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Abstract. In the present paper, the definition of probabilistic Turing machines is
extended to allow the introduction of relative computability. Relative computable
functions, predicates and sets are discussed and their operations investigated. It is
shown that, despite the fact that randomness is involved, most of the conventional
results hold in the probabilistic case. Various classes of ordinary functions character-
izable by computable random functions are introduced, and their relations are
examined. Perhaps somewhat unexpectedly, it is shown that, in some sense, proba-
bilistic Turing machines are capable of computing any given function. Finally, a
necessary and sufficient condition for an ordinary function to be partially recursive is
established via computable probabilistic Turing machines.

I. Introduction. In a well-known paper [11], A. M. Turing defined a class of
computing machines now known as Turing machines. These machines may be
used to characterize a class of functions known as the partially recursive functions
[3].

As it stands, Turing machines are deterministic machines. Since probabilistic
machines have received wide interest in recent years [1], [8], it is natural to inquire
about what will happen if random elements are allowed in a Turing machine. This
has led the author to consider probabilistic Turing machines (PTM) in an earlier
paper [9]. It turns out that, much like the Turing machines, PTM's may be used
to characterize a class of random functions, the partially computable random
functions.

In the present paper, the definition of PTM is extended to allow the introduction
of relative computability. Relative computable functions, predicates and sets are
discussed and their operations are investigated. It is shown that, despite the fact
that randomness is involved, most of the conventional results hold in the proba-
bilistic case.

The class of ordinary functions which are partially computable random functions
is shown to be equivalent to the class of partially recursive functions. In this sense,
we gain nothing by considering PTM's. However, it is shown that in some other

Presented to the Society, January 23, 1970 under the title On probabilistically computable
functions; received by the editors September 7, 1970.

AMS 1970 subject classifications. Primary 02F15, 94A35; Secondary 94A30, 02F10.
Key words and phrases. Probabilistic Turing machines, Turing machines, probabilistically

computable functions, partially recursive functions, computable random functions, com-
putable random sets, computable random predicates.

Copyright © 1971, American Mathematical Society

165

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



166 E. S. SANTOS [September

sense we do gain something by considering PTM's. Mathematically speaking, this
amounts to the fact that there exist classes of ordinary functions characterizable
by PTM's which contain the class of partially recursive functions as proper sub-
class. One such class was given in [9]. Various other classes are discussed in the
present paper and their relations are investigated. Perhaps somewhat unexpectedly,
it is shown that, in some sense, PTM's are capable of computing any given function.

The paper concludes with some discussions on computable PTM's. A necessary
and sufficient condition for an ordinary function to be partially recursive is estab-
lished via computable PTM's.

II. Random sets, predicates and functions. In this section, we shall give a
formal definition of random sets, predicates and functions and other related con-
cepts which will be needed in later discussions. It is easily seen that they are
generalizations of the conventional concepts. Moreover, they reduce to their
counterparts in the conventional theory if the random elements are removed.

The symbols X and Y will stand for ordinary spaces of objects.
Definition 2.1. A random set C in X is characterized by the function p.c from

X into [0, 1]. A k-ary random set in X is a random set in Xk = XxXx ■ • ■ xX
(k times).

Remark. p.c(x) is the probability that xeC. If p.c(x) = 0 or 1 for every xeX, C
reduces to an ordinary set. In this case, we say that C is a crisp set.

Definition 2.2. Let C and D be random sets in X. Then
1. C=D iff (if and only if) p-c = Pd-
2. C^D iff pcSp,D.
3. The complement of C is the random set ~C where p-~c= 1 —p-c-
4. The  intersection  of C and   D is  the  random  set  C n D  in  X where

PCnD=lLC'P-D-
5. The union  of C and   D is  the random set  Cufl in X where fiCuD

= 1-(1-P,C)(Í-P>D) = P-C+P-D-P-CP-D-

In the above definition, we suppress the argument of a function whenever an
equality or inequality holds for all values of the argument are used. This convention
will be used throughout the entire paper to simplify our notations.

It is clear that the operations of complementation, intersection and union for
random sets obey most of the corresponding rules of ordinary set theory.

Definition 2.3. Let C and D be random sets in X and Y, respectively. Then
C x D is the random set in X x Y such that for every x e X, y e Y,

p-cxD(x,y) = p-c(x)-p-D(y).

Definition 2.4. A random predicate P in X is characterized by the function
p,p from X into [0, 1]. A A>ary predicate in X is a random predicate in Xk.

Remark. p.P(x) is the truth value of the statement P(x), i.e., the probability that
P(x) is true.
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Definition 2.8. Let F and Q be random predicates in X. Then
1. P=Qiiïp.P=p.Q.
2. ~P (read "not F") is the random predicate in X with p.~P = 1 — p.P.
3. P A Q (read "F and Q") is the random predicate in X with pPhQ = p.P-pQ.
4. Fv Q  (read   "F  or   g")   is   the   random   predicate   in   X with  p.PVQ

= i-(l-pP)(l-p,Q).
Definition 2.5. Let F be a random predicate in X. The extension of F is the

random set EP where pEp = p.P.

Corollary 2.1. Let P and Q be random predicates in X. Then
1. E„P= ~EP.
2. EP„Q = EP n F0.
3. EPVQ = EP u Fq.

4. P=QiffEP = EQ.
Definition 2.6. A random function / from X into Y is characterized by the

function (if from Ax F into [0, 1] where

(2.1) JfcfojOSf.
3/ey

If, in (2.1), the equality holds for all x 6 X, then/is total. A A>ary random function
in A is a random function from Xk into X.

Remark. p.f(x, y) is the probability that/(x) is equal to y. The inequality (2.1)
allows one to consider functions which are undefined for some x e X.

If the range of pf consists of only two numbers, 0 and 1,/reduces to an ordinary
function. In this case, we say that/is a crisp function and the conventional nota-
tions of ordinary functions will be used freely, e.g.,/(x)=j if p.f(x, y)= 1, etc.

For ease of notation, we shall follow the suggestion of Scott [10] by introducing
a new symbol D to stand for the "undefined". Thus, if/is a random function from
X into Y, define

p.f(x, Q.) = 1 - 2 h(x, y)
ye Y

for all x e X, i.e., p.f(x, Q) is the probability that /is undefined at x.

Definition 2.7. Two random functions / and g from X into Y are equivalent
with threshold A, 0 ̂  A < 1, iff for all x e X,

(2.2) 2 ríÁx,y)-pg(x,y) > A
ye y

where Y' = F u {Q.}. In symbols,/~g.
Remark. f~g means for every xe A, the probability that/(x)=g(x) is larger

than A. If/is a crisp function, (2.2) reduces to ju9(x,/(x))>A for all xeA. Here,
we use the convention that/(x) = i2 iff is undefined at x.
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Definition 2.8. Let /and g be random functions from JVinto Y. Define

(2-3) mtf, g) = n( 2 /*/(*' yy^(x, y)\
xex IveY' J

where Y' = Y U {£î}.
Remark. m(f,g) is the probability that for all xeX, f(x)=g(x). If/is a crisp

function, (2.3) reduces to

m(f,g) = \~[p-g(x,f(x)).
xeX

Here, again, we use the convention that/(x) = Q iff is undefined at x.
Remark. Infinite product in the present paper differs slightly from the widely

accepted one in the sense that we allow convergent to 0. Formally, let {an} be a
sequence of real numbers. We define

oo N

n «» = jim n «»•
Since all sequences {a„} under consideration have the property 0 S an ̂  1 for all n,
u an always converges.

III. Probabilistic Turing machines.
Definition 3.1. A probabilistic Turing machine (PTM) may be defined through

the specification of three mutually disjoint finite nonempty sets A, B, and S; a
function¿> from Sx Ux KxSinto [0, 1] where U=A U B, V= Í/U S u { + , -, •},
+ , —, • íí/uí; and a function A from S into [0, 1]. The functions p and A
satisfy the following conditions:

L 2t>ev Zs-esM5» M, v,s')=l for every jeS, ueU, and
2. L.sA(i)=l.
The sets A and £ are, respectively, the printing and auxiliary alphabets. The set

S is the set of internal states. h(s) is the probability that the initial state is s and
p(s, u, v, s') gives the probability of the "next act" of the PTM given that its present
state is s and input u is applied. The "next act" of a PTM is determined by v and
may be any one of the conventional Turing machine operations.

1. v e U: replace u by v on the scanned square and go to state s'.
2. v— + : move one square to the right and go to state s'.
3. v= — : move one square to the left and go to state s'.
4. v= ■ : stop.
5. v e S: go to either v or s' depending on a given random set.
The functions p and A will be referred to as the transition function and initial

distribution, respectively. If A is concentrated at a single state s0 e S, i.e., h(s0) = 1
and h(s) = 0 for s¥=s0, then we say that s0 is the initial state.
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Due to condition 1 of Definition 3.1, some "next act" is certain. Therefore, the
transition function may be defined by giving only those values of p(s, u, v, s') for
which v+ ■ andp(s, u, v, s')#0. This simplifying scheme for the definition of/? will
be used throughout the entire paper.

Definition 3.2. Let Z=(A, B, S,p, h) be a PTM. Then
1. Z is deterministic iff the range of both p and h consists of only two numbers,

Oand 1.
2. Z is simple iff p(s, u, v, s') = 0 for every s,s' e S,ue A*o B, and v e S.
Observe that the conventional Turing machines are deterministic PTM and the

PTM introduced by the author in an earlier paper [9] are simple PTM according
to the above definitions.

In the case of a deterministic PTM, the transition function p is uniquely deter-
mined by the set 0> = {(s, u, v, s') : p(s, u, v, s') = \ and v^= •}.

Notation. Let C be an ordinary set. The collection of all finite sequences of
symbols of C will be denoted by C*. For convenience sake, we shall assume that
C* contains e where ex = x = xe for all x e C*.

Definition 3.3. Let Z=(A, B, S,p,h) be a PTM. Expressions of Z, tape
expressions of Z and words of Z are, respectively, elements of (AviBkj S)*,
(A U B)*, and A*.

In what follows, if Z = (A, B, S,p, h) is a PTM, then we assume that A contains
the symbol 1 and B contains the symbols * and b, where b stands for blank.

Definition 3.4. Let Z=(A, B, S,p, h) be a PTM. An expression a of Z is an
instantaneous description of Z iff

1. a contains exactly one s e S and s is not the rightmost symbol of a,
2. the leftmost symbol of a is not b, and
3. the rightmost symbol of a is not b unless it is the symbol immediately to the

right of s.
The collection of all instantaneous descriptions of Z will be denoted by J(Z). If a

is an instantaneous description of Z which contains se S and u is the symbol im-
mediately to the right of s, then we say that s is the state of Z at a and u the symbol
scanned by Z at a.

The above definition differs slightly from that given in [9]. It does not allow
initial and final occurrences of b unless b is the symbol scanned by the PTM at that
instant. The advantages of the present definition will be apparent as we proceed.

Notation. Let Z=(A, B, S,p, h) be a PTM.
1. If a is an expression of Z and n a positive integer, then an will denote the

expression aa- ■ -a (n times) that consists of n occurrences of a. For completeness
sake, we take a° = e.

2. With each nonnegative integer n, we associate the tape expression «= 1".
3. If a is an expression of Z, then <«> will denote the word of Z obtained by

striking out all symbols in a not belonging to A if a contains symbols from A ;
otherwise <a> = ¿>.
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4. Unless otherwise stated, the letters w, x, y, with or without subscripts, will
represent words of Z. Moreover, we shall write

w(k)for(wx,w2,...,wk),
xik)for(xx,x2,...,xk),
fk)for(yx,y2,...,yk),and
w\k) for (wlx, wi2,..., wik), etc.

5. With each k-tupie w<-k) of words of Z, we associate the tape expression

Wm = (WX, W2,..., Wk) = <>!> * <M>2> * - - ■ * Ofc>.

Observe that if <xe A*, then <a> = a. Moreover, if A={\}, then <a> = <ñ> where n
is the number of occurrences of 1 in a.

In Definitions 3.5 to 3.8 below, Z = (A, B, S,p, A) is a PTM and Ta random set
in A*.

Definition 3.5. For every a, ß e J(Z), define

qz.rfa, ß) = P(s, U, u', s')     if  a = ysu8,        ß = ys'u'8,        u' # U\
= p(s, U, +,s')   if  a = ysuu'8,    ß = yus'u'8,     yu # b,

or a = suu'8, ß = s'u'8, u = b,

or a = ysu, ß = yus'b, yu # b,

or a = su, ß — s'b, u = b;

= p(s, u, —,s')  if a = yu'suS, ß = ys'u'uS, u8 / b,

ora = yu'su, ß = ys'u', u = b,

or a = su8, ß = s'bu8, w8 ̂  A,
or a = su, ß = j'A, u = b;

= p(s, u, u, s')+ 2 />(•*, w» ̂'» i'O-^r««»
S"6S

+ 2^- «.*".*')■ [l-/*r««»]
S»6S

if a = ysu8,       ß = ys'u8;
= 0 otherwise;

where y, 8 e {A u 5)*, j, 5' e S, and u,u'eAuB.
Remark. qz,r(a,ß) is the probability that the "next" instantaneous description

of Z relative to T will be ß given that Z "starts" with instantaneous description a.
The above definition is tailored in such a way that initial and final occurrences of

b are automatically removed.
Definition 3.6. For every a,ße J(Z) and n = 0, 1,2,..., define inductively

a£V(«,/0= 1    if« = /3,
= 0   ifa^/3;

iS?r(«,j8)=   2  az.i1)(^,y)gz.T(y,ß)-
yeSlz)
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Remark. qf?T is the probability that the instantaneous description of Z relative
to F will be ß "after n steps" given that Z "starts" with a.

By induction, one shows that for every a e J(Z) and n g 0,

2 «ftWflá !•
ßejfiZI

Definition 3.7. For every a, ß e J(Z) and « = 1,2,..., define

t(zn^,ß)=p(s,u,-,s)qf,i1\a,ß)

where s is the state of Z at ß and u the symbol scanned by Z at ß. Moreover, define

tz.A«, ß) = 2 *K"1 J3).

Remark. 4!r(a> /0 is the probability that Z will "terminate" with ß relative to
F "after n steps" given that Z "starts" with a. tz,T(a, ß) is the probability that Z
will "terminate" with ß relative to F "after a finite number of steps" given that
Z "starts" with a.

That tz,r(a, ß) converges follows from the fact that for every a e J(Z) and
AäO,

2   1m(",ß)=    2   [< + 1)(«,i8) + /w + 1)(«,|8)]
ßeS{Z) eeS(Z)

or

2  |'^Ä^«.:ii
6eS(Z) Ln=l

=  J

It is interesting to note that with each PTM, we may associate a Markov chain
whose states are the instantaneous descriptions of the PTM plus an additional
absorbing state [2] corresponding to the termination of the PTM.

Definition 3.8. For each positive integer k, we associate a k-ary random func-
tion <J>(z,V in A* as follows:

M*<« (w(W, w)= 2        2 Ks)tz,Á^k\ ß)
ßeJ:iZy,(.B'> = w ses

where w™ e (A*)k and w e A*. If k= 1, we shall write Ozr for «DzVr-
That O^i,. is a random function follows immediately from the definition of tz¡T.
It is clear from the above definitions that if Z is simple, then, for every k, (Í>(z!t1

= ^>z.)r2 for arbitrary random sets Tx and T2 in A*. In this case, we shall write
&T for $>%.

Theorem 3.1. Let Z=(A, B, S,p,h) be a PTM. There exists a PTM Z'
= (A, B, S',p', h') where h' is concentrated at a single state, and for every random
set Tin A* and k= 1,2,..., && = <5^>r.
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Proof. Let S' = S u {s0} where s0$ A u Bu S and

p'(s, u, v, s') = p(s, u,v,s')   if s, s' e S, u e A u B, v e A u B u S u { +, -, •},

= h(s') if s = s0, s' e S, u = v e A u B;

h'(s) =1    if i = s0,

= 0   if s ,¿ s0.

Clearly, Z' has the desired properties.
By virtue of the above theorem, we may, without loss of generality, consider

only those PTM with an initial state. If A is concentrated at s, we shall also write
Z = (A, B, S,p, s) for Z=(A, B, S,p, A).

IV. Relative computability. In this section, A will denote the ordinary finite
set {ax, a2,..., am} where m>0 and ax = 1. Moreover, Twill denote a random set
in A*.

Definition 4.1. A k-ary random function/in A* is partially T-computable iff,
for some PTM Z = (A, B, S, p, h),f= O^V. In this case, we say that Z ^-computes/
If, in addition,/is total, then/is T-computable.

Remark. In the above definition, if T is a crisp subset and Z is deterministic,
then /is a crisp function. In this case, we say that /is partially ^-recursive. It is
easily seen that the concept of partially T-recursive as given here is equivalent to
the existing one [3]. If/ is total, then we say that/is T-recursive.

Definition 4.2. A k-ary random function/in A* is partially computable iff,
for some simple PTMZ = (,4, B, S,p, A), f=<S><£\ In this case, we say that Z
computes/ If, in addition,/is total, then/is computable.

Theorem 4.1. If a k-ary random function is (partially) computable, then it is
(partially) T-computable for every random set T in A*.

Proof. Immediate from the definitions.

Theorem 4.2. Let f be a k-ary random function in A*, fis (partially) computable
ifff is (partially) 0 -computable, where 0 is the empty set.

Proof. If/is (partially) computable, then by Theorem 4.1,/is (partially) 0-
computable. Conversely, iff is (partially) 0-computable, then there exists a PTM
Z = (A, B, S,p, A) which 0-computes/ Let Z' = (A, B, S,p', h) where

p'(s, u, v, s') = p(s, u, v, s') if v f S and u / v,

= p(s, u, u, s') + 2 P(s, u, s", s')   if « = ».
s"es

Then Z' is a simple PTM and computes/
By virtue of the above theorem, for each statement which is true for T-

computability, a corresponding statement which is true for computability may be
obtained simply by taking T— 0.
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Definition 4.3. The characteristic function of a k-ary random set C in A* is
the A>ary random function yc where

Mxc(w<,c>> w) = Mw(fc)) if w = 1,

= 1 — pc(wm) if w = e,

= 0 otherwise.
The characteristic function of a k-ary random predicate in A* is the characteristic
function of its extension.

Corollary 4.1. Let yP be the characteristic function of a k-ary random predicate
P in A*, then

pxp(wm, w) = (ip(wlk)) ifw= 1,

= l-p.P(wm)   ifw = e,

= 0 otherwise.

Definition 4.4. A A>ary random set C in A* is F-computable iff yc is F-
computable. A A>ary random predicate F in A* is F-computable iff EP is F-
computable.

Theorem 4.3. T is T-computable.

Proof. Let Z=(A, B, S, p, s0) where B = {*, b}, S={s0, sx, s2, s3, sj and

p(s0, a, sx, s2) =1    for all a e A u B,

p(sx, a, 1, s3) = 1    for all a e A u B,
/        1     n        \ 1p(s3, l,R,s2) = 1,

p(s2, a, b, Si) = 1    for all a e A,

p(st, b, R,s2) = 1.

Then xt = ®z,t.
Operations of F-computable random functions, sets and predicates will be

considered next. It will be assumed that all symbols mentioned below are distinct
unless otherwise stated. Moreover, if Z( = (A, B¡, S¡,p¡, h(), i=\, 2, are PTM's, then

1. BinSf=0,i,j=l,2,
2. Bx n B2 = {*, b} unless otherwise stated,
3. unless explicitly mentioned, no elements will be assumed to belong to Sx n S2.
Definition 4.5. LetZ¡ = (/í, Bh Sit p{, «¡), / = 1, 2, be PTM and S3çSx n 52# 0.

By ZX^Z2 (mod S3) we mean the PTM Z=(A, B, S,p, h) where B = BX u B2,
S=SX u ^ and

p(s, u, v, s') = px(s, u, v, s') if s e (Sx — S2) u S3,ue Ux, v e Vx, s' e Sx,

= p2(s, u, v, s') if se S2-S3, ueU2,ve V2, s' e S2;

h(s) = hx(s) if se Sx,
= 0 otherwise.
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Here, !/,*j#, UB¿ Vt= Ut U S¡ U { + , -, •}, i—1,2. If S3=0, we shall simply
write Zj ^Z2. In general, ZX^Z2^->Zn = (Zx^Z2-+->Zn_x)->Zn.

Definition 4.6. Let Z=(A, B, S,p, A) be a PTM and s e S. s is a terminating
state of Z iff p(s, u, ■, s) = 1 for all u e A u B.

Lemma 4.1. For  every j,k,l^0,   there  exists  a  simple  deterministic  PTM
Z=(A, B, S,p, s0) such that for every T and n>0,

tz,T(so(xm, ww, yw), ß) = 1    ifß = s(x(k>, w(n\ ..., wm, yw), (wn j times)

= 0   otherwise,

where s is a terminating state ofZ.

The PTM Z above will be referred to as the [k,j, /]-copying machine with final
state s.

Lemma 4.2. For  every  k>0,   there  exists  a  simple  deterministic  PTM  Z
= (A, B, S, p, s0) such that for every T and n > 0,

tz.T(s0(x(k\ y™), ß) = 1   ifß = s( /">, x(*>),

= 0   otherwise,

where s is a terminating state ofZ.

The PTM Z above will be referred to as the ^-transfer machine with final state s.
The existence of the PTM given in Lemmas 4.1 and 4.2 are well known [3, 13].

Lemma 4.3. For  every k,l^0  and Z = (A, B, S,p,s0),  there  exists a PTM
Z' = (A, B', S',/>', sx) such that for every T and n>0,

tz'.T(si(x(k\ w<", /»>), ß) = tz¡T(s, wu\ y)   ifß = í(x<*>, <y>, yn,
= 0 otherwise,

where s is a terminating state ofZ.

The proof of Lemma 4.3 is similar to that of the deterministic case [3, 13] and
thus will be omitted. The PTM Z' given will be referred to as [k, /]-restriction of Z
with final state s.

Definition 4.7. Let/be a l-ary random function in A* and gx,g2, ■ ■ -,gi be
k-ary random functions in A*. The operation of composition associates with
/gi, g2,---,gi& k-ary random function A in A* where

(4.1) Pn(wm,w)=    2    lp-f(xw,w)Ylp.gi(w«\Xi)X.

We shall represent A by h(wik))=f(gi(wik)),g2(wm), ■ ■ -,gi(wik)))-

Theorem 4.4. If f,gi,g2,.. .,g¡ are (partially) T-computable, so is A given by

(4.1).
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Proof. Let Z0 = (A, B0, S0,p0, st + x) F-compute / and Zt = (A, B¡, Si,pt, st)  T-
compute g¡, i= 1, 2,..., /. Let

1. Z'o be the [0, /, 0]-copying machine with initial state s0 and final state sx.
2. ZI be the [k(i— 1), &/]-restriction of Z( with initial state s¿ and final state

Si+X, i=\,2,..., I.
Let ¿=Z£ -»-¿i ->-Z¿ -*■•••-*■£/ -*-Z0. Then Z F-computes h.

Theorem   4.5.    Let  /i«i>, wf*\ ..., wf>>) =f(gx(w[k0), g2(w2k¿),..., £,«<>))
where

hK'»= 2 W,,,^)n^1«'),xi))
xWe(A')'   \ f=l J

and
w*) = (wfx\ w2k*>,..., <<>).

Iff, gx, g2,.. .,g¡ are (partially) T-computable, so is h.

Proof. Follows from repeated application of Theorem 4.4 and the fact that the
projection functions I¡í(w(n)) = w¡, i= 1, 2,..., n, are computable.

Definition 4.8. For every w e A*, define
r

N(w) = 2 kim'~1   if w = ak,akt_x- -akl, r > 0,

= 0 if w = e.

Conversely, define W(ri) = w iff N(w) = n.
Clearly, W(ri) is well defined for all nonnegative n. For completeness sake, we

define W(ri) = e if n is negative.
The above definition provides a code for the elements of A*. It is clear that such

a code is computable in the following sense :

Lemma 4.4. There exists a simple deterministic PTM Z = (A, B, S,p,s0) such
that for every T and w e A*

tz.T(s0w,ß)= 1    ifß = sN(w),

= 0   otherwise.

The PTM Z above will be referred to as the coding machine with final state s.

Lemma 4.5. There exists a simple deterministic PTM Z = (A, B, S,p,s0) such
that for every T and nonnegative n,

tz,T(son,ß)=\    ifß = sW(ri),
= 0   otherwise,

where s is a terminating state ofZ.

The PTM Z above will be referred to as the decoding machine with final state s.
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Theorem 4.6. If C and D are T-computable k-ary random sets in A*, so are
~C,Cn DandCu D.

Proof. From    Lemmas   4.4    and   4.5,   the   2-ary   functions   fx(wx,w2) =
W[N(wx)-N(w2)]  and f2(wx,w2)=W[N(wx)N(w2)]  in A* are T-computable.
Since x~c(w(k))=fi(Uxc(wm)) and Xcnn(wM)=f2(xc(ww), Xn(w(k% therefore ~C
and C n D are T-computable. Moreover, Cu D=~[(~C) n (~ D)], thus Cufl
is also T-computable.

Theorem 4.7. If C and D are, respectively, T-computable k-ary and l-ary random
sets in A*, so is the (k + l)-ary random set Cx D.

Proof. Let C and D be k +l-ary random sets in A* defined as follows:

P-c(xik\fn) = p.c(xm),

n(xik\yw) = p.D(yw).

Clearly, both C and D are T-computable. Since Cx D = C n D, by Theorem 4.6,
Cx D is T-computable.

Theorem 4.8. IfP and Q are T-computable random predicates in A*, so are ~P,
PaQ andPM Q.

Proof. Follows from Corollary 2.1 and Theorem 4.6.
Definition 4.9. The operation of minimalization associates with a k + l-ary

random function/in A* and w0e A* the k-ary random function A in A* where

(4.2) p.h(w«\ w) = H(w, w«\ wo)   HI     2  MX*. w™>yï-
xeApHw) y 5e wo

Here A¡ = {w e A* : N(w)<l}. We shall represent A by

h(wm) = Min,, [f(w, w™) = wol

Moreover, if P is a k + l-ary random predicate in A*, by Min„ P(w, w(k)) we shall
mean Min„ [xP(w, w(k))= !]•

The above definition generalizes the usual one in two ways, namely, / need not
be total and w0 is arbitrary.

Lemma 4.6. If f is partially T-computable, so is Minw [f(w, w{k)) — e\

Proof. Let Z = (A, B, S,p, s0) T-compute/and
1. Z0 = (A, B0, S0, Po, s0) be a simple deterministic PTM where B0 = {*,b},

^o = {ío, s, sx} and ^ consists of (j0, u, L, s) for all ue Au {A}, (s, b, *, s), and
(s, *, L, sx). Then

tzo.ÁSoW^, ß) = I    if ß = sx(eTw^),
= 0   otherwise.

2. Zx be the [0, 2, 0]-copying machine with initial state sx and final state s2.
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3. Z2 be the [0, k +1 ]-restriction of Z with initial state s2 and final state s3.
4. Z3 = (A, B3, S3,p3, s3) be a simple deterministic PTM where B3={*,b},

S3 = {s3, Si,..., s1B) sx} and 0> consists of (s3, b, R, ¿4), (sit *, R, s5), (ss, u, R, s5),
ueAu {b}, (s5, *, b, s6), (se, b, R, s7), (s7, u, b, s6), ueAu {*}, (s6, b, R, sB),
(j8, u, b, s6), ue Au {*}, (sB, u, L, s8), ueAu {b}, (s8, *, b, sg), (sg, b, R, sxo),
(s3, u, b, sxx), ueA, (sxx, b, R, s3), (s3, *, b, sX2), (sX2, u, R, sX2), ueA*J{b},
(sx2, *, L, sX3), (sX3,ai,ai+x,sXi), i= 1, 2,..., m-\, (sXi, u, L, sXi), ueA,
(sXi, b, R, sx), (sX3, am, ax, sX5), (sX5, axL, sx3), (s13, b, ax, sx). Then

tz3.T(s0(x, y, wm), B) = 1   if x = e, ß = s10<^>,

= 1    if x # e, ß = sx(W[N(y) + l], w™),
= 0   otherwise.

Let Zi=Z0->Zx^»Z2 and Z'=Zi~^Z3 (mod{sx}), then Z' F-computes
Minw [f(w,w™) = e].

Theorem 4.9. Iff is partially T-computable, so is Minw [f(w,wm) = w0] for
arbitrary w0e A*.

Proof. Consider the 2-ary function g in A* where

g(x,y) = \    ifx=y,
= 0   if jc ft y,

and let h(w, w(k))=g(w0,f(w, w(k))). Let F be a &+l-ary random predicate where
XP = h. Then

Min„ [f(w, wm) = w0] = Min^ [x~P(w, wik)) = e\.

Definition 4.10. Let/and g be, respectively, &-ary and k + 2-ary random func-
tions in A*. The operation of primitive recursion associates with/and g the k+ 1-
ary function h in A* where p.h is defined inductively on A(x), x e A*,

p.h(e, wm, w) = p.,(wm, w),

(4J) (xh(W[N(x)+\], w«\ w) = 2 P-Áx, ww,y)-(xg(x,y, w™, w).
yeA'

The usual notation of primitive recursion will be used, i.e., we shall represent h by

h(e, ww) = /(w(W),

h(W[N(x)+1], wm) = g(x, h(x, w^), w(k)).

Theorem 4.10. If fand g are (partially) T-computable, so is h given by (4.3).

Proof. Let Zx and Z2 F-compute / and g, respectively, and
1. Z0 be the [0, l]-restriction of the coding machine with initial state s0 and

final state sx.
2. Z3 be the [1, 2, 0]-copying machine with initial state sx and final state s2.
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3. Z4 be the [0, &]-restriction of Zx with initial state s2 and final state ¿3.
4. Z5 = (A, B5, S5,ps, s3) be a simple deterministic PTM where B5 = {*,b},

S5 = {s3, Si,.. .,s} and 0* consists of (s3, b, L, j4), (j4, A, *, j4), (i4, *, L, s5),
(s3, 1, R, se), (s6, *, L, s7), (s7, 1, b, s7), (s7, b, L, sB), (sB, b, *, sB), (sg, *, L, sB),

(sg, b, 1, j5), (s6, 1, R, se), (s6, *, L, sxo), (sxo, 1, b, sxo), (sxo, b, L, sxx), (sxx, 1, *, sx2),
(sX2, *, L, sX2), (sx2, 1, L, sX2), (sX2, b, 1, sx3), (sx3, \,L, sx3), (sx3, b, 1, s5). Then

tzsA^n * ce, ß) = 1     if ß = S5n*b*a,

= 0   otherwise,

for all a e (A u £5)*.
5. Z6 = (/i, ß6, Se, pe, sXi) be a simple deterministic PTM where B6 = {*, A},

S6={i14, j15, ..., i28} and & consists of (j14, A, /?, sXi), (sxi, *, b, sx5), (sX5, u, R, sX5),
ue Au {A}, (s15, *, R, sX6), (sxe, u, R, sxe), ueAu {A}, (sX6, *, A, j17), (sX7, b, R, sX8),
(sxe, u, b, sX7), ueAu {A}, (s18, A, R, s19), (sx9, u, A, s17), ueAu {A}, (sX9, u, L, sxg),
ueAu{b}, (sX9, *, b, s20), (s20, A, R, s2X), (s17, 1, R,s17), (sX7, *, R,s22),

(s22, b, 1, s23), (s23, 1, L, s23), (s23, *, L, s23), (s23, b, R, s2i), (s2i, 1, A, s2i),

(i24, A, R, s2s), (s22, 1, L, s26), (s2e, *, I, i26), (^26> 1> L, s27), (s27, 1, *, s27),

(s27, *, L, s23), (s23, 1, L, s2B), (s2B, b, R, s25). lhen

tze,T(sxí(ñx, ñ2, w, wm), ß) = !    if "i + °> ß = s2Xw,

= 1    if nx / 0, ]3 = ^(ni-l, n2+l, H-, w<w),

= 0   otherwise,

for every nonnegative nx and n2.
6. Z7 be the [1, 1, k+ l]-copying machine with initial state j25 and final state i29.
7. Z8 be the [2, l]-restriction of the decoding machine with initial state s29 and

final state i30.
8. Z9 be the [4, 1, 0]-copying machine with initial state S30 and final state sxi.
Let Z10=ZQ-^Z3->Zi^Zfl^ZB^>Z7->ZB and Z=ZX0^>Z9 (mod{sxi}),

then Z T-computes A.

V. Crisp functions computable by PTM's. Let Tbe a crisp set. From the remark
made after Definition 4.1, it is clear that every partially T-recursive function is a
partially T-computable crisp function. Conversely, since one may treat a PTM as
if it were just a nondeterministic Turing machine, a deterministic Turing machine
may be set up which simultaneously follows all possible paths which the PTM
might take. Under the hypothesis that all computation lead to the same output,
it is safe to take as output the result obtained when any path reaches a halt state.
This shows that every partially T-computable crisp function is T-recursive. Thus, in
this sense, we gain nothing by considering PTM's. However, we shall show in this
section that, in some other sense, we do gain something by considering PTM's.

Various other classes of crisp functions characterizable by PTM's will be studied
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in this section and their relationship investigated. The symbol A will stand for an
ordinary finite set and F a crisp subset of A*. The symbols k and / will stand for
positive integers and A, with or without subscripts, real number where Oá A< 1.

Definition 5.1. The class iF(A, T, k, A) is the collection of all Â>ary crisp func-
tions in A* such that m(f,g)>\ for some partially F-computable A>ary random
function gin A*. Moreover,

&ÍA, T,k)=    U    f(A, T, k, A).
0SA<1

If no ambiguity is likely to arise, we shall suppress the symbols A, T, k or any
combination of them.

Recall that m(f,g)>\ means that the probability ihaif(w{k))=g(wik)) for every
wiK) is larger than A (cf. Definition 2.8).

Theorem 5.1. ^(Xx) = ^(\2) for every 0 £ Xx, A2 < 1.

Proof. Without loss of generality, let Xx < A2. It follows immediately from the
above definition that 3P(\2)^^(\X). Conversely, let/e S^(XX). Then

m(f,g)=    n    ^K0,/^"0)) > K
wWeW)"

for some partially F-computable k-ary random function g in A*. Therefore, there
exists a finite subset X of iA*)k such that

n ^(wmj(wn) > a2
coWeX'

where X' = (A*)k — X. Let g' be a A>ary random function in A* defined as follows:

pg,(wik), w) = p.9(wik), w)   if wik) e X',

= 1 if wm e X and w = f(ww),
= 0 otherwise.

Clearly, g' is partially F-computable and m(f g') > A2. Thus/e ^YA2).

Corollary 5.1. &=&i\) for allO-¿\<\.

Theorem 5.2. Iffe 3F(l), g, e &(k), i=\,2,...,l, then

h(wm) = f(gx(wm), • • •, gi(w°°)) 6 &ik).

Proof. Let m(//')>A and migi,g'i)>X, i= 1,2,...,/, where/' and g\, i=\,2,
...,/, are partially F-computable. Let h'iwm)=f'igxiw(k)),.. .,g¡iw<k))). Then
mih,h')>X'.

Definition 5.2. Letp be a real number where 0^/?á 1. The 1-ary crisp functions
Fp and Gp in {1}* are defined as follows:

n

Fp(n) = 2 2'8n+i-t,       GPiri) = Sn+1,
i = 0
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where ■8152-Sn ••• is the binary expansion of p. Here, we have used inter-
changeably the word ñ and the nonnegative integer n. The same convention will
be used throughout the rest of the paper.

Definition 5.3. Let p be a real number where 0á/>:£ 1. p is said to be com-
putable iff Fp, or equivalently Gp, is recursive. Otherwise, p is noncomputable.

Properties of computable real numbers can be found elsewhere [7]. It is well
known that there exist noncomputable real numbers. However,

Theorem 5.3. Fp e & for every 0^/7^1.

Proof. Let Z = (A, B, S,p,s0) be a simple PTM where A={\}, /?={*, A},
S={s0, sx} and

p(s0, l,\,sx) = p,       p(s0, 1, A, sx) = 1 -p,

p(sx, l,R,s0) = 1,       p(sx,b, R,s0) = 1.

Let gx = <PZ. Then

Mi-p)*-1

where (?) is the binomial coefficient and (*) = 0 if n<l. Let

n
g2(n) = 4n + 1,       g3(n, I) = 2 2'*»+i-i.

i = 0

where -exe2- ••£„••• is the binary expansion of //4n + 1. Let

g(") =£3{«,£i[g2(w)]}.

Since g1( g2 and g3 are computable, so is g. We shall show that m(f g) > 0. To this
end, consider the collection J of all infinite sequences of 0's and l's. Let
J(pi, P2, ■ ■ ■, Pn) De the subset of J consisting of all sequences starting with
(Pi, P2, ■ ■ -, Pn)-/shall be considered to be a measurable space [5] whose measurable
sets are the a-ring [5] generated by the sets Jipi, p2,..., pn). To each J(px, p2,..., pn)
we assign a measure (t)pl(\ —p)n~' where / is the number of l's in (Px, P2,..., Pn).
This induces a probability measure mp on J. From the definition of g, we have

P.g(n,f(n)) = mp{\ll4« + 1-p\ ^ l/2" + 1}-

Here, we identified with each sequence (px, p2,..., pn,...) e J the real number
whose binary expansion is -pxp2- ■ ■ pn- ■ ■. By the Law of Large Numbers [12, p.
209],

mp{\l¡An + 1-p\ â l/2n + 1} ̂  l-l/4-4n + 1-4n + 1 = l-l/42n + 3.

Since n"=2 (1 - l/«2) = i>0, therefore Uñ=o (1 - l/42n + 3)>0. Thus
oo

m(f,g) = Yl^(n,f(n))>0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1971] COMPUTABILITY BY PROBABILISTIC TURING MACHINES 181

Theorem 5.4. Gp e J*for every 0 ¿,p ^ 1.

Proof. Let f(ri) = 8 where n = 8 (mod 2), Se{0, 1}. Then Gp(n)=f(Fp(n)). Since
/is computable, by Theorems 5.3 and 5.2, Gp eíF.

The following well-known result [3] will be needed in later discussions. It will
be quoted below without proof.

Theorem 5.5. Let I be the set of nonnegative integers and k>0. There exist a
recursive k-ary function K in I and k recursive l-ary functions Lx, L2,..., Lk, in I
such that

K(Lx(x), L2(x),..., Lk(x)) = x   for all x e /,

Fi(A(x1, x2,..., xk)) = x¡   for all xx, x2,..., xke I and i = \,2,...,k.

Combining the above theorem with Lemmas 4.4 and 4.5 yields

Theorem 5.6. For every k>0, there exist a recursive k-ary function K in A* and
k recursive l-ary functions Lx, L2,..., Lk in A* such that

K(Lx(w), L2(w),..., Lk(w)) = w   for all we I,

Lt(K(w(k))) = wt   for all wm e (A*)k and i = 1, 2,.... A:.

To simplify, our notation, we shall write

Nk(w™) = A(A(w<«))
and

Wk(ri) = (Lx(W(ri)), L2(W(ri)),.. .,Lk(W(ri))).
Clearly,

Wk[Nk(w™)] = w<«   and    Nk[Wk(n)] = n.

Theorem 5.7. For every A, T, and k, ^(A, T, k) is a proper subset of !F(A, T, k),
where ^(A, T, k) is the class of all partially T-computable crisp functions in A*.

Proof. Since it is obvious that ^(A, T,k)<^^(A, T,k), it suffices to exhibit a
/e ^(A, T, k) but/i ^(A, T, k). Let p e [0, 1] be a noncomputable real number.
From Theorems 5.4, 5.3, and 5.6

/(w<*>) = Gp[Nk(w™)] 6 &(A, T, k).

On the other hand, if/e^X^, F, k), so is Gp(ri) =f[Wk(n)], a contradiction to the
fact that p is noncomputable.

Definition 5.4. The class @(A, T, k, X) is the class of all Â>ary crisp functions
in A* such that/~g for some partially F-computable A>ary random function g in
A*. Moreover,

<$(A, T,k)=    U    ${A, T, k, X).
0SA<1

We shall suppress A, T, k or any combination of them if it is clear from the
context.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



182 E. S. SANTOS [September

^({1}, 0, k, X) is closely related to the class J^(k, X) of all probabilistically com-
putable Ar-ary functions [9] with threshold A£$. Indeed &(X)^Jf(X) for all \ ^ A < 1.

Corollary 5.2. &(XX)^&(X2) ifXx^X2.

Corollary 5.3. ^£ &(X) for every 0 ̂  A < 1.

Theorem 5.8. // fe 3F(k +1, A), f/ie« g(w(W) = Minu, [f(w, ww) = w0] e 0(Â:, A)
for every w0 e A*.

Proof. Let m(fif') > X where /' is partially F-computable and let

g'(w^) = Min„ [f'(w, h><*>) = w0],

which is also partially F-computable by Theorem 4.9. From (4.2), we have, for
w=g(w0c)),

p.gWk\ "0 = fi/<W, "<*>,/(*, h><»))   n   M*, »**./t*. »O)
M/4««)

since/(x, w{k))j^w0 for x e .4 #<„,). Thus
p.Aw(k\g(ww))> x

for all w(W or g~g'.

Theorem 5.9. Let f be a k-ary crisp function in A*. Then fe @(A, T, k, A) for
every T and 0 ¿ A < 1.

Proof. Let g be a (/+ l)-ary crisp function in A* defined as follows:

giwm, w) = 1    if f(ww) = w,
= e    if/(w<k)) # w.

Let  h(ri)=g(Wk+x(ri)).   By  Theorems   5.4 and  5.1,  Ae.T(A).   Since g(w(,c + 1))
= «[AJC+1(iv('c + 1))], by Theorem 5.2, geJ^(A). Moreover

fiw™) = Minw[giw«\w)= 1].

Thus, by Theorem 5.8, fe <S(X).
The above result is perhaps somewhat unexpected. It says that, given any A>ary

crisp function/ one can find a PTM Z such that the probability that i>z(x)=/(x)
can be made as close to certainty as we please for all x.

Corollary 5.4. & = &(X) for all0^X<1.
Corollary 5.5. 3?-Jf(A)/w all$^X< 1.
VI. Computable PTM's. In this section, we shall discuss a particular class of

PTM's, the computable PTM's. A necessary and sufficient condition for a A>ary
crisp function to be partially recursive is established via computable PTM's.

Definition 6.1. A quasi PTM is a quintuple (A, B, S,p, h) where A, B, S,p and
h are the same as that given in Definition 3.1 except/? and h need not satisfy the two
conditions stipulated there.
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Given a quasi PTM Z = (A, B, S,p, A) and random subsets Tx and T2 in A*t
define qz,Tx,T2(a, ß) in a manner similar to qz,r(a, ß) of PTM except when a = ysu8,
ß=ys'u8. In this case, define

Oz,Tl,T2(«, ß) = P(s, u, u, s')+ 2 P(s, u, s', î>,««»
s"eS

+ 2 P(s' u> s"> i'Vr2««>).
s"eS

In other words, T2 plays the role of ~T. Moreover, define qzn,T1,T2 ana* iz"r1,r2 i° a
manner similar to q{¡PT and i^V of PTM's.

Definition 6.2. A real number/? is admissible iffp = 2"=i 2_ie¡, e¡ e{0, 1} for
/=1, 2,..., n. In this case, define F(p) = Fp(n—\) if en#0 and T(0) = 0. The inverse
of F will be denoted by T"1.

Definition 6.3. A quasi PTM Z=(A, B, S,p, h) is admissible iff the range of
p and A is a subset of the set of admissible real numbers. A random subset Tin A*
is admissible iff p-T(w) is admissible for all w e A*.

Corollary 6.1. IfZis an admissible quasi PTM and Tx, T2 admissible random
subsets, then qz.T1.T2(a, ß), Qz^t^tJ^, ß) and tzn>)Tl¡T2(a, ß) are admissible for all a
andß.

Theorem 6.1. For every mutually disjoint finite nonempty sets. A, B and S, the
function

(6.1) H(Z, Tx, T2, x, y«\ w) = FtíR&JW», w)]
is recursive. Here, Z=(A, B, S,p, A) is an admissible quasi PTM and Tx, T2 are
admissible random subsets in A*. In (6.1), Z, Tx and T2 stands for W[F(p(s, u, v, s'))],
W[F(h(s))], rV[F(p.T¡(w))], i= 1, 2, in some fixed order.

Proof. There are only finitely many paths of Zfor j><fc) of length A(x)+ 1. More-
over, the probability of each path can be found by adding and multiplying the
admissible real numbers p(s, u, v, s'), h(s), p<Tl(w) and p-T2(w) finitely many times.

Definition 6.4. A PTM Z = (A,B, S,p, A) is computable iff the range of p and
A is a subset of the set of computable real numbers.

Theorem 6.2. Let f be a k-ary crisp function in A*. There exist a computable
PTM Z = (A, B, S,p, A), random subsets T in A* and a computable real number
A ä \ such that

^.>r(w>(fc,,/(^'£,)) > A

for all wlk> except possibly for those w{k) where f(w{k)) = & iß f >s partially recursive.

Proof. For n= 1, 2,..., let Zn = (A, B, S,pn, hn) be a PTM where

pn(s, u, v, s') = F-^F^^^n-i)],

An(i) = T-1[Tft(s)(n-l)],
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and let Tn and Tl be random subsets in A* where

p,T,Jw) = F-^F^^in-l)],       p.niw) = F-^F^^in-l)].
Let

gxix,y)= 1    ifNix)> Niy),
= e   if Nix) Ú Niy),

and

g2(x, f°\ w) = g![FA(«-l) + l, HiZn, Tn, K, n, /», w)]

where n = Nix). Then

/(/*>) = F2{Min„ [g2iLxiw),/k\ L2{w)) = 1]}.

Since all the functions involved are recursive, thus / is partially recursive. The
converse is trivial.

Acknowledgement. The author is indebted to the referee for pointing out an
error in the proof of one of the theorems.
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