
 Computability Classes
for Enforcement Mechanisms

Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider

Co

Technical Report: TR2003-1908

August 2003

Cornell University
mputing and Information Science

Cornell University
Ithaca, New York

Computability Classes for Enforcement Mechanisms∗

Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider

Department of Computer Science
Cornell University

Ithaca, New York 14853

August 23, 2003

Abstract

A precise characterization of those security policies enforceable by program rewriting is
given. This characterization exposes and rectifies problems in prior work on execution monitor-
ing, yielding a more precise characterization of those security policies enforceable by execution
monitors and a taxonomy of enforceable security policies. Some but not all classes can be
identified with known classes from computational complexity theory.

1 Introduction

Extensible systems, such as web browsers which upload and run applet programs, or operating
systems which incorporate drivers for new devices, must ensure that extensions behave in a manner
consistent with the intentions of the system designer and its users. When unacceptable behavior
goes unchecked, damage can result—not only to the system itself but also to connected systems.

Security enforcement mechanisms are employed to prevent unacceptable behavior. Recently,
attention has turned to formally characterizing types of security enforcement mechanisms and
identifying the classes of security policies they can enforce [2, 21, 24]. This allows us to assess the
power of different security enforcement mechanisms, choose mechanisms well suited to particular
security needs, identify which kinds of attacks might still succeed even after a given mechanism has
been deployed, and derive meaningful completeness results for newly developed mechanisms.

Schneider [21] suggested an abstract model for security policies and characterized a class of
policies meant to capture those that could be effectively enforced through execution monitoring.
Viswanathan [24] further refined this characterization by adding a natural computability constraint.
We here extend this model to characterize a new class of policies, the RW-enforceable policies,
corresponding to what can be effectively enforced through program rewriting.

The development and analysis of RW-enforceable policies reveals two subtle flaws in prior work,
whereby Schneider’s and Viswanathan’s class admits policies that cannot actually be implemented
by any execution monitor. But intersecting their class with the class of RW-enforceable policies

∗Supported in part by AFOSR grants F49620-00-1-0198 and F49620-03-1-0156, Defense Advanced Research
Projects Agency (DARPA) and Air Force Research Laboratory Air Force Material Command USAF under agree-
ment number F30602-99-1-0533, National Science Foundation Grant 9703470, ONR Grant N00014-01-1-0968, and a
grant from Intel Corporation. The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of these
organizations or the U.S. Government.

1

Figure 1: A taxonomy of enforceable security policies.

eliminates these unimplementable policies, yielding a more accurate characterization of what is
enforceable by execution monitors, the EM-enforceable policies.

Relating the various classes enforceable by execution monitoring and program rewriting re-
veals the taxonomy of enforceable security policies depicted in Figure 1. Notice that enforcement
mechanisms based on program rewriting are able to enforce policies not implementable by any
execution monitor. Some of the classes in Figure 1 can be tied to known complexity classes from
the arithmetic hierarchy but others cannot.

We proceed as follows. We establish a formal model of security enforcement in §2. Next, in §3
we use that model to characterize and relate three methods of security enforcement: static analysis,
execution monitoring, and program rewriting. Using the results of these analyses, §4 exposes and
corrects two flaws in prior work on execution monitors. Some related discussion is provided in §5.
Finally, §6 summarizes the results of the prior sections.

2 Formal Model of Security Enforcement

2.1 Programs and Executions

An enforcement mechanism prevents unacceptable behavior by untrusted programs. Fundamental
limits on what an enforcement mechanism can prevent arise whenever that mechanism is built
using computational systems no more powerful than the computational systems upon which the
untrusted programs themselves are based, because the incompleteness results of Gödel [7] and
Turing [23] then imply there will be questions about untrusted programs unanswerable by the
enforcement mechanism.

To expose these unanswerable questions, programs must be represented using some model of
computation. The Turing Machine (TM) [23] is an obvious candidate because it is well understood;
it has already been used to show how computability constraints impinge on the power of access
control schemes [8]. Recall that a TM has a finite control comprising a set of states and a transition
relation over those states. When a TM moves from one finite control state to another (possibly
the same) finite control state in accordance with its transition relation, we will refer to this as a
computational step. Untrusted programs are modeled herein as a form of TM.

The traditional definition of a TM, as a one-tape finite state machine that accepts or rejects
finite-length input strings, does not model non-terminating programs well. Operating systems,
which are programs intended to run indefinitely, are expected to read infinitely long strings of
input and exhibit behavior not easily characterized in terms of acceptance or rejection of that input.
Therefore, untrusted programs will be modeled in this paper by what we term program machines
(PM)—deterministic TM’s (i.e. TM’s with deterministic transition relations) that manipulate three
infinite-length tapes. The three infinite-length tapes manipulated by PM’s are:

2

• An input tape, which contains information initially unavailable to the enforcement mechanism:
user input, non-deterministic choice outcomes, and any other information that only becomes
available to the program as its execution progresses. Input tapes may contain any finite or
infinite string over some fixed, finite alphabet Γ; the set of all input strings is denoted by Γω.

• A work tape, which is initially blank and can be read or written by the PM without restriction.
It models the work space provided to the program at runtime.

• A write-only trace tape, discussed below.

Non-determinism in an untrusted program is modeled by using the input tape contents, even though
PM’s are themselves deterministic.

As a PM runs, it exhibits a sequence of events observable to the enforcement mechanism by
writing encodings of those events on its trace tape. For example, if “the PM has written a 1 to its
work tape” is an event that the enforcement mechanism will observe, and the encoding of this event
is “0001”, then the string “0001” is automatically written to a PM’s trace tape whenever that PM
has written a 1 to its work tape. The universe of all observable events E and their encodings does
not vary from PM to PM. We make the following assumptions about E:

• E is a countably infinite set.

• Reading a symbol from the input tape is always an observable event. Thus for each input
symbol s ∈ Γ, there is an event es ∈ E that corresponds to reading s from the input tape.

• For each PM M , there is an event eM that encodes M , including the finite control and
transition relation of M .1 This corresponds to the assumption that the initial memory state
of each PM is assumed to be known by the enforcement mechanism.

A means to specify information visible to an enforcement mechanism is essential for realistic
modeling of execution monitoring. Typically, some aspects of program execution are visible; others
are not. In our model, E provides the power to express this distinction. It can be used to specify
that some information might never be available to an enforcement mechanism and that other
information, like user inputs or non-deterministic choices, only becomes available to the enforcement
mechanism at a particular point during execution. The result is a model that distinguishes between
two different reasons why an enforcement mechanism might be unable to enforce a particular
security policy. First, the enforcement mechanism could fail because it lacks the ability to observe
events critical to the enforcement of the policy. In that case, E is inadequate to enforce the policy
no matter which enforcement mechanism is employed. Second, the enforcement mechanism could
fail because it lacks sufficient computational power to prevent a policy violation given the available
information. In this case, where one enforcement mechanism fails, another might succeed.

Following [21], program executions are modeled as sequences χ of events from E. Complete
executions are always infinite event sequences, where program termination is modeled by infinite
repetition of a distinguished event eend . However, since many of our analyses will involve both
complete executions and their finite prefixes, we will use the notation χ to refer to both infinite and
finite event sequences unless explicitly stated otherwise. Each finite prefix of an execution encodes
the information available to the enforcement mechanism up to that point in the execution. Let χ[i]
(with i ≥ 1) denote the ith event of sequence χ, let χ[..i] denote the length-i prefix of χ, and let
χ[i + 1..] denote the suffix of χ consisting of all but the first i events.

1This assumption might appear to give an enforcement mechanism arbitrarily powerful decision-making ability,
but we will see in §3 that the power is still quite limited because unrestricted access to the program text is tempered
by time limits on the use of that information.

3

Executions exhibited by a PM are recorded on the PM’s trace tape. As the PM runs, a sequence
of symbols gets written to the trace tape—one (finite) string of symbols for each event e ∈ E the
PM exhibits. (Since E is countably infinite, each event can be unambiguously encoded using one
or more symbols from finite alphabet Γ.) If the PM terminates, then the encoding of eend is used
to pad the remainder of the (infinite-length) trace tape. Let χM(σ) denote the execution written to
the trace tape when PM M is run on input tape σ. Let XM denote the set of all possible executions
exhibited by a PM M (viz {χM(σ)|σ ∈ Γω}), and let X−

M denote the set of all non-empty finite
prefixes of XM (viz {χ[..i]|χ ∈ XM , i ≥ 1}).

To ensure that a trace tape accurately records an execution, the usual operational semantics of
TM’s, which dictates how the finite control of an arbitrary machine behaves on an arbitrary input, is
augmented with some fixed trace mapping (M,σ) 7→ χM(σ) such that the trace tape unambiguously
records the execution that results from running an arbitrary PM M on an arbitrary input σ. The
trace mapping is left unspecified but assumed to satisfy:

• The first event of every execution exhibited by PM M is the event eM . Thus, there exists a
computable function 〈〈·〉〉 from executions to PM’s such that 〈〈χM(σ)[..i]〉〉 = M for all i ≥ 1.

• Prefix χM(σ)[..i] also encodes the prefix of σ read by M during the first i steps of its run on
input σ. (This is because reading an input symbol is an observable event.) Thus, a security
enforcement mechanism can observe the input received during M ’s run so far.

• No PM performs an infinite number of computational steps without exhibiting any event. If
necessary, this constraint can be satisfied by augmenting E with a special event, eskip , that
indicates that no security-relevant event took place during the given computational step.

Appendix A provides a formal operational semantics for PM’s, an example event set, and an
example trace mapping satisfying the constraints given above.

2.2 Security Policies

A security policy defines a binary partition on the set of all (computable) sets of executions. Each
(computable) set of executions corresponds to a PM, so a security policy divides the set of all
PM’s into those that satisfy the policy and those that do not. This definition of security policies
is broad enough to express most things usually considered security policies, including information
flow policies which are defined in terms of the set of all behaviors—and not the individual behaviors
in isolation—that a program could possibly exhibit [21]. Given a security policy P, we write P(M)
to denote that M satisfies the policy and ¬P(M) to denote that it does not.

For example, if cells 0 through 511 of the work tape model the boot sector of a hard disk, and
we have defined E such that a PM exhibits event ei ∈ E whenever it writes to cell i of its work tape,
then we might be interested in the security policy Pboot which is satisfied by exactly those PM’s
that never write to any of cells 0 through 511 of the work tape. More formally, Pboot(M) holds if
and only if for all σ ∈ Γω, execution χM(σ) does not contain any of events ei for 0 ≤ i < 512.

Security policies are often specified in terms of individual executions they prohibit. Letting P̂
be a predicate over executions, the security policy P induced by P̂ is defined by:

P(M) =def (∀χ : χ ∈ XM : P̂(χ))

That is, a PM M satisfies a security policy P if and only if all possible executions of M satisfy
predicate P̂. P̂ will be called a detector for P. For example, if we define a detector P̂boot(χ) to
hold exactly when χ does not contain any event ei for 0 ≤ i < 512, then policy Pboot (above) is the
policy induced by detector P̂boot .

4

The detector P̂boot can be decided2 for an arbitrary execution χ by verifying that χ does not
contain any of a set of prohibited events, namely ei for 0 ≤ i < 512. Such detectors are often useful,
so for any set of events B ⊆ E to be prohibited, we define3:

P̂B(χ) =def (∀e : e ∈ χ : e 6∈ B)

The policy PB induced by P̂B is satisfied by exactly those PM’s that never exhibit an event from
B. Observe that Pboot can then be expressed as P{ei|0≤i<512}.

3 Modeling Various Security Enforcement Mechanisms

The framework defined in §2 can be used to model many security enforcement mechanisms, including
static analyses [12, 13, 14, 15], reference monitors [1, 11, 12, 20, 24], and program rewriters [3, 4,
5, 6, 22, 25].

3.1 Static Analysis

Enforcement mechanisms that operate strictly prior to running the untrusted program are termed
static analyses. Here, the enforcement mechanism must accept or reject the untrusted program
within a finite period of time.4 Accepted programs are permitted to run unhindered; rejected
programs are not run at all. Examples of static analyses include static type-checkers for type-safe
languages, like that of the Java Virtual Machine5 [12] and TAL [13]. JFlow [14] and others use
static analyses to provide guarantees about other security policies like information flow. Standard
virus scanners [15] also implement static analyses.

Formally, a security policy P is deemed statically enforceable in our model if there exists a TM
MP that takes an encoding of an arbitrary PM M as input and, if P(M) holds, then MP(M) accepts
in finite time; otherwise MP(M) rejects in finite time. Thus, by definition, statically enforceable
security policies are the recursively decidable properties of TM’s:

Theorem 1. The class of statically enforceable security policies is the class of recursively decidable
properties of programs (also known as class Π0 of the arithmetic hierarchy).

Proof. Immediate from the definition of static enforceability. Recursively decidable prop-
erties are, by definition, those for which there exists a total, computable procedure that
decides them. Machine MP is such a procedure.

Class Π0 is well-studied, so there is a theoretical foundation for statically enforceable security
policies. Statically enforceable policies include: “M terminates within 100 computational steps,”
“M has less than one million states in its finite control,” and “M writes no output within the first
20 steps of computation.” For example, since a PM could read at most the first 100 symbols of
its input tape within the first 100 computational steps, and since Γ is finite, the first of the above
policies could be decided in finite time for an arbitrary PM by simulating it on every length-100

2We say a predicate can be decided or is recursively decidable iff there exists a terminating algorithm returning 1
for any element that satisfies the predicate and 0 otherwise.

3We write e ∈ χ holds if and only if event e is in execution χ. I.e. e ∈ χ =def (∃i : 0 ≤ i : e = χ[i]).
4Some enforcement mechanisms involve simulating the untrusted program and observing its behavior for a finite

period. Even though this involves running the program, we still consider it a static analysis as long as it is guaranteed
to terminate and yield a yes or no result in finite time.

5The JVM also includes runtime type-checking in addition to static type-checking. The runtime type-checks would
not be considered to be static analyses.

5

input string for at most 100 computational steps to see if it terminates. Policies that are not
statically enforceable include, “M eventually terminates,” “M writes no output when given σ as
input,” and “M never terminates.” None of these are recursively decidable for arbitrary PM’s.

3.2 Execution Monitoring

Reference monitors [1, 26] and other enforcement mechanisms that operate alongside an untrusted
program are termed execution monitors (EM’s) in [21]. An EM intercepts security-relevant events
exhibited as the untrusted program executes, and the EM intervenes upon seeing an event that
would lead to a violation of the policy being enforced. The intervention might involve terminat-
ing the untrusted program or might involve taking some other corrective action.6 Examples of
EM enforcement mechanisms include access control list and capability-based implementations of
access control matrices [11] as well as hardware support for memory protection. Stack inspection
performed by the Java Virtual Machine [12], and runtime type-checking such as that employed by
dynamically typed languages like Scheme [20], are other examples. The MaC system [24] imple-
ments EM’s through a combination of runtime event-checking and program instrumentation.

Schneider [21] observes that for every EM-enforceable security policy P there will exist a detector
P̂ such that

P(M) ≡ (∀χ : χ ∈ XM : P̂(χ)) (EM1)

P̂(χ[..j]) =⇒ (∀i : 1 ≤ i < j : P̂(χ[..i])) (EM2)

¬P̂(χ) =⇒ (∃i : 1 ≤ i : ¬P̂(χ[..i])) (EM3)

and thus the EM-enforceable policies are a subset of the safety properties7.
Viswanathan [24] observes that P̂ must also be computable (something that was left implicit

in [21]), giving rise to a fourth restriction:

P̂(χ) is recursively decidable whenever χ is finite. (EM4)

A security policy P satisfying EM1 – EM4 can then be enforced by deciding P̂ at each computational
step. Specifically, as soon as the next exhibited event, if permitted, would yield an execution prefix
that violates P̂, the EM intervenes to prohibit the event.

EM4 is critical because it rules out detectors that are arbitrarily powerful and thus not available
to any real EM implementation. For example, the policy that a PM must eventually halt—a liveness
property that no EM can enforce [10, 21]—satisfies EM1 – EM3 but not EM4.

In §4.1 we show that real EM’s are limited by additional constraints. However, the class
described by EM1 – EM4 constitutes a useful upper bound on the set of policies enforceable by
execution monitors. Viswanathan [24] shows that EM1 – EM4 is equivalent to the co-recursively
enumerable (coRE) properties, also known as class Π1 of the arithmetic hierarchy. A security policy
P is coRE when there exists a TM MP that takes an arbitrary PM M as input and rejects it in
finite time if ¬P(M) holds; otherwise MP(M) loops forever. Our model preserves this result, as
demonstrated by the proof below.

Theorem 2. The class given by EM1 – EM4 is the class of co-recursively enumerable (coRE)
properties of programs (also known as the Π1 class of the arithmetic hierarchy).

6Schneider [21] assumes the only intervention action available to an EM is termination of the untrusted program.
Since we are concerned here with a characterization of what policies an EM can enforce, it becomes sensible to
consider a larger set of interventions.

7A safety property is a property that stipulates some “bad thing” does not happen during execution [10].

6

Proof. First we show that every policy satisfying EM1 – EM4 is coRE. Let a policy P
satisfying EM1 – EM4 be given. Security policy P is, by definition, coRE if there exists
a TM MP that takes an arbitrary TM M as input and loops forever if P(M) holds but
otherwise halts in finite time. To prove that P is coRE, we construct such an MP .

By EM1, P(M) ≡ (∀χ : χ ∈ XM : P̂(χ)) for some P̂ satisfying EM2 – EM4. EM4
guarantees that a TM can decide P̂(χ) for finite χ. We can therefore construct MP , as
follows: When given M as input, MP begins to iterate through every finite prefix χ of
executions in XM . For each, it decides P̂(χ). If it finds a χ such that ¬P̂(χ) holds, it halts.
(This is possible because EM4 guarantees that P̂(χ) is recursively decidable.) Otherwise it
continues iterating indefinitely.

If P(M) holds, then by EM1, there is no χ ∈ XM such that ¬P̂(χ) holds. Thus, by
EM2, there is no i such that ¬P̂(χ[..i]) holds. Therefore MP will loop forever. But if P(M)
does not hold, then by EM1 and EM3 there is some χ and some i such that ¬P̂(χ[..i]) holds.
Therefore MP will eventually terminate. Thus, MP is a witness to the fact that policy P is
coRE.

Second, we show that every coRE security policy satisfies EM1 – EM4. Let a security
policy P that is coRE be given. That is, assume there exists a TM MP such that if P(M)
holds then MP(M) loops forever; otherwise MP(M) halts in finite time. We wish to show
that there exists some P̂ satisfying EM1 – EM4. Define P̂(χ) to be true iff MP(〈〈χ〉〉) does
not halt in |χ| steps or less, where |χ| is the length of sequence χ. If χ is infinite, then P̂(χ)
is true iff MP(〈〈χ〉〉) ever halts.

P̂ satisfies EM2 because if MP(〈〈χ〉〉) does halt in |χ| steps or less, then it will also halt in
j steps or less whenever j ≥ |χ|. P̂ satisfies EM3 because if MP(〈〈χ〉〉) ever halts, it will halt
after some finite number of steps. P̂ satisfies EM4 because whenever χ is of finite length,
MP(〈〈χ〉〉) can be simulated for |χ| steps in finite time. Finally, P̂ satisfies EM1 because
all and only those PM’s 〈〈χ〉〉 that do not satisfy P cause MP to halt in time |χ| for some
(sufficiently long) χ.

Since the coRE properties are a proper superset of the recursively decidable properties [19],
every statically enforceable policy is trivially enforceable by an EM—the static analysis would be
performed by the EM immediately after the PM exhibits its first event (i.e., immediately after
the program is loaded). Statically enforceable policies are guaranteed to be computable in a finite
period of time, so the EM will always be able to perform this check in finite time and terminate
the untrusted PM if the check fails.

Even though statically enforceable policies can be enforced by an EM, the static approach is
often preferable for engineering reasons. Static enforcement mechanisms predict policy violations
before a program is run and therefore do not slow the program, whereas EM’s usually slow execution
due to their added runtime checks. Also, an EM might signal security policy violations arbitrarily
late into an execution and only on some executions, whereas a static analysis reveals prior to
execution whether that program could violate the policy. Thus, recovering from policy violations
discovered by an EM can be more difficult than recovering from those discovered by a static analysis.
In particular, an EM might need to roll back a partially completed computation, whereas a static
analysis always discovers the violation before computation begins. Moreover, this comparison of
static enforcement to EM-enforcement assumes that both are being given the same information. If
a static analysis is provided one representation of the program (e.g., source code) and an EM is
provided another in which some of the information has been erased (e.g., object code), then the
static analysis might well be able to enforce policies that the EM cannot.

7

Figure 2: The relationship of the static to the coRE policies.

Theorem 2 also suggests that there are policies enforceable by EM’s that are not statically
enforceable, since Π0 ⊂ Π1. Policy Pboot given in §2.2 is an example. More generally, assuring
that a PM will never exhibit some prohibited event is equivalent to solving the Halting Problem,
which is known to be undecidable and therefore is not statically enforceable. EM’s enforce such
“undecidable” security policies by waiting until a prohibited event is about to occur, and then
signaling the violation.

The relationship of the static policies to the class characterized by EM1 – EM4 is depicted in
Figure 2.

3.3 Program Rewriting and RW≈-Enforceable Policies

Program rewriting refers to any enforcement mechanism that, in a finite time, modifies an untrusted
program prior to execution. Use of program rewriting for enforcing security policies dates back at
least to 1969 [3]. More recently, we find program rewriting being employed in software-based fault-
isolation (SFI) [22, 25] as a way of implementing memory-safety policies, in PSLang/PoET [4] and
Naccio [6] for enforcing security policies in Java, and in SASI [5] as a means of implementing an
in-lined reference monitor (IRM) whereby an EM is embedded into the untrusted program. The
approach is appealing, powerful, and quite practical, so understanding what policies it can enforce
is a worthwhile goal.

Implicit in program rewriting is some notion of program equivalence that constrains the set of
program transformations a program rewriter may perform. Executions of the program that results
from program rewriting must have some correspondence to executions of the original. We specify
this correspondence in terms of an equivalence relation. PM-equivalence denoted ≈ of PM’s M1

and M2 is defined in terms of an unspecified equivalence relation ≈χ on executions.

M1 ≈ M2 =def

(
∀σ : σ ∈ Γω : χM1(σ) ≈χ χM2(σ)

)
,

where the requirements on ≈χ are:

χ1 ≈χ χ2 is recursively decidable8 whenever χ1 and χ2 are both finite. (EQ1)
χ1 ≈χ χ2 =⇒ (∀i∃j : χ1[..i] ≈χ χ2[..j]) (EQ2)

EQ1 states that although deciding whether two PM’s are equivalent might be very difficult
in general, an enforcement mechanism can at least determine whether two individual finite-length
execution prefixes are equivalent. EQ2 states that equivalent executions have equivalent prefixes
where those prefixes might not be equivalent step for step, reflecting the reality that certain program

8This assumption can be relaxed to say that χ1 ≈χ χ2 is recursively enumerable (RE) without affecting any of
our results.

8

transformations add computation steps. For example, an IRM is obtained by inserting checks into
an untrusted program and, therefore, when the augmented program executes a security check, the
behavior of the augmented program momentarily deviates from the original program’s. However,
assuming the check passes, the augmented program will return to a state that can be considered
equivalent to whatever state the original program would have reached. EQ2 does not limit program
rewriting to this style, however, and EQ2 would be satisfied if, for example, the program rewriting
reorders events an untrusted program exhibits. In short, EQ1 and EQ2 admit a broad class of
program rewriting whilst ensuring that rewriters preserve certain reasonable inferences about the
equivalence of executions and their prefixes.

Given a PM-equivalence relation, we define a policy P to be RW≈-enforceable if there exists a
total, computable rewriter function R : PM → PM such that for all PM’s M ,

P(R(M)) (RW1)
P(M) =⇒ M ≈ R(M) (RW2)

Thus, for a security policy P to be considered RW≈-enforceable, there must exist a way to transform
a PM so that the result is guaranteed to satisfy P (RW1) and if the original PM already satisfied
P, then the transformed PM is equivalent to the old (RW2).

Equivalence relation ≈χ in PM-equivalence is defined independently of any security policy, but
the choice of any particular ≈χ places an implicit limit on which detectors can be considered in our
analysis. In particular, it is sensible to consider only consider those detectors P̂ that satisfy

(∀χ1, χ2 : χ1, χ2 ∈ Eω : χ1 ≈χ χ2 =⇒ P̂(χ1) ≡ P̂(χ2))

Such a detector will be said to be consistent with ≈χ. A detector is consistent with ≈χ if it never
classifies one execution as acceptable and another as unacceptable when the two are equivalent
according to ≈χ. Program rewriters presume equivalent executions are interchangeable, which
obviously isn’t the case if one execution is acceptable and the other is not. Thus, detectors that
are not consistent with ≈χ are not compatible with the model. In an analysis of any particular
enforcement mechanism, ≈χ should be defined in such a way that all detectors supported by the
mechanism are consistent with ≈χ, and are therefore covered by the analysis.

The class of RW≈-enforceable policies includes virtually all statically enforceable policies.9 This
is because given a statically enforceable policy P, a rewriter function exists that can decide P
directly—that rewriter function returns unchanged any PM that satisfies the policy and returns
some safe PM (such as a PM that outputs an error message and terminates) in place of any PM
that does not satisfy the policy. This is shown formally below.

Theorem 3. Every satisfiable, statically enforceable policy is RW≈-enforceable.

Proof. Let a policy P be given that is both satisfiable and statically enforceable. Since P
is satisfiable, there exists a program M1 such that P(M1) holds. Define a total function
R : TM → TM by

R(M) =def

{
M if P(M) holds
M1 if ¬P(M) holds

.

R is total because it assigns a TM to every M , and it is computable because P is statically
enforceable and therefore, by Theorem 1, recursively decidable. R satisfies RW1 because its

9The one statically enforceable policy not included is the policy that causes all PM’s to be rejected, because there
would be no PM for R to return.

9

range is restricted to programs that satisfy P. Finally, R satisfies RW2 because whenever
P(M) holds, R(M) = M . Thus M ≈ R(M) holds because M ≈ M holds by the reflexivity
of equivalence relations. We conclude that P is RW≈-enforceable.

Theorems 2 and 3 together imply that the intersection of the class given by EM1 – EM4 with
the RW≈-enforceable policies includes all satisfiable, statically enforceable policies.

The RW≈-enforceable policies that also satisfy EM1 – EM4 include policies that are not stat-
ically enforceable, but only for certain notions of PM-equivalence. Program-rewriting is only an
interesting method of enforcing security policies when PM-equivalence is a relation that cannot be
easily decided directly. For example, if PM-equivalence is defined syntactically (i.e., two PM’s are
equivalent if and only if they are structurally identical) then any modification to the untrusted
PM produces an inequivalent PM, so RW2 cannot hold. The following theorem shows that if PM-
equivalence is a recursively decidable relation, then every RW≈-enforceable policy that is induced
by some detector is statically enforceable. Hence, there is no need to use program rewriting if
PM-equivalence is so restrictive.

Theorem 4. Assume that PM-equivalence relation ≈ is recursively decidable, and let P̂ be a de-
tector consistent with ≈χ. If the policy P induced by P̂ is RW≈-enforceable then P is statically
enforceable.

Proof. Exhibit a finite procedure for deciding P, thereby establishing that P is statically
enforceable by Theorem 1.

Given M an arbitrary PM, P(M) can be decided as follows. Start by computing R(M),
where R is the program rewriter given by the RW≈-enforceability of P. Next, determine
if M ≈ R(M) which is possible because ≈ is recursively decidable, by assumption. If
M 6≈ R(M) then RW2 implies that ¬P(M) holds. Otherwise, if M ≈ R(M) then P(M)
holds by the following line of reasoning:

P(R(M)) (RW1)

(∀χ : χ ∈ XR(M) : P̂(χ)) (P̂ induces P) (1)

(∀σ : σ ∈ Γω : χM(σ) ≈χ χR(M)(σ)) (because M ≈ R(M))

(∀σ : σ ∈ Γω : P̂(χM(σ)) ≡ P̂(χR(M)(σ))) (consistency) (2)

(∀σ : σ ∈ Γω : P̂(χM(σ))) (by 1 and 2) (3)

P(M) (by 3)

Thus, P(M) has been decided in finite time and we conclude by Theorem 1 that P is
statically enforceable.

In real program rewriting enforcement mechanisms, program equivalence is usually defined in
terms of execution. For instance, two programs are defined to be behaviorally equivalent if and
only if, for every input, both programs produce the same output; in a Turing Machine framework,
two TM’s are defined to be language-equivalent if and only if they accept the same language. Both
notions of equivalence are known to be Π2-hard, and other such behavioral notions of equivalence
tend to be equally or more difficult. Therefore we assume PM-equivalence is not recursively decid-
able and not coRE in order for the analysis that follows to have relevance in real program rewriting
implementations.

If PM-equivalence is not recursively decidable, then there exist policies that are RW≈-enforce-
able but not statically enforceable. Pboot of §2.2, is an example. A rewriting function can enforce

10

Pboot by taking a PM M as input and returning a new PM M ′ that is exactly like M except just
before every computational step of M , M ′ simulates M for one step into the future on every possible
input symbol to see if M will exhibit any prohibited event {ei|0 ≤ i < 512}. If any prohibited
event is exhibited, then M ′ is terminated immediately; otherwise the next computational step is
performed.

If program rewriting is not coRE, then program rewriting can be used to enforce policies that
are not coRE, and therefore not enforceable by any EM.

Theorem 5. Assume PM-equivalence (≈) is not coRE. There exist policies that are RW≈-enforce-
able but not coRE.

Proof. If ≈ is not coRE, then there is at least one PM M1 for which deciding M ≈ M1

for arbitrary M is not coRE. Define P1(M) =def (M ≈ M1). Although P1 is not coRE,
it is RW≈-enforceable, because R can be defined to ignore its input and always yield M1.
Rewriting function R satisfies RW1, because P1(M1) holds. It satisfies RW2, because if
P1(M) holds then M ≈ M1 by definition of P1, and hence M ≈ R(M) holds. We conclude
that P1 is RW≈-enforceable.

The proof of Theorem 5 gives a simple but practically uninteresting example of an RW≈-enforce-
able policy that is not coRE. Examples of non-coRE, RW≈-enforceable policies with real practical
import do exist. Here is one.

The Secret File Policy: Consider a filesystem that stores a file whose existence should
be kept secret from untrusted programs. Suppose untrusted programs have an operation
for retrieving a listing of the directory that contains the secret file. System administrators
wish to enforce a policy that prevents the existence of the secret file from being leaked to
untrusted programs. So, an untrusted PM satisfies the “secret file policy” if and only if
the behavior of the PM is identical to what its behavior would be if the secret file were not
stored in the directory.

The policy in this example is not in coRE because deciding whether an arbitrary PM has equivalent
behavior on two arbitrary inputs is as hard as deciding whether two arbitrary PM’s are equivalent
on all inputs. And recall that PM-equivalence (≈) is not coRE. Thus an EM cannot enforce this
policy.10 However, this policy can be enforced by program rewriting, because a rewriting function
never needs to explicitly decide if the policy has been violated in order to enforce the policy. In
particular, a rewriter function can make modifications that do not change the behavior of programs
that satisfy the policy, but do make safe those programs that don’t satisfy the policy. For the
example above, program rewriting could change the untrusted program so that any attempt to
retrieve the contents listing of the directory containing the secret file yields an abbreviated listing
that excludes the secret file. If the original program would have ignored the existence of the file,
its behavior is unchanged. But if it would have reacted to the secret file, then it no longer does.

The power of program rewriters is not limitless, however; there exist policies that no program
rewriter can enforce. One interesting example of such a policy is a kind of least privilege require-
ment. Suppose programs are principals and there is a total, recursively decidable relation @ over
programs that dictates for every pair of programs which has the lesser privilege level on the system.

10Moreover, an EM cannot enforce this policy by parallel simulation of the untrusted PM on two different inputs,
one that includes the secret file and one that does not. This is because an EM must detect policy violations in finite
time on each computational step of the untrusted program, but executions can be equivalent even if they are not
equivalent step-for-step. Thus, a parallel simulation might require the EM to pause for an unlimited length of time
on some step.

11

That is, we write M1 @ M2 if program M1 has a lesser privilege level than program M2. The policy
PLP , satisfied by exactly those programs M such that there is no equivalent program M ′ ≈ M with
a lesser privilege level (M ′ @ M), is not enforceable by any program rewriter.

Theorem 6. Let @ be a total, recurisvely decidable relation over PM’s, and assume PM-equivalence
(≈) is not recursively decidable. For any PM M let [M]≈ denote the set of all programs equivalent
to M , and let min@([M]≈) denote the minimal PM (with respect to relation @) in set [M]≈. The
policy PLP (M) =def

(
M = min@([M]≈)

)
is not RW≈-enforceable.

Proof. Expecting a contradiction, assume that PLP is RW≈-enforceable. Then there exists
a program rewriter R satisfying RW1 and RW2 that enforces PLP . We show that R can be
used to decide PM-equivalence (≈), contradicting the assumption that PM-equivalence is
not recursively decidable.

Let arbitrary PM’s M1 and M2 be given. We can decide whether or not M1 ≈ M2 by com-
puting R(M1) and R(M2). By RW1, R(M1) = min@([M1]≈) and R(M2) = min@([M2]≈).
If M1 ≈ M2 then [M1]≈ = [M2]≈, and therefore min@([M1]≈) = min@([M2]≈). Hence
R(M1) = R(M2). Alternatively, if M1 6≈ M2 then [M1]≈ and [M2]≈ are disjoint, and there-
fore min@([M1]≈) 6= min@([M2]≈). Hence R(M1) 6= R(M2). Thus M1 ≈ M2 if and only if
R(M1) = R(M2).

Since R is computable and PM’s are of finite size, one can decide whether R(M1) =
R(M2) in finite time. This contradicts the assumption that PM-equivalence is not recursively
decidable. We conclude that PLP is not RW≈-enforceable.

The ability to enforce policies without explicitly deciding them makes the RW≈-enforceable
policies extremely interesting. A characterization of this class in terms of known classes from
computational complexity theory would be a useful result, but might not exist. The following
negative result shows that, unlike static enforcement and the class described by EM1 – EM4, no
class of the arithmetic hierarchy is equivalent to the class of RW≈-enforceable policies.

Theorem 7. Assume PM-equivalence (≈) is not recursively decidable. The class of RW≈-enforce-
able policies is not equivalent to any class of the arithmetic hierarchy.

Proof. Theorem 6 showed that the policy PLP is not RW≈-enforceable. The proof of Theo-
rem 5 showed that policy P1 is RW≈-enforceable. Both PLP and P1 are Ki-hard, where Ki

is the complexity of the ≈ relation. Since both are Ki-hard, every class of the arithmetic
hierarchy includes or excludes both of them. Since the class of RW≈-enforceable policies
includes one but not the other, we conclude that it is not equivalent to any class of the
arithmetic hierarchy.

4 Execution Monitors as Program Rewriters

4.1 EM-enforceable Policies

The class of security policies described by EM1 – EM4 constitutes an upper bound on the set of
EM-enforceable policies, but EM1 – EM4 also admit policies that cannot be enforced by any EM.
When an EM detects an impending policy violation, it must intervene and prevent that violation.
Such an intervention could be modeled as a finite series of one or more events that gets appended
to a PM’s execution in lieu of whatever suffix the PM would otherwise have exhibited. Without
assuming that any particular set of interventions are available to an EM, let I be the set of possible
interventions. Then the policy PI , that disallows all those interventions, is not enforceable by

12

an EM. If an untrusted program attempts to exhibit some event sequence in I, an EM can only
intervene by exhibiting some other event sequence in I, which would in itself violate policy PI .11

Nevertheless, PI satisfies EM1 – EM4 as long as I is a computable set.
For example, [21] presumes that an EM intervenes only by terminating the PM. Define eend to

be an event that corresponds to termination of the PM. The policy P{eend}, which demands that
no PM may terminate, is not enforceable by such an EM even though it satisfies EM1 – EM4. In
addition, more complex policies involving eend , such as the policy that demands that every PM
must exhibit event e1 before it terminates (i.e. before it exhibits event eend) are also unenforceable
by such an EM, even though they too satisfy EM1 – EM4. The power of an EM is thus limited by
the set of interventions available to it, in addition to the limitations described by EM1 – EM4.

The power of an EM is also limited by its ability to intervene at an appropriate time in response
to a policy violation. Suppose the event erel corresponds to releasing a lock for a particular system
resource and event euse corresponds to using that resource, and consider the policies induced by
two different detectors, each of which prohibit euse from occurring after erel :

• P̂RU1 stipulates that the EM must intervene at the point that an euse event is seen after a
erel has already been seen. (The EM could then enforce the induced policy by preventing the
euse event.) That is, P̂RU1 is defined by

P̂RU1 (χ) =def

(
∀i : i ≥ 1 : (erel 6∈ χ[..i] ∨ euse 6∈ χ[i + 1..])

)
.

• P̂RU2 stipulates that the EM must intervene at the point that an erel event is seen if some
continuation of the current execution might exhibit an euse event. (The EM could then
enforce the induced policy by disallowing the erel event in order to preclude an upcoming
policy violation.) That is, PRU2 is defined as the policy induced by detector

P̂RU2 (χ) =def

(
erel 6∈ χ ∨ (∀χ′ : χχ′ ∈ X〈〈χ〉〉 : euse 6∈ χ′)

)
.

Detector P̂RU2 is harder to evaluate than P̂RU1 because P̂RU2 requires the EM to simulate the
PM arbitrarily far into the future upon observing an erel event. This simulation is an uncomputable
task, so no real EM could enforce policy PRU2 in such a way that the EM always intervenes strictly
before detector P̂RU2 is falsified. However, surprisingly, policy PRU2 satisfies EM1 – EM4. In fact,
although detectors P̂RU1 and P̂RU2 are different, the policies PRU1 and PRU2 that they induce are
identical; they agree on all PM’s. Any PM that has an execution that violates P̂RU1 will also have
an execution that violates P̂RU2 . Inversely, a PM whose executions all satisfy P̂RU1 will also only
have executions that satisfy P̂RU2 .

In conclusion, an EM can “enforce” policy PRU1 = PRU2 in a way that honors detector P̂RU1 ,
but not in a way that honors detector P̂RU2 . Constraints EM1 – EM4 fail to distinguish between
PRU1 and PRU2 because they place no demands upon the set of executions that results from the
composite behavior of the EM executing alongside the untrusted program. The result should be a
set of executions that, itself, satisfies the policy, but EM1 – EM4 can be satisfied even when there
is no EM implementation that can accomplish this.

The power of an EM derives from the collection of detectors it offers policy-writers. A small
collection of detectors might be stretched to “enforce” all coRE policies according to the terms

11In the extreme case that EM’s are assumed to be arbitrarily powerful in their interventions, this argument proves
only that EM’s cannot enforce the unsatisfiable policy. (If I = Eω, then PI is the policy that rejects all PM’s.) A
failure to enforce the unsatisfiable policy might be an uninteresting limitation, but even in this extreme case, EM’s
have another significant limitation, to be discussed shortly.

13

of EM1 – EM4, but in doing this, some of those policies will be “enforced” in ways that permit
bad events to occur, which could be unacceptable to those wishing to actually prevent those bad
events. Proofs that argue that some real enforcement mechanism is capable of enforcing all policies
that satisfy EM1 – EM4 are thus misleading. For example, the MaC system was shown capable of
enforcing all coRE policies [24], but policies like PRU2 cannot be enforced by MaC in such a way
as to signal the violations specified by P̂RU2 before the violation has already occurred.

In §4.2 we will see that the intersection of the class of policies given by EM1 – EM4 with
the RW≈-enforceable policies constitutes a more suitable characterization of the EM-enforceable
policies than the class given by EM1 – EM4 alone. This confirms the intuition that if a policy is
EM-enforceable, it should also be enforceable by an in-lined reference monitor. That is, it should
be possible to take an EM that enforces the policy and compose it with an untrusted program in
such a way that this rewriting process satisfies RW1 and RW2. The intersection of EM1 – EM4
with the RW≈-enforceable policies satisfies this intuition by excluding policies like P{eend} and PRU2

when interventions that halt the PM (i.e. cause the PM to exhibit eend) or that violate detector
P̂RU2 are considered unacceptable. Constraints RW1 and RW2 place demands upon the new set
of executions that results when an EM modifies the set of executions that would otherwise be
exhibited by a PM. The resulting new set of executions must satisfy the policy to be enforced. This
means that it is always possible to take an EM that enforces one of the policies in this intersection,
implement it as an in-lined reference monitor, and the result will be a program that satisfies the
policy to be enforced.

4.2 Benevolent Enforcement of Execution Policies

Detectors for policies that both satisfy EM1 – EM4 and are RW≈-enforceable obey a useful property,
which we term benevolence. A detector P̂ is defined to be benevolent if there exists a decision
procedure MP̂ for finite executions such that for all PM’s M :

¬
(
∀χ : χ ∈ XM : P̂(χ)

)
=⇒

(
∀χ : χ ∈ X−

M : (¬P̂(χ) ⇒ MP̂(χ) rejects)
)

(B1)(
∀χ : χ ∈ XM : P̂(χ)

)
=⇒

(
∀χ : χ ∈ X−

M : (MP̂(χ) accepts)
)

(B2)

A policy induced by any detector that satisfies B1 and B2 can be enforced in such a way that
bad events are detected before they occur. In particular, B1 stipulates that an EM implementing
detector P̂ rejects all unsafe execution prefixes of an unsafe PM but also permits it to reject unsafe
executions early (e.g., if it is able to anticipate a future violation). B1 even allows the EM to
conservatively reject some good executions, when a PM does not satisfy the policy. But in order to
prevent the EM from being too aggressive in signaling violations, B2 prevents any violation from
being signaled when the policy is satisfied.

Detector P̂RU1 of §4.1 is an example of a benevolent detector. The decision procedure MP̂RU1
(χ)

would simply scan χ and would reject iff euse was seen after erel . However, detector P̂RU2 of §4.1 is
an example of a detector that is not benevolent. It is not possible to discover in finite time whether
there exists some extension of execution χ that includes event euse (or, conservatively, whether
any execution of 〈〈χ〉〉 has an euse after an erel). Therefore no suitable decision procedure MP̂RU2

satisfying B1 and B2 exists.
RW≈-enforceable coRE policies can be always be enforced in a way that prohibits bad events

before they occur, yet allows every good program to run. This is because if a coRE policy is
RW≈-enforceable, then all of its consistent detectors that satisfy EM2 are benevolent.

14

Theorem 8. Let a detector P̂ satisfying EM2 be given, and assume that P̂ is consistent with ≈χ.
If the policy P induced by P̂ is RW≈-enforceable and satisfies EM1 – EM4, then P̂ is benevolent.

Proof. Define a decision procedure MP̂ for P̂ and show that it satisfies B1 and B2. We define
MP̂ as follows: When MP̂ receives a finite execution χ as input, it iterates through each
i ≥ 1 and for each i, determines if χ ≈χ χR(〈〈χ〉〉)(σ)[..i], where R is the rewriter given by the
RW≈-enforceability of P and σ is the string of input symbols recorded in the trace tape as
being read during χ. Both of these executions are finite, so by EQ1 this can be determined in
finite time. If the two executions are equivalent, then MP̂ halts with acceptance. Otherwise
MP̂ simulates MP(〈〈χ〉〉) for i steps, where MP is a TM that halts if and only if its input
represents a PM that violates P. Such a TM is guaranteed to exist because P satisfies
EM1 – EM4 and is therefore coRE by Theorem 2. If MP(〈〈χ〉〉) halts in i steps, then MP̂
halts with rejection. Otherwise MP̂ continues with iteration i + 1.

First, we prove that MP̂ always halts. Suppose ¬P(〈〈χ〉〉) holds. Then MP will eventually
reach a sufficiently large i that MP(〈〈χ〉〉) will halt, and thus MP̂ will halt. Suppose instead
that P(〈〈χ〉〉) holds. Then by RW2, 〈〈χ〉〉 ≈ R(〈〈χ〉〉). Applying the definition of ≈, we see
that χ〈〈χ〉〉(σ) ≈χ χR(〈〈χ〉〉)(σ). Since χ is a prefix of χ〈〈χ〉〉(σ), EQ2 implies that there exists a
(sufficiently large) i such that χ ≈χ χR(〈〈χ〉〉)(σ)[..i]. Thus MP̂ will halt.

Now observe that the only time MP̂ halts with rejection, ¬P(〈〈χ〉〉) holds. Together with
the fact that MP̂ always halts, this establishes that MP̂ satisfies B1.

Finally, we prove that if MP̂ halts with acceptance, then P̂(χ) holds. If MP̂ halts with
acceptance, then χ ≈χ χR(〈〈χ〉〉)(σ)[..i] for some i ≥ 1. By RW1, P(R(〈〈χ〉〉)) holds. Hence
P̂(χR(〈〈χ〉〉)(σ)) holds because P(R(M)) ≡ (∀χ′ : χ′ ∈ XR(〈〈χ〉〉) : P̂(χ′)) by assumption, and
therefore P̂(χR(〈〈χ〉〉)(σ)[..i]) holds by EM2. Since P̂ is consistent with ≈χ by assumption, we
conclude that P̂(χ) holds. This proves that MP̂ satisfies B2.

The existence of policies that satisfy EM1 – EM4 but that are not RW≈-enforceable can now be
shown by demonstrating that there exist coRE policies with detectors that satisfy EM2 but that
are not benevolent. By Theorem 8, no such policy can be both coRE and RW≈-enforceable.

Theorem 9. There exist detectors P̂, that satisfy EM2 and EM3, such that the induced policy
defined by P(M) =def (∀χ : χ ∈ XM : P̂(χ)) satisfies EM1 – EM4, and yet P̂ is not benevolent.

Proof. Define P{eend} as in §4.1 and define P̂NT (χ) =def P{eend}(〈〈χ〉〉). That is, an execution
satisfies P̂NT if and only if it comes from a program that never halts on any input. Observe
that P̂NT satisfies EM2 because for every program M , either all prefixes of all of that
program’s executions satisfy P̂NT or none of them do. P̂NT satisfies EM3 because if an
execution falsifies P̂NT , then every finite prefix of that execution falsifies it as well.

Define PNT to be the policy induced by P̂NT . Observe that PNT ≡ P{eend} by the
following line of reasoning:

PNT (M) ≡ (∀χ : χ ∈ XM : P̂NT (χ))

≡ (∀χ : χ ∈ XM : P{eend}(〈〈χ〉〉)) (by def of P̂NT above)

≡ (∀χ : χ ∈ XM : P{eend}(M)) (because χ ∈ XM)

≡ P{eend}(M) (by def of P{eend} in §4.1)

By construction, P{eend} satisfies EM1 – EM4; therefore PNT satisfies EM1 – EM4.

15

PI (§4.1)

Pboot (§2.2)

M terminates within 100
computational steps (§3.1)

the secret file
policy (§3.3)

PLP (§3.3)

Figure 3: Classes of security policies and some policies that lie within them.

However, P̂NT is not benevolent. If it were, then the following would be a finite procedure
for deciding the halting problem: For arbitrary M , compute MP̂NT

(χM(σ)[..1]), where MP̂NT

is the decision procedure predicted to exist by the benevolence of P̂NT , and σ is any fixed
string. Since χM(σ)[..1] is finite, MP̂NT

is guaranteed to accept or reject it in finite time. If
M never halts on any input, then by B2, MP̂NT

will accept. Otherwise if M does halt on
some input, then ¬P̂NT (χM(σ)[..1]) holds and therefore by B1, MP̂NT

will reject.

The relationship of the statically enforceable policies, the class given by EM1 – EM4 (the
coRE policies), and the policies enforceable by program rewriting (the RW≈-enforceable policies) is
summarized in Figure 3. The statically enforceable policies are a subset of the coRE policies and,
with the exception of the unsatisfiable policy, a subset of the RW≈-enforceable policies. The shaded
region indicates those policies that are both coRE and RW≈-enforceable. These are the policies that
we characterize as EM-enforceable. There exist coRE policies outside this intersection, but all such
policies are induced by some non-benevolent detector. Thus, using an EM to “enforce” any of these
policies would result in program behavior that might continue to exhibit events that the policy was
intended to prohibit. There are also RW≈-enforceable policies outside this intersection. These are
policies that cannot be enforced by an EM but that can be enforced by a program rewriter that
does not limit its rewriting to producing in-lined reference monitors.

Additionally, Figure 3 shows where various specific policies given throughout this paper lie
within the taxonomy of policy classes. The policy “M terminates within 100 computational steps”
given in §3.1 is an example of a policy that can be enforced by static analysis, execution monitoring,
or program rewriting. Policy Pboot , introduced in §2.2, is not enforceable by static analysis, but
can be enforced by an EM or by a program rewriter. The secret file policy described in §3.3 is an
example of a policy that cannot be enforced by any EM but that can be enforced by a program
rewriter. Finally, policy PI is one of the policies given in §4.1 that satisfies EM1 – EM4 but that
cannot be enforced by any real EM in a way that prevents bad events from occurring on the system.

4.3 Edit Automata

Edit automata [2] modify executions rather than modifying programs. Cast in the framework of
this paper, an edit automaton can intervene at each computational step by inhibiting any event a
PM writes to its trace tape and/or writing additional events to the trace tape. If an edit automaton
intervenes during execution, then it is deemed to have rejected that execution; if not, it is deemed
to have accepted the execution.

16

The operational semantics of edit automata [2] permit any edit automaton to be simulated by
a TM. The TM accepts an encoding of an execution on its input tape, simulates the computational
steps that the edit automaton would take, and writes an encoding of a new execution to its work
tape. Using such a simulation, it can be shown that any security policy enforceable by an edit
automaton satisfies EM1 – EM4.

Theorem 10. All policies enforceable by edit automata satisfy EM1 – EM4.

Proof. Let a security policy P be given and assume P is enforceable by an edit automaton
A. There exists a TM MA that accepts an encoding of an arbitrary execution χ as input
and writes an encoding of A(χ), the behavior of edit automaton A on χ, to its work tape.
Edit automata [2] have a small-step operational semantics that include four types of steps:

• E-StepA: The edit automaton permits the untrusted program to exhibit an event.
• E-StepS: The automaton suppresses an event that the untrusted program would other-

wise have exhibited.
• E-Ins: The automaton inserts a sequence of events in place of an event that the untrusted

program would otherwise have exhibited.
• E-Stop: The automaton prematurely terminates the untrusted program in place of the

event it would otherwise have exhibited.

The definition given in [2] of execution acceptance for edit automata dictates that A rejects
χ if and only if it performs operation E-StepS, E-Ins, or E-Stop at any point when provided
χ as input. Define a new TM M ′

A, exactly like MA except with a transition relation that
causes the TM to halt in lieu of performing simulations of any of these three edit automaton
operations. Additionally, define the transition relation of M ′

A such that M ′
A will loop if it

ever reaches the end of its input without halting. TM M ′
A(χ) will therefore halt if and only

if A would accept χ and loop otherwise. The existence of TM M ′
A satisfies the definition

of coRE. Theorem 2 establishes that all coRE policies satisfy EM1 – EM4. Therefore we
conclude that P satisfies EM1 – EM4.

Although edit automata were not defined in terms of program rewriting, the cumulative effect
of an edit automaton can be regarded as a restricted form of program rewriting. Given an arbitrary
edit automaton, define r : Eω → Eω to be a function that maps an arbitrary execution χ to the
execution that results from the edit automaton’s action on χ. Then define rewriter function Rr

to map M an arbitrary PM to a new PM Mr such that XMr = {eMrr(χM(σ))|σ ∈ Γω}. Mr is
M modified on each step by the edit automaton described by r.12 Rewriter function Rr can be
constructed provided the act of computing r does not itself produce inequivalent executions. That
is, letting events exhibited during the course of computing r be called r-events, two executions
are defined to be equivalent (≈EA

χ) if the executions are identical after all r-events and the initial
events (eM) are removed from both. Now, if a policy is enforceable by an edit automaton, then
it is RW≈EA-enforceable. And since ≈EA

χ satisfies EQ1 and EQ2, given that edit automata enforce
only policies that satisfy EM1 – EM4, Theorem 8 establishes that all policies enforced by Edit
Automata can be enforced with benevolent detectors. In conclusion, the set of policies enforceable
by edit automata is a subset of the intersection of the coRE policies with the RW≈EA-enforceable
policies.

12Recall from §2.1 that eMr is the event that encodes the initial memory state of PM Mr.

17

5 Discussion

Program-agnostic Security Enforcement. The existence of a function 〈〈·〉〉 that maps exe-
cutions to the PM’s that generated them is crucial for some of the results in this paper. The
assumption that 〈〈·〉〉 exists is realistic, in so far as enforcement mechanisms located in the proces-
sor or operating system have access to the program. However, only superficial use has been made
of this information in actual EM implementations to date.

If the availability of a function 〈〈·〉〉 is no longer assumed, then our taxonomy of policy classes
changes slightly to exclude from the EM-enforceable policies those policies that depend on infor-
mation obtained using 〈〈·〉〉. For example, statically enforceable policies are no longer a subset of
the EM-enforceable policies, because a static mechanism can distinguish between PM’s whose sets
of executions are identical while an EM cannot. However, within the domain of policies that de-
pend solely on information that is available both to a static analysis and an EM, the taxonomy is
unchanged.

In a world without 〈〈·〉〉, details of the computational model become more important. An EM, for
instance, must be able to permit or disallow newly exhibited events before they affect the system.
Our analyses did not need to assume anything about how far into the future an EM could look to
predict an event, because our EM’s could simulate 〈〈χ〉〉 on various inputs to look finitely far into
the possible futures of χ. However, if 〈〈·〉〉 does not exist, one must make specific assumptions about
which future events an EM can predict and under what conditions it can do so. Such details about
the computational system were conveniently abstracted by our model.

Proof-Carrying Code and Certifying Compilers. In Proof-Carrying Code [16, 17], mobile
code transmitted to an untrusting recipient is paired with a proof that the code satisfies whatever
safety policy is being demanded by the untrusting recipient. The untrusting recipient can check
that the proof is valid, that the proof concerns the object code, and that the proof establishes the
desired policy, all in finite time. Once the code-proof pair has been checked, the code can safely be
run without restriction by the untrusting recipient.

The class of policies enforceable by Proof-Carrying Code depends on what is the domain of all
programs. If the domain of programs is taken to be the set of all object code-proof pairs receiveable
by the untrusting recipient, then the set of enforceable security policies are those properties of code-
proof pairs that can be decided in finite time. This is the set of recursively decidable (Σ0 = Π0)
properties of object code-proof pairs, or the statically enforceable policies. (Observe that some
policies that are not recursively decidable for code alone are decidable for code-proof pairs. The
proof provides extra information that reduces the computational expense of the decision procedure.)

Alternatively, one can take the domain of programs to be the set of all object programs receivable
by the untrusting recipient. The enforceable policies over this domain are those policies such that
for all programs that satisfy the policy, there exists a proof that serves as a witness that the program
satisfies the policy. For any proof logic characterizeable by some finite axiomization, this is the
set of recursively enumerable (Σ1) properties of that logic. (If an arbitrary program satisfies the
policy, this can be discovered in finite time by enumerating all proofs to find a matching one. But
if the program doesn’t satisfy the policy, the enumeration process will continue indefinitely without
finding a suitable proof.)

The above analyses make no assumption about the origin of proofs or programs; programs and
proofs might be generated by an oracle of unlimited computational power. In practice, however,
code-proof pairs are usually generated by some automated procedure. For example, certifying
compilers [13, 18] accept a source program and emit not only object code but also a proof that the
object code satisfies some policy. If an arbitrary source program satisfies the policy to be enforced,

18

then the certifying compiler must (i) compile it to object code in a way that faithfully preserves
its behavior and (ii) generate a matching proof. If the source program doesn’t satisfy the policy,
then the compiler must either reject the program (which can be thought of as compiling it to the
null program) or compile it to some program that does satisfy the policy, possibly by inserting
runtime checks that cause the program to change behaviors when some policy violation would
otherwise have occurred. These are precisely conditions RW1 and RW2 from the definition of the
RW -enforceable policies. Thus, if one considers the domain of programs to be the set of all source
code programs received by a certifying compiler or other automated code-proof pair generator, then
the set of enforceable policies are the RW -enforceable policies.

Future Work. The practicality of an enforcement mechanism will depend on what resources it
consumes. This paper explored the effects of finitely bounding the space and time available to
various classes of enforcement mechanisms. However, to be considered practical, real enforcement
mechanisms must operate in polynomial or even constant space and time. So an obvious extension
to the theory presented here is to investigate (i) the set of policies enforceable by program rewriting
when the available time and space is polynomial in the size of the untrusted program and (ii)
rewriter functions that produce programs whose size and running time expands by no more than a
polynomial in the size and running time of the original untrusted program.

The results of this paper might also be applied to real enforcement mechanisms. SFI [25],
MiSFIT [22], SASI/PoET/PSLang [4, 5], and Naccio [6] implement program rewriting but typi-
cally assume extremely complex (and mostly unstated) definitions of program equivalence. These
equivalence relations would have to be carefully formalized in order to characterize precisely the
set of policies that these embodiments of program rewriting actually enforce. In addition, it is not
known whether the power of generalized frameworks for program rewriting, like Aspect Oriented
Programming [9], can be characterized in similar ways.

Finally, the class of RW-enforceable policies outside of the coRE policies remains largely unex-
plored. To investigate this additional power, program rewriting mechanisms must be developed.
These would need to accept policy specifications that are not limited to the monitoring-style speci-
fications so easily described by a detector. Consequently, there are interesting questions about how
to design a suitably powerful yet usable policy specification language for such a system.

6 Summary

Our taxonomy of enforceable security policies is depicted in Figure 3. We have connected this
taxonomy to the arithmetic hierarchy of computational complexity theory by observing that the
statically enforceable policies are the recursively decidable properties and that the class given by
one characterization of the EM-enforceable policies (given by EM1 – EM4) are the coRE properties.
We also showed that the RW-enforceable policies are not equivalent to any class of the arithmetic
hierarchy. The shaded region in Figure 3 is argued to be a more accurate characterization of the
EM-enforceable policies than EM1 – EM4.

Execution monitors implemented as in-lined reference monitors can enforce policies that lie in
the intersection of the coRE policies with the RW-enforceable policies. The policies within this
intersection are enforceable benevolently—that is, “bad” events are blocked before they occur. But
coRE policies that lie outside this intersection might not be benevolently enforceable. In addition,
we showed that program rewriting is an extremely powerful technique in its own right, which can
be used to enforce policies beyond those enforceable by execution monitors.

19

Acknowledgements

The authors wish to thank David Walker for many illuminating discussions about edit automata and
other related security automata. In addition, they wish to thank Tomás Uribe, Úlfar Erlingsson,
James Cheney, Matthew Fluet, and Yanling Wang for their helpful comments and critiques.

References

[1] J.P. Anderson. Computer security technology planning study vols. i and iii. Technical Re-
port ESD-TR-73-51, HQ Electronic Systems Division: Hanscom AFB, MA, Fort Washington,
Pennsylvania, October 1972.

[2] Lujo Bauer, Jarred Ligatti, and David Walker. More enforceable security policies. Technical
Report TR-649-02, Princeton University, Princeton, New Jersey, June 2002.

[3] P. Deutsch and C.A. Grant. A flexible measurement tool for software systems. In Information
Processing (Proceedings of the IFIP Congress), pages 320–326, 1971.

[4] Úlfar Erlingsson and Fred B. Schneider. IRM enforcement of Java stack inspection. In IEEE
Symposium on Security and Privacy, pages 246–255, Oakland, California, May 2000.

[5] Úlfar Erlingsson and Fred B. Schneider. SASI enforcement of security policies: A retrospective.
In WNSP: New Security Paradigms Workshop. ACM Press, 2000.

[6] David Evans and Andrew Twynman. Flexible policy-directed code safety. In IEEE Symposium
on Security and Privacy, pages 32–45, Oakland, California, May 1999.

[7] Kurt Gödel. Über formal unentscheidbare sätze der Principia Mathematica und verwandter
Systeme. Monatshefte für Mathematik und Physik, 38:173–198, 1931.

[8] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in operating systems. Communi-
cations of the ACM, 19(8):461–471, August 1976.

[9] Gregor Kiczales, John Lamping, Anurag Medhdhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet Akşit and Satoshi
Matsuoka, editors, European Conference on Object-Oriented Programming, volume 1241, pages
220–242. Springer-Verlag, Berlin, Heidelberg, and New York, 1997.

[10] L. Lamport. Proving the correctness of multiprocess programs. IEEE Transactions on Software
Engineering SE-3, 2:125–143, March 1977.

[11] B. Lampson. Protection. In Proceedings of the 5th Symposium on Information Sciences and
Systems, pages 437–443, Princeton, New Jersey, March 1971.

[12] Tim Lindholm and Frank Yellin. The JavaTM Virtual Machine Specification. Addison-Wesley,
second edition, 1999.

[13] Greg Morrisett, Karl Crary, and Neal Glew. From System F to Typed Assembly Language.
ACM Transactions on Programming Languages and Systems, 21(3):527–568, May 1999.

[14] Andrew C. Myers. Practical mostly-static information flow control. In Proceedings of the
26th ACM Symposium on Principles of Programming Languages, pages 228–241, San Antonio,
Texas, January 1999.

20

[15] Carey Nachenberg. Computer virus–antivirus coevolution. Communications of the ACM,
40(1):46–51, January 1997.

[16] George Necula. Proof-Carrying Code. In 24th ACM Symposium on Principles of Programming
Languages, pages 106–119, Paris, France, January 1997.

[17] George C. Necula and Peter Lee. Safe kernel extensions without run-time checking. In 2nd
Symposium on Operating Systems Design and Implementation (OSDI ’96), pages 229–243,
Berkeley, CA, USA, 1996. USENIX.

[18] George C. Necula and Peter Lee. The design and implementation of a certifying compiler. In
Proceedings of the 1998 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 333–344, 1998.

[19] Christos H. Papadimitriou. Computational Complexity, page 63. Addison-Wesley, 1995.

[20] J. Rees and W. Clinger. Revised 4 report on the algorithmic language Scheme. Lisp Pointers,
4(3):1–55, July–September 1991.

[21] Fred B. Schneider. Enforceable security policies. ACM Transactions on Information and
Systems Security, 3(1):30–50, February 2000.

[22] Christopher Small. MiSFIT: A tool for constructing safe extensible C++ systems. In Pro-
ceedings of the Third USENIX Conference on Object-Oriented Technologies, Portland, Oregon,
June 1997.

[23] A. M. Turing. On computable numbers with an application to the Entscheidungs-problem. In
Proceedings of the London Mathematical Society, volume 2, pages 42, 230–265, 1936.

[24] Mahesh Viswanathan. Foundations for the Run-time Analysis of Software Systems. PhD
thesis, University of Pennsylvania, December 2000.

[25] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient software-
based fault isolation. In Proceedings of the 14th ACM Symposium on Operating Systems
Principles, pages 203–216, December 1993.

[26] W. Ware. Security controls for computer systems. Technical Report R-609-1, Rand Corp,
October 1979.

A Formal PM Construction

There are many equivalent ways to formalize TM’s. We will define them as 4-tuples:

M = (Q, δ, q0, B)

• Q is a finite set of states.

• δ is the TM’s transition relation. For each state in Q and each symbol that could be read from
the work tape, δ dictates whether the PM halts (H), reads a symbol from the input tape and
continues, or continues without reading a symbol from the input tape. If the TM continues
without reading an input symbol, then δ specifies the new TM state, the symbol written to
the work tape, and whether the work tape head moves left (−1) or right (1). Otherwise if an

21

input symbol is read, it specifies all of the above (the new TM state, the symbol written to
the work tape, and whether the work tape header moves left or right) for each possible input
symbol seen. Thus δ has type13

δ : Q× Γ →
(
{H}]
(Q× Γ× {−1, 1})]
(Γ → (Q× Γ× {−1, 1}))

)
• q0 ∈ Q is the initial state of the TM.

• B ∈ Γ is the blank symbol to which all cells of the work tape are initialized.

The computation state of a TM is defined as a 5-tuple:

〈q, σ, i, κ, k〉

where q ∈ Q is the current finite control state; σ, κ ∈ Γω are the contents of the input and work tapes;
and i, k ≥ 1 are the positions of the input and work tape heads. Initially, TM M = (Q, δ, q0, B)
when provided input σ begins in computation state 〈q0, σ, 1, Bω, 1〉. The TM computation state
then changes according to the following small-step operational semantics:

〈q, σ, i, κ, k〉 −→TM 〈q, σ, i, κ, k〉
if δ(q, κ[k]) = H.

〈q, σ, i, κ, k〉 −→TM 〈q′, σ, i, κ[..k − 1] s κ[k + 1..], max{1, k + d}〉
if δ(q, κ[k]) = (q′, s, d).

〈q, σ, i, κ, k〉 −→TM 〈q′, σ, i + 1, κ[..k − 1] s κ[k + 1..], max{1, k + d}〉
if δ(q, κ[k])(σ[i]) = (q′, s, d).

PM’s are defined exactly as TM’s except that they carry additional information corresponding
to the trace tape. The computation state of a PM is defined as a triple:〈

〈q, σ, i, κ, k〉, τ, n
〉

where 〈q, σ, i, κ, k〉 is the computation state of a TM, τ ∈ Γ∗ is the contents of the trace tape up
to the trace tape head, and n ≥ 0 is a computational step counter. Initially, PM M = (Q, δ, q0, B)
when provided input σ begins in computation state 〈S, ·, 0〉 where S is the initial computation
state of TM M for input σ. The PM computation state then changes according to the following
operational semantics:

〈S, τ, n〉 −→PM 〈S′, τ T (M,σ, n + 1), n + 1〉

where S →TM S′ and T : TM ×Γω ×N → Γ∗ is a trace mapping satisfying the constraints on trace
mappings given in §2.1. (A concrete example will be given shortly.)

We illustrate by giving a concrete example of a PM. This requires first specifying a Turing
Machine and then giving a suitable trace mapping. Let Γ0 be {0, 1,#}. Next define event set E0

by
E0 =def {es|s ∈ Γ0}] {eskip , eend}] {eM |M ∈ PM }.

E0 is a countable set, so there exists an unambiguous encoding of events from E0 as finite sequences
of symbols from Γ0. Choose such an encoding and let dee denote the encoding of event e ∈ E0. To

13Set operator] denotes disjoint union.

22

"!

"!

"!

-

@
@@R

�
��	

� I

q0 q1

q2

0 7→ 1, 1

1 7→ 0, 1
0 7→ 0, 1
1 7→ 1, 1

7→ 1, 1 # 7→ #, 1

We write s 7→ s′, d (where s, s′ ∈ Γ and d ∈ {−1, 1}) by an arrow

from state q ∈ Q to q′ ∈ Q when reading s in state q causes the PM

to write s′ to its work tape, move the work tape header in direction

d (i.e. left (−1) or right (1)), and transition to state q′.

Minc =def

(
{q0, q1, q2}, δinc , q0,#

)
where for all s ∈ Γ0,

δinc(q0, s) =def

(
0 7→ (q1, 1, 1);
1 7→ (q0, 0, 1);

7→ (q2, 1, 1)
)

δinc(q1, s) =def

(
0 7→ (q1, 0, 1);
1 7→ (q1, 1, 1);

7→ (q2,#, 1)
)

δinc(q2, s) =def H

Figure 4: A PM for adding one.

avoid ambiguities in representing event sequences, choose the encoding so that for all e ∈ E0, string
dee consists only of symbols in {0, 1} followed by a #. This ensures that there exists a computable
function b·c : Γω → Eω such that for all i ≥ 0 and for all χ ∈ Ei,

⌊
de0e · · · deie

⌋
= e0 . . . ei.

Finally, for all M ∈ TM , σ ∈ Γω, and n ≥ 0, define trace mapping T0 by

T0(M,σ, 0) =def deMe.
T0((Q, q0, δ, B), σ, n + 1) =def deσ[i]e if 〈q0, σ, 1, Bω, 1〉 −→n

TM 〈q, σ, i, κ, k〉, and

δ(q, κ[k]) ∈
(
Γ → (Q× Γ× {−1, 1})

)
.

T0((Q, q0, δ, B), σ, n + 1) =def deende if 〈q0, σ, 1, Bω, 1〉 −→n
TM 〈q, σ, i, κ, k〉, and

δ(q, κ[k]) = H.

T0(M,σ, n + 1) =def deskipe otherwise.

So, this trace mapping causes every PM M to write deMe to its trace tape before its first compu-
tational step, write dese whenever it reads symbol s from its input tape, write deskipe whenever it
does not read an input symbol on a given computational step, and pad the remainder of the trace
tape with deende if it halts.

For all M ∈ PM and σ ∈ Γω, event sequence χM(σ) can be defined as

χM(σ) =def bτc

where τ is the limit as n →∞ of〈
〈q0, σ, 1, Bω, 1〉, ·, 0

〉
−→n

TM

〈
〈q, σ, i, κ, k〉, τ, n

〉
and M = (Q, δ, q0, B). Therefore an enforcement mechanism could determine the sequence of events
exhibited by a PM by observing the PM’s trace tape.

Figure 4 shows a program to increment binary numbers by 1, formalized as a PM along the
lines we just discussed. The PM shown there treats its input as a two’s-complement binary number
(least-order bit first), and writes that number incremented by one to its work tape. As the PM
executes, it also writes the sequence of symbols dictated by trace mapping T0 to its trace tape.
So if the PM in Figure 4 were provided string 1101 as input, it would write 0011 to its work tape
and write deMincede1ede1ede0ede1ede#e to its trace tape, followed by deende repeated through the

23

remainder of the tape. A different PM M0 that never reads its input would write to its trace tape
deM0e, then deskipe for each computational step it takes, and finally deende repeated through the
remainder of the tape.

We have given only one of many equivalent ways to formalize our program machines. Extra work
tapes, multiple tape heads, multidimensional tapes, and two-way motion of the input tape head all
yield computational models of equivalent power to the one we give. All of these models can simulate
the operations found on typical computer systems, including arithmetic, stack-based control flow,
and stack- and heap-based memory management. TM’s can also simulate other TM’s, which means
they can perform the equivalent of runtime code generation. Turing Machines are thus an extremely
flexible model of computation that can be used to simulate real computer architectures.

24

