gs:brat,_c Geometr..Y. are locally _co.lll-:. 

putabl~. Note that the condition is a strong one at least in 

the group case where every algebraic group can be shown to be 

linear, see [8, p.63]. These and some further simple ideas from 

Algebraic Geometry appear in examples of the next section, a 
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most suitable reference is Shafarevich's book [22]. 

We have two applications to be considered more carefully, 

the sources of their 11affineness 11 are, for the first, the fact 

that the structures considered are in essence made from polyno­

mials and, for the second,that they are directly derived from 

finite dimensional linear spaces. 

By way of preparation for the first example (and for an exam­

ple of section four) consider that the polynomial ring 

F[X1, ••• ,Xn] can be readily identified with a subset of a 

countably infinite cartesian product of F with itself by thinking 

of F[X1 , ••• ,Xn] as a vector space over F with the countable 

basis comprising of all the monomials in the X. • 
l 

On res-

tricting attention to a subcollection of polynomials bounded by 

a fixed degree an identification with a finite dimensional 

affine structure can be made~ let 

all elements of F[X1 , ••• ,Xn] of 

Fk[X1 , ••• ,Xn] with an FN where 

Fk[x1 , ••• ,Xn] be the set of 

degree 5 k we can identify 

(n+k) N = 1 +1 • Our application 
.K 

belongs to the local analysis of differentiable mappings; for 

the material that follows we rely on Levine [11]. 

Let Ck(n) denote the set of all k-times continuously 

differentiable mappings f :1Rn - :m.n which fix the origin, that is 

f(Q) = 0 • V~ppings f,gE ck(n) are said to be ~quivalent to 

order ~at~ if their partial derivatives of order < k 

coincide at 0 ; this relation between functions is an equiva-

lence relation and its equivalence classes are called ~-~ts. 

A k-jet is an invariant ~my of referring to a Taylor series. 

We denote by Jk(n) the set of all k-jets of the ck functions 

fixing 0 • Clearly an element of Jk(n) can be identified 
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with the Taylor expansion of any of its representative maps upto 

and including the k-th partial derivatj_ves. So Jk(n) = Fl-(N-1 ) • 

Now t.he operation of composition of mappings makes Ck(n) 

into a semigroup with identity and this structure for ck(n) 

is imitated in the k-jet space Jk(n) by defining [g]•[f] = [gof] • 

Concretely, the Chain Rule for differentiation expresses the par­

tial derivatives of go£ as polynomial functions of the partial 

derivatives of g and those of f : the jet space ~k(n) is 

trivially isomorphic to an affine space with a polynomial opera­

tion. By the Affine Theorem we have that 111"e _se:_.mi_g_roup of~.£-jet~ 

ot ck mappi_ngs JR11 :" JR.n f.ixin_g Q is _l_Q,9a.lly computa.Bl.Et. 

Furthermore it may be observed that the__ELub_grou..E. _ _rf(~J.. .. of 

!fkJp.l ~c.£..ll_sj.s_tin~ -~.f___ihe in_y~tible k-jets_ i.s a__local~ com.l2..~ 

~ble grot~. For ~~ti~~ theorems about Ck(n) see r26]. 

Turning to the final eY~ple, let V be a vector space over 

the field F • If V possesses a product of vectors which is 

compatible with the linearity of V then V together with this 

product is called a 1~~~lgebra, precisely a bilinear map 

[ , ] : VXV ~ V is required to act as the product. Note that 

V together with vector addition and such a product constitute a 

ring, which is not necessarily associative, as the bilinearity 

of [ ,] entails the ring distribution laws. Actually linear 

algebras are classified by means of the properties of their 

ring structUl~es, for example the aJternate, division, Jordan, 

Lie algebras, see [21]. 

Assume V is a linear algebra of finite dimension n as 

a vector space, let ~ 1 , ••• ,e11 be a basis for 

the product of two elements ~~~ of V • If 

V and consider 

X= and 
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n 
X= -~ 1 _yiei then using the linearity of [ , J we may write 

~- 11 2 
[x,v] = ~ x.y.[e.,e.] and are led to consider the n 

- ""'" . . l J ·-~l ~·J l,J=1 
ducts of the basis elements. In terms of the given basis 

n .. 

derive 
2 

n expressions, therefore: [ei'~J-J = L ~J~k 
k= I ·'!c 

pro-

we 

and upon substituting these into the expression for the pro­
n 

duct we find th.at [x,..z] =. ~ xiyjA.~J~k • 
l' J 'k= 1 

The definition of the product in a linear algebra of dimension 

n is determined by n3 scalars, the so called Etructure constants 

of the algebra. On making the affine identification of V with 

Fn , an affine ring is obtained: the k-th coordinate function 

of [ , ] is the polynomial pk(x1, ••• ,Xn,Y1, ••• ,Yn) = 

n 
~ A.~jX.Y. ; that addition is polynomial is obvious. 

i, j 'k= 1 l J 

We may conclude that .};he __ rJ .. nz s"h.,"'llc:..tur~_9_f •. .§.PL..fi~!.t~ d.tJnension~l 

J~~l_g_eb:£fl~-<?Y.~£. a f~el<\.1-P. _loc_§_ll__y _£Q_IgJ;?__~. 

3. The Definabili ty Theorem for <Un 

The Affine Theorem asserts that algebraic systems derived 

directly from the algebra of a field are combinatorially simple. 

Obviously, the most general operations which may be defined on a 

set A c F11 in terms of the field structure of F are not the poly­

nomials. A far more complicated class can be obtained from the poly­

nomial functions together with the machinery of first-order logic, 

more general still are those obtained from second-order logic or 

from infinitary formulae. (One need only think of the use of power 

series in defining the operations of Lie groups.) 
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It is a valid and interesting problem to examine precisely this 

connection between the logical complexity of the operations of the 

stru.cture 1.L c Fn and the combinatorial complexity of its algebra 

to find companion, perhaps negative, results which fix a boundary 

for the structure of the operations beyond which '1L is no longer 

computable. The first-order expressions of field theory fall into 

a natural hierarchy of quantification analogous to the arithmetic 

hierarchy classifying expressions into universal (n1), diophantine 

(L:1 ) , Skolem (I12 ) and so on, see § 7 of Mal' cev' s book [ 15] for 

example .. 

So it is that the Definability Theorems to be proved are solu­

tions to this problem in its most important cases, those of complex 

and real affine systems. I have decided to adopt a definite point 

of view toward these particular results and that is to harmonise 

them with basic conceptions in Algebraic Geometry: this is the most 

fruitful way of understanding the theorems and is compatible with 

other material to appear in due courseo (An alternate would be to 

emphasise the model-theoretic point of view which underlies this 

work on fieldso) 

An elementary or first-order algebraic expression of field 

theory is a formula of a first-order logical language with equality 

equipped with the two binary function symbols + , • the two unary 

operation symbols -1 1 - , and the constant symbols 0 , o 

Let F be a field and A c r o A map f : A .... F is elementa;£Y 

algebraic iff the relation f(x) = y is definable as an elementary 

algebraic expression, that is,there is an elementary algebraic ex­

pression E of n + 1 free variables such that f(x) = y iff 

E(2S.,y) holds on Ax F. 
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Consider some examples. For F = <V or JR. the members of 

~ [X1 , ••• ,Xn] are elementary algebraic and so are those of 

~[X 1 , ••• ,~] since they may be rationalised; for example, 

1 4 1 2 
p(X1 ,x2 ,x3) = 4X1 +"2"X2X1 + x3x1 is definable through 

4- 2 x1 + 2x2x1 + 4-x3x1 = 4-y. 

More generally a map f : A c r ..... ~ is elementary algebraic 

iff it is definable in the same fashion by an elementary expression 

of n + m free variables, in particular such a mapping is elementary 

algebraic iff the coordinate functions f 1 , ••• ,fm: A ..... F into which 
i 

f decomposes are elementary algebraic. 

A familiar example is the following. Let C be the prime sub-

field of F and r 1 , ••• ,rm E C(X1 , ••• ,Xn) the field of rational 

functions in n indeterminates over C; let A c r be such that 

the denominators of the r. 
~ 

do not take the value 0 on A • The 

function f(X) = (r1(X), ••• ,rm(X)) is elementary algebraic. 

Let us also distinguish for the purposes of illustration, and 

later application, the ele~entary algebraic subsets of an affine 

space, obviously A c r is elementary algebraic iff there is an 

elementary algebraic expression E of n free variables such that 

x E A iff E(~) holds. 

Examples of such sets abound. For F a field and C its prime 

subfield the root spaces of polynomials p E C[X1 , ••• ,Xn], that is, 

sets {~: p(~) = 0} ; their finite unions and intersections; because 

of the Hilbert Basis Theorem, all those closed subsets of ~ of 

the Zariski topology which are defined over C are elementary alge­

braic (such sets form a topology in their own right, the C-Zariski 

topology). By applying negation, all the open subsets of pn defined 

over C are elementary algebraic. Existential quantification adds 
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the image of an elementary algebraic set under :projection: if A c?l-HD. 

is elementary algebraic defined by E(~,x) and P :projects r+m 

to :?1 by deleting the last m coordinates then of course P(A) = 

(~ E :?1: (3z)E(~,z)} is elementary algebraic. 

Let us define a group G within :?1 to be an elementa;r alge­

braic group if its domain and operations are elementary algebraic; 

algebraic groups over F defined over the prime subfield C are 

elementary algebraic, the Classical Matrix Groups are obvious·ex-

amples. 

Now the conjuacy relation in an elementary algebraic group is 

an elementary algebraic relation: the statement that a,b E G are 

conjugate is definable as 

(a,b E G) & (::Jc E G)(a = c.b.c-1 ) -- - ----
More generally, we have the relation for X c G of X-conjugacy: 

~,£ are conjugate in G by an element of X is definable as 

and which is elementary algebraic if X is. 

In the case of the complex numbers the elementary algebraic 

expressions may assume a particularly simple form: 

Theorem of Elimination of Quantifiers for Algebraically Closed Fields 

Let F be an algebraically closed field. Given any elementary 

algebraic expression of field theory:~ say E of n free varia­

bles, there exists a sequence of :polynomials from C[X1 , ••• ,Xn] 

say p1 ,q1 , ••• ,ps,qs such that E(x) holds in F iff 

s 
i¥'1 (pi (X) = 0 & qi (X) f 0] • 

And furthermore the path from any expression to an appropriate 

collection of polynomials is effective. 
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This was discovered by Tarski [23]. The removal of all quanti­

fiers making up E , the reduction of E to the simple algebraic 

processes of F, is possible (it seems) because of the rich struc­

ture of an algebraically closed field in possessing enough elements 

to solve all equations. A useful reference on quantifier elimination 

is chapter four of Kreisel and Krivine's book [9]. 

Let us remark that for F algebraically closed the elementary 

algebraic subsets of ~ are precisely finite unions of the inter­

sections of pairs of open and closed C-subsets, the so called 

constructible subsets of ~ in the C-Zariski topology. And that 

the X-conjugacy problem for an elementary algebraic group G becomes 

polynomial if X is elementary algebraic. 

These necessary preliminaries completed we apply Tarski's theorem 

to prove the following. 

3.1 Definability Theorem for an Algebraically Closed Field 

Let F be an algebraically closed field and let 1~ be an 

algebraic system whose domain A is a subset of ~ and whose 

operations cr1 , ••• ,crk and relations R1 , ••• ,Rs are elementary 

·10 11/i algebraic on Fn • If w is finitely generated then £i., is 

computable and its relations are decidable. 

Let ~ 1 , ••• ,5m} c A c ~ generate 1i and let y be the standard 

coordinatisation of U so determined. Again we are to prove - is y 

recursive. The strategy is precisely that of the Affine Theorem but 

a large number of technical modifications are necessary. First con-

sider what Tarski's theorem is to provide. 

The term t(X1 , ••• ,Xm) E T(X) can be thought of as an m-argu-

ment operation on A as the cr. 
J.. 

are defined over A and, as such 
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a function, t is elementary algebraic built inductively from the 

a. and the indeterminates: from t we can effectively find an 
l. 

elementary algebraic expression 

defines it 

E 
t 

of mn+n 

t(X) = Y iff Et(x,y) 

free variables which 

(each indeterminate X. 
l. 

employs n indeterminates 

the language of fields). By the elimination of quantifiers its 

definition can be effectively simplified to a polynomial condition 

Bt 

t(X) = y iff v (p.(X,Y) =0 & q.(X,Y) IO}. 
i=1 l. l. 

In particular t(X) = Y is definable throughout ~ by polynomials 

in mn + n indeterminates whose coefficients are elements of the 

prime subfield C • 

Now this means that for a= (a1 , ••• ,~) the relation t(a) = Y, -
which arises on substituting X = .§;_ , is defined by a polynomial 

condition involving elements of C and certain other elements 

namely those making up the generators .§;_. We desire a computable 

structure within which all the possible polynomial conditions arising 

from all the terms can be tested because this will enable each re­

lation t(~) = Y to be enumerated and the unique solution computed 

if it lies within the structure. 

The situation is that of theorem 2. 2 : we desire a computable affine 

space EP into which 1t may be effectively embedded. Indeed, we 

shall prove that such an EP exists, computable under say 13 , and 

that 

3.2 Basic Lemma There exists a recursive function g : '\ ... 0 13 

such that y = ~g • 

whence the theorem will follow exactly as 2.4 follows from 2.3. 
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Before setting about the construction of the W, let us t.idy 

the path from a term to its polynomial definition in the language of 

fields. 

Let £ denote the set of all elementary algebraic expressions 

and let P denote the set of all conceivable polynomial conditionso 

These sets are quite clearly constructive and we assume them comput­

ably numbered by y 1 : I' 1 _. (, and y2 : r 2 _. P. Note that P is 

the set of all finite sequences of even length of elements of 

c [ x1 ' • 0 • 'xmn + n J 0 

We may express the effectiveness of unpacking a term t to its 

elementary algebraic expression Et in (. by saying there exists a 

recursive function w 1 : QY _. r 1 tracking u( t) = Et , so that the 

diagram T(X) ~ ( commutes. 

h w1 1 Y1 

oy > r1 

And we may express the effectiveness of Tarski's procedure for 

eliminating quantifiers from Et to obtain the polynomial condition 

Pt by saying there exists a recursive function w2 : I' 1 _. r 2 tracking 

elim(Et) = Pt , so that t eli!b P commuteso Given the 

f:...l· t 
y1 w ly2 

r1 2 > r2 

existence of ~ the Basic Lemma requires us to close the gap: 
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Consider the operations of U more intimately, we must make a 

number of preliminary constructions. A is a subset of Fn and if 

a is an r-ary operation of ru then it decomposes into n coordi-

1 n r ~r 
nate functions a , ••• , a : A - F , functions essentially ~· _. F • 

Let 1£1 , ••• '2Ss E Flr. By C(lS1 , ••• ,x8 ) we denote the finite 

extension of C given by C( (x~. : 1 < i < r, 1 < j < n, 1 < k < s}) where 
~J - - - - - -

is the j-th coordinate of the i-th n-tuple making up ~ • k x .. 
~J 

By we denote the algebraic closure of 

3.3 Lemma For any ~ 1 , ••• ,1:Ss Err, C(lS1 , ••• ,lSs) is a 

computable subfield of F • 

Proof: A finite extension of the prime field C is computable 

(lemma 1.3) and the algebraic closure of a computable field 

is computable (lemma 1.4). C(x1 , o o. 'lSs) is a subfield of F 

because F is algebraically closed. 

Here is the computable affine space. Take E to be the alge­

braic closure of the prime subfield extended by all the mn elements 

of F making up the generators. If E is computable under a. , let 

Ef be computable under n 
13 = a. .. The first task is to prove A cE;ll; 

the following lemma is a technical device. 

3.4 Lemma Let a be an r-ary operation of 1£ • 

then a(~)· E C(~)n. 

If a E Ar -

Proof: The definability of o as an elementary algebraic expression 

is the definability of its n coordinate functions ai as ele-

mentary algebraic expressions: 

oi(X) = Y iff Ei(x,y) for an appropriate formula of nr + 1 

free variables; 
s. 

iff '-1 {p. (X, Y) = 0 & qJ.(X, Y)-! 0} by elimination. 
j=1 J 
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r 
for any ~ E A • If 

from the polynomial condition we know that 

ai C!Y = b . then 
~ 

P .(a,b.) = 0 
J - ~ 

for 

at least one of the polynomials. We rewrite this equation as 

p .(a)(b.) = 0 thinking of p .(a)(Y) as a polynomial over C(_a). 
J- ~ J-

Thus b. is a root of such a polynomial and must be algebraic 
~ 

over C(~) ; thus each coordinate of a(~) lies in C(~) • 

Q.E.D. 

3.5 L.emma A c ~. 

Proof: As with lemma 2.5 we show that for each t E T(X), v(t) E W 

by induction on term length. 

Basis. The generators of ~ lie in W by construction so 

the terms of length zero all map into W • 

Induction Step. Assume that all terms of length < 1 map into 

~ under v , let t be any term of length 1 • Breaking t 

down into its component subterms write t = a(t1 , ••• ,tr) say. 

Now since v is a homomorphism v(t) = a(vt1 , ••• ,vtr) and let 

vt i = ~i for 1 .:S. i .:5. r and 1 et z = (~ 1 , ••• , zr) E A r .. By the 

induction hypothesis z E Enr and so C(z)n c ~ since E is 

algebraically closed.. By lemma 3 .. 4, a(~) E C(z)n, and 

a(~) E W o 

By induction, all the t map under v into ~ o 

We must set up the machinery which is to test the polynomial 

conditions obtained from quantifier elimination on the generators 

a1 ,. o o ,~ in ~: it is easy to apply this procedure to define g 

of the Basic Lemma. 

The path from the term t to its polynomial definition Pt is 
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constructive, tracked by w2w1 • At 

st 

pt(X,Y) = V {p. (X,Y) = 0 & q. (X,Y) f 0} 
. 1 1 1 
1= 

t(X) = Y iff 

we insert a = (a1 , ••• ,~) for X and pass over to 

st 

t(~) = y iff i~1 {pi C!!)(Y) = 0 & qi (!!)(Y) f 0} • 

We arrive at a condition involving 2st polynomials from the ring 

E[Y] of all n argument polynomials with coefficients in E. To 

test on a given ~ E ~ whether or not t(!!) = ~ is to undertake 

to calculate at most 2st polynomials for the value ~ and test 

the answers for equality or inequality with 0 : there will exist 

for each t one and only one ~ E ~ for which the condition will 

be satisfiedo The precise mechanism is provided by the algebra of 

polynomials over E and is constructive. 
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Now there is an action A : FinSeq(E[Y]) x W ... FinSeq(E) defined 

by A(p1 p •• ,ps;~:) = (p1 (y), .. o .. ,ps(z)) and it is constructive. From 

a. construct a computable coding of FinSeq(E) say a ; the action 

A is defined directly from the computable action e of E[Y] on ~ 

(lemma 1o2) and for it can be constructed a recursive tracking func­

tion a: Oe X OS ... Oa. Apply this action to P2 • Let FinSeq2 (E) 

be the set of all finite sequences of elements of E of even length 

computable under a restricted to n2a , say .. 

3.6 Lemma The restriction A: P2 x W ... FinSeq2 (E) is computable 

tracked by a : r 3 X 0 S -+ 02a o 

We are endeavouring to demonstrate 

3.7 Lemma The characteristic map X : P2 x W ... to, 1 J defined by 

s 

x(p1 ,q1 , ••• ,ps,CJ.s;z) = o if i~~tpi(~)=O & CJ.i(;y)IOJ 

= 1 otherwise ; 

is computable. 

This is achieved by lemma 3 .. 6 together with 

Lemma The checking fu_~ction c : FinSeq2 (E) ... (0, 1} defined by 

s 
if V (x. = 0 & y. ~ 0} 

i=1 ~ ~ 

= 1 otherwise ; 

is computable. 

Proof: Define c : n2a: ... to, 1} by 

s 

cCn1 ,m1 , ..... ,ns ,ms) = o if i"f1 £ni =a o & mi Ia oJ 

c clearly tracks 

= 1 otherwise ; 

c and is recursive since - is • a 

Q.E.D. 
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Now x in lemma 3. 7 can be recursively tracked by w = c a : 

X 
[0 '1 J 

~FinSeq 2 (E) ~ A\ 

t 
r 3 x o~ ----------~-.~----c-____..p. {o, 1 J 

a:~,.., 
~ u20: 

Given t , we effectively enumerate W to discover that 1/_ 

such that t(§!:.) = ::t.. This is implemented by the function 

which establishes the Basic Lemma. 

Finally we must show that the relations of 1l are decidable. 

Let R be an r-ary relation of 2l , since it is elementary alge­

braic we have 

iff 

SR 

V {p . (X) = 0 & q1. (X) ;i 0 J 
. 1 l. 
l.= 

for some polynomials from the ring C[X] in nr indeterminates. 

It must be shown that the set y-1R = { (n1 , •• o ,nr) : yr (n1 ,. a. ,nr) E R} 

is recu~sive. We proceed as follows: given (n1 , ••• ,nr) we compute 

their S labels as elements of ~ using g , so (n1 , ••• ,nr) E Y-1R. 

Over ~ we apply and test the polynomial definition of R. To 

implement this requires new machinery analogous to the action A of 

lemma 3. 6 , new because vle are now calculating polynomials in nr 

variables in place of mn • Given such equipment and using the same 

notations, (n1 , ••• ,n ) E y-1R iff . r 

proving the appropriate analogue 

C a(n1 '0 D 0 ,nr) = 0 

of lemma 3.7. 

This completes the proof of the theorem. 

will do in 

Q.E.D .. 
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In particular: finitely generated algebraic systems made from 

complex numbers using the field algebra of tD together with first­

order logic are computable. 

Here is a more sophisticated corollary. 

3.9 Theorem Let H be an elementary algebraic group over the 

algebraically closed field F , say H c r . Let G 

be a finitely generated subgroup of H. Then G is 

computable and the following variant of the conjugacy 

problem for G is effectively soluble : if X c H 

is an elementary algebraic set then to determine for 

arbitrary g1 ,g2 E G whether or not g1 and g2 are 

conjugate in H by an element of X. 

Proof: Quite clearly G is a finitely generated affine system and 

the relation of X-conjugacy is elementary algebraic. 

Q.E.Do. 

So let H be a closed subgroup of GL(n,F) defined over the 

prime subfield C of F , by definition a rational algebraic sub­

group of GL(n,F) • And let G be any finitely generated subgroup 

of H. If X is a C-defined algebraic subset of GL(n,F) - such 

as H or GL(n,F) itself - then the X-conjugacy problem of G is 

effectively solublee Concentrating on the C-Zariski topology de-
2 

fined on r , note that the topological closure of G in H is a 

subgroup of H. Taking X to be this rational closure of G we 

deduce 

3 .. 10 Corollary Let H be a rational subgroup of GL(n,F) • For 

any finitely generated subgroup G of H there 

exists a rational subgroup K of H such that 
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G is dense in K (in the C-topology) and the 

conjugacy problem of G with respect to K is 

effectively decidable. 

In contrast C.F. Miller, TII has shown the existence of finitely 

generated subgroups of GL(n,~) with unsolvable (ordinary) conjugacy 

problem, [16,p. 42]. (The reader may find chapters two and twelve 

of [8] useful for an exposition of these ideas about algebraic groups.) 
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4o The Definabili ty Theorem for lRn 

The effective elimination of quantifiers from the elementary 

algebraic expressions over an algebraically closed field derives 

from what is the most well known result of this kind: Tarski's 

seminal discovery of the effective elimination of quantifiers from 

the language of elementary geometry which supports his proof of the 

decidability ·of the elementary theory of Euclidean Geometry, see 

Tarski's [23]. This result is now more usually understood in an 

algebraic setting since the algebra of elementary geometry has been 

found to be represented in that of the real closed fields, see [2Lt). 

The fundamental geometric concept of order finds its algebraic ex­

pression in a real closed field which sustains one and only one 

sensible ordering and which may be defined x < y iff 

(3z)(z I 0 & x+z2 = y) • By augmenting the syntax of our language 

for field theory by the symbol < we obtain a larger class of ex­

pressions, the language of fields with orderings; over a real closed 

field these two languages define the same class of sets, of course. 

Tarski's work leads to the following simplification: 

Theorem of Elimination of Quantifiers for Real Closed Fields 

Let F be a real closed field. Given any elementary algebraic 

expression of field theory with orderings, say E of n free 

variables, there exists a sequence of polynomials from 

C[X1 , ••• ,Xn] say p1 ,q1 , ••• ,ps,qs such that E(x) holds in 

F iff . ~ 1 (p. (X) = 0 & q. (X) > 0} • 
~= ~ ~ 

And furthermore the path from any expression to an appropriate 

collection of polynomials is effective. 

See Seidenberg's paper [20]. 
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Following the proof of the Definability Theorem for Algebrai­

cally Closed Fields it is to be expected that an analogous result 

should hold for En and the real closed fields in general: that 

the simplification to polynomial conditions can be employed and 

effectively tested in some replacement structure for E • As will 

be demonstrated this is not possible. 

The elementary algebraic expressions of fields with orderings 

distinguish special classes of mappings between affine spaces over 

ordered fields in the same way as the elementary algebraic express­

ions of field theory did. The elementary algebraic expressions of 

fields with orderings we shall call the elementary or first-order 

geometric expressio~ when and only when they refer to real closed 

fields. In such circumstances we may define the elementary geometric 

mappings and sets as we did for the elementary algebraic expressions. 

Thus we may state the obvious expected result for ~ as 

if 'U is a finitely generated algebraic system whose 

domain is a subset of En and whose operations and 

relations are elementary geometric then '1L is comput­

able and its relations are decidable. 

For a counterexample to this assertion consider the subfield of the 

real numbers generated by 1 and r where r is taken to be a non­

computable real number. This field is ~(r) of course; it is com­

putable, yet consider the ordering relation < on ~(r) inherited 

from lR : < is elementary geometric but it cannot be decidable 

since this would stand in direct contradiction of the fact that r 

is non-computableo It is easy to construct non-computable finitely 

generated structures. For material on computable real numbers con­

sult Rice's paper [19]. 
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Let us consider more exactly, then, the steps involved in 

attempting an apparently unremarkable adaptation of the proof of 

the last section.. A computable structure R is required to replace 

E which would contain A and allow a Basic Lemma. E must be re­

placed because the polynomial conditions provided by the new elimi­

nation require a different form of testing, involving the non-alge­

braic notion of "positiveness": R must have an appropriate com­

putable ordering to allow a replacement lemma 3.8. The correct R 

is clear: extend ~ by all the real numbers making up the generators 

of tU, and take this extension field's real closure [28, p .. 253L 

For this field lemma 3.5 may be proved and the strategy preserved. 

The breakdown occurs in our inability to replace lemma 3.3, for the 

real closure of a computable field need not be computable, the 

correct R fails to guarantee the polynomial conditions are effect­

ively testable. This is of some interest being a feature of the 

singular algebraic behaviour possible in the relationship between 

orderings in fields and their algebra; by examining the question 

directly we shall quickly discover the Definability Theorem for JRn 

and come to understand why this result is not unnatural. 

Our example involving ~(r) demonstrates that in general the 

complexity of the ordering of a field may be independent of the 

complexity of its field structure.. It is clear that this independ­

ence may disappear in an appropriately richer algebraic system which 

can accommodate the ordering properly, for example in the real 

closure of an ordered field wherein the ordering is uniquely defin­

able in the field structure. Notice, then, that if F is real 

closed and computable its ordering is computable so we deduce imme­

diately that the real closure of our ~(r) is ~ computable. 
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Here it is that the argument with R fails when the algebraic 

system includes non-computable real numbers. 

The constructive relationship between ordered fields and their 

real closures has been the subject of papers by A.H. Lachlan and 

E.W. Madison [10, 12] and we may conclude the situation in lRn by 

citing their discoveries. 

If F is a computable subfield of the real numbers with its 

ordering computable then F must be a proper subfield of the field 

of computable reals, if F is not such a subfield then no field 

containing F and extending its ordering may be computable, [10]. 

If F is a computable field with a computable ordering then its 

real closure is a computable field, [12]. 

To these facts we add that a finite extension of ~ by com­

putable real numbers is a computable field with a computable ordering; 

these results enable us to prove the following by means of the argu­

ment of the last section. 

Definabili ty Theorem for Y 

Let U be an algebraic system whose domain A is a subset of 

]Rn and whose operations a1 , ••• ,ak and relations R1 , ••• ,Rs 

are elementary geometric on JRn. If 'Lt is finitely generated 

by vectors involving computable real numbers only,then 1t is 

computable and its relations are decidable. 

This last step involving finite extensions of ~ we must leave 

to the reader to adapt from Rice's paper [19,p. 785]. A more thorough 

account of the relationship between fields and their orderings, in 

terms of one, many-one, and Turing degrees, is to be included in[26]. 

The papers [6,13,17] make interesting and necessary reading in this 

connection. 
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From this vantage point the theorem explains itself in the 

following way: first, orderings in fields are not part of the alge­

braic point of view towards a field. This is clear from van der 

Waerden's examples which introduce his exposition of the subject [28] 

and is underlined by attention to complexity - for example, by the 

fact that all the Turing degrees can be realised in the field order­

ings of computable fields, [26] - and this is quite simply because 

some orderings can escape the quintessential feature of the algebraic 

concept: that it does not involve the nature of the elements of the 

system. Turning to the Definability Theorems their similarity in 

simple algebraic terms is misleading: in mn algebraic definability 

can be reduced to algebraic definability in the large (as it were), 

. lRn l.n it can be reduced to the geometric structure of lR. The 

computable reals represent, in combinatorial terms, what is construe-

ti ve about the geometry of lR • 

We conclude with an illustration of an elementary geometric 

system .. 

Consider the Lie algebra JP of all polynomial vector fields on 

mll. Typically v E lP is an n-tuple of elements of JR[X1 , ••• ,Xn] 

whence lP can be identified with the n-fold sum of a vector space 

of countably infinite dimension over the reals. On considering 

vector fields of degree bounded by k (that is ~ = (v1 , ••• ,vn) 

such that each vi is of degree ~k) we obtain a finite dimensional 
(n+k)+1 

system lPk naturally identified with the n-fold sum of lR k 

and abbreviated ~. (Notice that the Lie product must be dropped 

since lPk is not a Lie subalgebra unless k = 1 • Of course, we 

could employ the product together with truncation.) What is of 

interest is lPk as a relational structure. For example, among the 

many relations it supports is the N-ary relation S(~) meaning 
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"Y. is stable at Q" and the 2N-ary relation T(£,y) meaning 

"!! and Y. are topologically equivalent", for these concepts the 

reader is recommended Arnold's book [1]. Clearly such relations 

are not prescribed in first-order terms. Let us concentrate on 

S(y). From the point of view of the theory of differential equa­

tions, one is interested in obtaining algebraic criteria for sta­

bility, polynomial conditions of some kind or other. For k = 1 

such is known, it is the Routh test which is a condition on the 

coefficients of a linear vector field defined in terms of polynom­

ials over (lt and the order relation in JR. ; in particular it is 

elementary geometric, see [2,ppo 70-82]. We know directly from the 

Affine Theorem that the ring structure of JP1 is locally computable. 

Providing one includes c2mputable real numbers only then each such 

finitely generated subring has decidable stability problem. 

Actually it is possible to show that there exist finitely generated 

subrings with undecidable stability problem so the ordering condi­

tion is intrinsic to characterisations of stability even for small 

classes of linear vector fields [26]. 

To digress further let us note that extensions to complex 

linear systems of the algebraic criteria of Routh, as in the work 

of R.J. Duffin [5], cannot escape from involving orderings: the 

undecidable systems for JRn are automatically undecidable finitely 

generated affine systems in ~n so that the stability of a linear 

dynamical system on ~n is not first order definable over ID. 

For k > 1 let us observe that if there exists a k such that 

~ finitely generated elementary geometric subsystem of JPk - in­

volving computable reals only - has undecidable stability problem 

then one may conclude that the absence of an algebraic criterion is 
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dramatic in that the property cannot be elementary geometric. This 

question is open and has been recently posed by Arnold [3, p. 59]. 

There are a number of natural extensions of the theorems in 

this paper: first one may care to relax the condition that the 

affine systems be finitely generatedo This can be done immediately 

for an algebraically closed field by scrutinising the construction 

of infinite field extensions, see FrohliCh and Shepherdson's [7]. 

Secondly, one may care to open up the problems for other fields and 

rings. Thirdly, there is the analysis of the model--theoretic prop­

erties which underlie the theorems; this problem I hope will be the 

subject of a paper of mine in due course. 
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