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Spiking neural P systems with anti-spikes (for short, SN PA systems) can encode the binary

digits in a natural way using two types of objects called anti-spikes and spikes. In this paper, we

use SN PA systems to perform the arithmetic operation like 2's complement, addition and
subtraction of binary numbers. They are also used to simulate NAND and NOR gates.
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1. Introduction

It is obvious that the chemical, electrical and informational processes taking place in

the brain are the major source of inspiration for informatics. Risking a forecast, we

believe that if something great is to appear in informatics in the near future, then it

will be inspired by the brain.

Spiking neural P system5 (shortly called SN P system) is a parallel and distributed

computing model inspired by the neurobiological behavior of neurons sending elec-

trical pulses of identical voltages called spikes to neighboring neurons. It is a versatile

formal model of computation that can be used to design e±cient parallel algorithms
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for solving known computer science problems. Spiking neural P systems are not the

answer to this learning-from-brain challenge, but only to call (once again) the

attention to this challenge. Becoming familiar with brain functioning, in whatever

reductionistic framework (as spiking neural P systems investigation is), can however

be useful.

Standard SN P system is pictorially represented as a directed graph where nodes

correspond to neurons having spiking and forgetting rules. The rules involve the

spikes present in the neuron in the form of occurrences of a symbol a. The arcs

indicate the synapses among the neurons. Similar to the neurons in the brain, the

neurons in an SN P system also ¯re in parallel, with each neuron using only one rule

in each step. The initial con¯guration of the system is represented by the number of

spikes present in each neuron. One of the neuron is taken as output neuron,

which sends spikes to environment. Number of outputs can be associated with an SN

P system. Hence, in a standard SN P system there are only one type of objects called

spikes which are moved, created and destroyed but never modi¯ed into another form.

Standard spiking neural P systems are used to simulate arithmetic and logic

operations where the presence of spike is encoded as 1 and absence of spike as 0 and

the negative integers were not considered.3 The ability of SN P systems to e±ciently

simulate Boolean circuits are studied,4 since apart from being a well known com-

putational model, there exist many \fast" algorithms solving various problems. In

addition, this simulation, enriched with some \memory modules" (given in the form

of some SN P sub-systems), may constitute an alternative proof of the computational

completeness of the model. The Boolean value 1 is encoded in the SN P system by two

spikes, hence a2, while 0 is encoded as one spike. As the system has only one input

neuron, the number of spikes equal to the sum of the inputs, is introduced into the

neuron. For example to compute the logical AND or OR operation between 1 and 0

(or 0 and 1) three spikes (two spikes for 1 and one spike for 0) are introduced into the

input neuron and four spikes are introduced for case 11.

SN P system with anti spikes,2 is a variant of an SN P system consisting of two

types of objects, spikes (denoted as a) and anti-spikes (denoted as a). The inhibitory

impulses/spikes are represented using anti-spikes. The anti-spikes behave in a similar

way as spikes by participating in spiking and forgetting rules. They are produced

from usual spikes by means of usual spiking rules; in turn, rules consuming anti-spikes

can produce spikes or anti-spikes (here we avoid the rule anti-spike producing anti-

spike). The SN P system with anti-spikes consists of an implicit annihilation rule of

the form aa ! �; if an anti-spike and a spike meet in a given neuron, they annihilate

each other. This rule has the highest priority and does not consume any time. SN P

system with anti-spikes allows the modi¯cation of spikes and anti-spikes and is

proved as computationally complete.

In this paper, we use SN P systems with anti-spikes to simulate logic gates. The

advantage of using this variant of SN P system is that we can encode 1 by a spike and

0 by an anti-spike. A Boolean gate can be simulated in a very natural way using two

inputs and one output. Input data can be introduced into the system in a similar way
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to any Boolean gate. Using SN P system with anti-spikes, we can perform the

operations on negative numbers also. The input to the systems is a binary sequence of

spikes and anti-spikes which encodes the digits 1 and 0 respectively, of a binary

number. They can represent the negative numbers in 2's complement form, thereby

simulating the arithmetic operations on negative numbers. In this paper, we have

simulated three arithmetic operations — 2's complement, addition and subtraction.

1.1. Notation

We recall here a few de¯nitions and notations related to the formal languages and

automata theory.

� is a ¯nite set of symbols called alphabet. A string w over � is a sequence of

symbols drawn from �. � denotes the empty string. �� is the set of all strings over �.
�� � f�g is denoted by �þ. The length of a string w is denoted by jwj. A language L

over � is a set of strings over �.

A language L � �� is said to be regular if there is a regular expression E over �

such that LðEÞ ¼ L. The regular expressions are de¯ned using the following rules. (i)

�, � and each a 2 � are regular expressions. (ii) if E1, E2 are regular expressions over

�, then E1+E2, E1E2 and E �
1 are regular expressions over �, and (iii) nothing else is a

regular expression over �. With each regular expression E, we associate a language

LðEÞ.
When � ¼ fag is a singleton, then the regular expression a� denotes the set of all

strings formed using a. i.e. the set f�; a; a2; a3; . . .g. The positive closure aþ ¼ a� � f�g.

2. Spiking Neural P System with Anti-Spikes

Here we recall the de¯nition of SN P system with anti-spikes without delay.

De¯nition 2.1. (SN P system with anti-spikes) Mathematically, we represent a

spiking neural P system with anti-spikes of degree m � 1, in the form

� ¼ ðO; �1; �2; �3; . . . ; �m; syn; i0Þ; where

(1) O ¼ fa; ag is the binary alphabet. a is called spike and a is called anti-spike.

(2) �1; �2; �3; . . . ; �m are neurons, of the form

�i ¼ ðni;RiÞ; 1 � i � m;

where

(a) ni � 0 is the initial number of spikes or anti-spikes contained by the cell.

Neuron �i has ni spikes if ni > 0 or ni anti-spikes if ni < 0.

(b) Ri is a ¯nite set of rules of the following two forms:

(i) E=br ! b 0 where E is a regular expression over a or a, while

b; b 0 2 fa; ag, and r � 1.
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(ii) br ! �, for some r � 1, with the restriction that br 62 L(E) for any rule

E=br ! b 0 of type (1) from Ri;

(3) syn � f1; 2; 3; . . . ;mg � f1; 2; 3; . . . ;mg with ði; iÞ 62 syn for 1 � i � m (synap-

ses among cells);

(4) i0 2 f1; 2; 3; . . . ;mg indicates the output neuron.

The rules of type E=br ! b 0 are spiking rules, and they are possible only if the

neuron contains n spikes such that bn 2 L(E) and n � r. lðvÞ and rðvÞ gives the number

of spikes/anti-spikes present in the left and right-hand sides of rule v respectively.

Further lðE=br ! b 0Þ ¼ r if b ¼ a and lðE=br ! b 0Þ ¼ �r if b ¼ a. The value of rðvÞ is
either 1(if b 0 ¼ a) or �1(if b 0 ¼ a). Here we avoid the use of rules of the form a c ! a,

but not the other three types, corresponding to the pairs ða; aÞ, ða; aÞ, ða; aÞ. If E is

omitted then the rule is applied only if the neuron contains exactly r spikes/anti-spikes.

When neuron �i sends spike/anti-spike, it is replicated in such a way that one spike/

anti-spike is sent to all neurons �j such that ði; jÞ 2 syn. There is an additional fact that

a and a cannot stay together, so annihilate each other. If a neuron has either objects a or

objects a, and further objects of either type (maybe both) arrive from other neurons,

such that we end with ar and as inside, then immediately a rule of the aa ! �, which is

implicit in each neuron, is applied in a maximal manner, so that either ar�s or a s�r

remain for the next step, provided that r � s or s � r, respectively. This mutual an-

nihilation of spikes and anti-spikes takes no time and the rule has the highest priority.

The rules of type br ! � are forgetting rules; r spikes are simply removed

(\forgotten") when applying. Like in the case of spiking rules, the left-hand side of a

forgetting rule must \cover" the contents of the neuron, that is, as ! � is applied

only if the neuron contains exactly s spikes.

The simple SN P system works in a similar way but with only one type of object

called spike(a) and so there exist no annihilation rules.

De¯nition 2.2. (Con¯guration) The con¯guration of the system is described by the

number of spikes/anti-spikes present in each neuron. Thus hn1;n2; . . . ;nmi is a

con¯guration where neuron �i, i ¼ 1; 2; 3; . . . ;m contains ni spikes if ni > 0 or ni

anti-spikes if ni < 0.

A global clock is assumed in SN P system and in each time unit, each neuron

which can use a rule should do it (the system is synchronized), but the work of the

system is sequential locally: only (at most) one rule is used in each neuron except the

annihilation rule which ¯res maximally with highest priority. For example, if a

neuron �i has two ¯ring rules, E1=a
r ! a and E2=a

k ! a with LðE1Þ \ LðE2Þ 6¼ ;,
then it is possible that two can be applied in a neuron, and in that case only one of

them is chosen non-deterministically. Thus, the rules are used in the sequential

manner in each neuron, but neurons function in parallel with each other. The rules

are used in the non-deterministic manner, in a maximally parallel way at the level of

the system; in each step, all neurons which can use a rule of any type, spiking or

forgetting, have to evolve, using a rule.
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De¯nition 2.3. (Vector rule) We de¯ne a vector rule v as a mapping with domain �

such that each vðiÞ is at most one instance of spiking or forgetting rule from Ri i.e.

jvðiÞj ¼ 0 or 1 where 1 � i � m.

If a vector rule v is enabled at a con¯guration C ¼ hn1;n2; . . . ;nmi then C can

evolve to C0 ¼ hn 0
1;n

0
2; . . . ;n

0
mi (after applying annihilation rules in each neuron in

maximal way), where n 0
i ¼ ni � lðvðiÞÞ þP

ðj;iÞ2syn rðvðjÞÞ.
De¯nition 2.4. (Transition) Using the vector rule, we pass from one con¯guration

of the system to another con¯guration, such a step is called a transition. For two

con¯gurations C and C 0 of � we denote by C ) C 0, if there is a direct transition from

C to C 0 in �.

A computation of � is a ¯nite or in¯nite sequences of transitions starting from the

initial con¯guration, and every con¯guration appearing in such a sequence is called

reachable. Note that the transition of C is non-deterministic in the sense that there

may be di®erent vector rules applicable to C, as described above.

A computation halts if it reaches a con¯guration where no rule can be used. There

are various ways of using such a device.1 In the generative mode, one of the neurons is

considered to be the output neuron, and its spikes are sent to the environment. With

any computation halting or not we associate a spike train, a sequence of digits of 0

and 1, with 1 and 0 appearing in positions which indicate the steps when the output

neuron sends spikes and anti-spikes respectively, out of the system. With any spike

train we can associate various numbers which are considered as computed by the

system. Because of the non-determinism in using the rules, a given system computes

in this way a set of numbers. When both an input and an output neuron are con-

sidered, the system can be used as a transducer, both for strings and in¯nite

sequences, as well as for computing numerical functions. Spikes can be introduced in

the former one, at various steps, while the spikes of the output neuron are sent to the

environment. The moments of time when a spike is emitted by the output neuron are

marked with 1, the moments of anti-spikes are marked with 0. The binary sequence

obtained in this way is called the spike train of the system; it might be in¯nite if the

computation does not stop. A binary sequence is similarly associated with the spikes

entering the system. In the transducing mode, a large class of (Boolean) functions can

be computed.

Example 2.1. Consider the graphical representation of an SN P system with anti-

spikes in Fig. 1. The neurons are represented by nodes of a directed graph whose

a a
a a

1

output
a

a a
a λ

a
2

Fig. 1. SN P system with anti-spikes generating 1þ.
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arrows represent the synapses; an arrow also exits from the output neuron, pointing

to the environment; in each neuron we specify the rules and the spikes present in the

initial con¯guration. It is formally denoted as

�1 ¼ ðO; �1; �2; syn; 2Þ; with

�1 ¼ ð1; fa ! a; a ! agÞ;
�2 ¼ ð1; fa ! a; a ! �gÞ;

syn ¼ fð1; 2Þ; ð2; 1Þg:

We have two neurons, with labels 1, 2; neuron 2 is the output neuron. Initially neuron

1 has one spike with non-determinism between its two rules and neuron 2 has one

spike and they ¯re in the ¯rst step. Neuron 2 uses its ¯rst rule and sends a spike (1) to

environment and neuron 1. Neuron 1 can choose any of its two rules and as long as it

uses ¯rst rule, one spike will be sent to neuron 2, which uses ¯rst rule in the next step

by sending a spike to environment and neuron 1. At any instance of time, starting

from step 1, neuron 1 can choose its second rule, which modi¯es spike into anti-spike

and sent to neuron 2. The anti-spike is ignored by the neuron 2 in the next step (using

rule 2) and the system halts. As the neuron 2 emits a spike in the ¯rst step, even if the

neuron 1 uses the second rule in the ¯rst step, at least one spike (1) is emitted by the

system. Because of the non-determinism in using the rules of neuron 1, the system

computes a set of binary strings (spike train) represented using regular expression 1þ.

3. Simulating Universal Logic Gates

A universal gate is a gate which can implement any Boolean function without need to

use any other gate type. The NAND and NOR gates are universal gates. The NAND

gate represents the complement of the AND operation and the NOR gate represents

the complement of the OR operation. In practice, this is advantageous since NAND

and NOR gates are economical and easier to fabricate and are the basic gates used in

all IC digital logic families. In this section, we simulate the NAND and NOR gates

using SN P systems with anti-spikes working in transducing mode. The Boolean

values 0 and 1 are encoded in the SN P system by anti-spike and spike respectively.

The output of the system is 0(hence false) if the output neuron sends an anti-spike

and output is 1(true) if a spike is sent to the environment. We want to emphasize that

no rule of the form a c ! a is used.

Lemma 3.1. Boolean NAND and NOR gates can be simulated by SN PA systems

with three neurons in two steps.

Proof. We construct SN PA system with seven neurons as in Fig. 2. The SN PA

system has two input neurons to take the input values and one output neuron to

produce output. A spike/anti-spike is introduced in each input neuron corresponding

to input 1/0.
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If we introduce an anti-spike (0) into each of the input neurons, the anti-spike

becomes a spike and sent to the output neuron in the next stage. So the output

neuron gets two spikes from the input neurons and it already has three spikes,

accumulating a total of ¯ve spikes and ¯res using a rule a5 ! a sending a spike (1) to

the environment. But if we introduce a spike (1) into each of the input neurons, the

output neuron gets two anti-spikes and gets annihilated with two spikes already

present in it, remains with a spike and ¯res using a rule a ! a producing an anti-

spike (0). In the third case, if a spike is introduced into one of the input neurons and

an anti-spike into another, then they get annihilated after reaching the output

neuron. So the output neuron has its three spikes and ¯res using the rule a3 ! a

sending a spike to the environment. We can observe that it is simulating the NAND

gate correctly.

If we replace the rule a3 ! a with a3 ! a in the output neuron of the above

system, we obtain the SN PA system for the NOR gate.

Similar to the 2-input NAND gate, we can construct n-input NAND gate. The

output of the gate is false (0) only if all the inputs are true (1) and is true if any of the

inputs is false. The SN PA system for n-input NAND gate is shown in Fig. 3.

The maximum number of anti-spikes received by the output neuron is n (if all inputs

are spikes corresponding to true) and they get annihilated with n spikes in the output

neuron and is left with a spike and ¯res using the rule a ! a producing an anti-spike.

a a
a a

3

a a

input1

a a
output

input2

5

a a
a a

aa

a3

Fig. 2. SN P system with anti-spikes simulating 2-input NAND gate.

a a
a a

2n

a a

input1

a a output

input2 2n+1a a
a a

aa

an+1

inputn a a
a a

2a a

Fig. 3. SN P system with anti-spikes simulating n-input NAND gate.
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In all other cases, it produces a spikes. Thus simulating the n-input NAND gate

correctly.

4. Simulating Circuits

Here, we present the way to simulate any Boolean circuit using NAND or NOR gates

constructed in the previous section. We know that any Boolean function can be

represented in sum-of-product (SOP) and product-of-sum forms (POS). SOP forms

can be implemented using only NAND gates, while POS forms can be implemented

using only NOR gates. In either case, implementation requires two levels. The ¯rst

level is for each term and second level for product or sum of the terms.

Consider the Boolean function :ðx1 ^ x2Þ _ ðx3 ^ x4Þ. It is written in SOP from as

:x1 _ :x2 _ ðx3 ^ x4Þ:
We use the SN P systems with anti-spikes for 2-input and 3-input NAND gates.

Let �NAND is an SN P systems for NAND gate. The Boolean circuit corresponding to

the above formula as well as the spiking system assigned to it are depicted in Fig. 4.

Note that in Fig. 4, �
ð1Þ
NAND;�

ð2Þ
NAND;�

ð3Þ
NAND are SN P systems for 2-input NAND

gates and �
ð4Þ
NAND is the SN P system for 3-input NAND gate. Having the overall

image of the functioning of the system, let us give some more details on the simulation

of the above formula. For that we construct the SN P system with anti-spikes �C ¼
ð� ð1Þ

NAND;�
ð2Þ
NAND;�

ð3Þ
NAND;�

ð4Þ
NANDÞ formed by the sub-SN P systems for each gate and

we obtain the unique result as follows:

(1) For every gate of the circuit with inputs from the input gates we have a SN P

system to simulate it. The input is given to the input neurons of each gate;

(2) For each gate which has at least one input coming as an output of a previous

gate, we construct a SN P system to simulate it by adding a synapse from the

output neuron of the gate from which the signal (spike) comes to the input

neuron of the system that simulates the new gate.

(2)

NANDNAND

(1)

¬x x42 x3¬x
1

(3)

NAND

(4)

NAND

Fig. 4. Boolean circuit and corresponding SN P system with anti-spikes for :ðx1 ^ x2Þ _ ðx3 ^ x4Þ.
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For the above formula and the circuit depicted in Fig. 4, we will have:

�
ð1Þ
NAND performs the ¯rst NAND operation :ð:x1 ^ :x1Þ ¼ x1 with each input as

:x1. (For :x1 as input, an anti-spike is introduced in each input neuron of�
ð1Þ
NAND).

�
ð2Þ
NAND performs the second NAND operation :ð:x2 ^ :x2Þ ¼ x2 with each input

as :x2.

�
ð3Þ
NAND performs the third NAND operation :ðx3 ^ x4Þ with inputs as x3 and x4.

These three SN P systems �
ð1Þ
NAND, �

ð2Þ
NAND and �

ð3Þ
NAND act in parallel producing

the output at the same time. The outputs enter the 3-input NAND gate �
ð4Þ
NAND at

the same time which eliminates the use of synchronising module.4

�
ð4Þ
NAND computes NAND operation on x1, x2 and :ðx3 ^ x4Þ outputting :x1 _

:x2 _ ðx3 ^ x4Þ to the environment.

Generalizing the previous observations the following result holds:

Theorem 4.1. Every Boolean circuit can be simulated by an SN PA system and is

constructed from SN P systems with anti-spikes of type NAND or NOR; by

reproducing the structure associated with the circuit.

5. Arithmetic Operations using SN P System with Anti-Spikes

In this section, we consider SN P system with anti-spikes as simple arithmetic device

that can perform the arithmetic operations like 2's complement, addition and sub-

traction with input and output in binary form. The binary sequence of 0 and 1 are

encoded as anti-spike and spike respectively and in each time step input is provided

bit-by-bit starting from the least signi¯cant bit. The negative numbers are rep-

resented in two's complement form. The advantage of using SN P systems with anti-

spikes is that they can encode the 0 and 1 as anti-spike and spike in a very natural

way and thus providing a way to represent negative numbers also.

5.1. 2's Complement

The 2's complement is used to represent a negative of a binary number. It also gives

us a straightforward way to add and subtract positive and negative binary numbers.

A simple way to ¯nd the 2's complement of a number is to start from the least

signi¯cant bit keeping every 0 as it is until you reach the ¯rst 1 and then complement

all the rest of the bits after the ¯rst 1.

Theorem 5.1. 2's complement of a binary number can be calculated using an SN P

systems with anti-spikes using three neurons.

Proof. The SN P system that performs the 2's complement is shown in Fig. 5.

Neuron 1 is the input neuron. Neuron 3 is the output neuron, which sends output to

environment. The input neuron has two rules to complement the input by changing a

spike into anti-spike and anti-spike into spike and send it to its neighboring neuron 2.

The neuron 2 initially has 3 spikes and as long as it receives a spike (actual input to
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the input neuron is 0), it uses the ¯rst rule a4=a ! a by send a spike to the output

neuron where it is complemented into anti-spike, which is same as the input. But if

the second neuron receives anti-spike (that means we got the ¯rst 1), it will be left

with two spikes because of the annihilation rule that is implicitly present in each

neuron and uses the rule a2 ! a and sends an anti-spike to the output neuron where

it is complemented as spike and sent to the environment (that is ¯rst 1 is unchanged).

After ¯ring the rule, the neuron 2 has no spikes/anti-spikes and then simply

complements the input it receives by using the third and fourth rule and sends it to

the output neuron where it is again complemented and sent to environment. That

means after the ¯rst one, the output will be the complement of input. We can easily

observe that the system correctly calculates the 2's complement and emits its ¯rst

output bit at t ¼ 4 as there is one intermediate neuron.

As an example, let us consider a binary number 01100 (12 in decimal). The way

the SN P system computes the 2's complement is represented in Table. 1. It reports

the number of spikes/anti-spikes present in each neuron and output produced by the

output neuron to the environment in the output column.

5.2. Addition and subtraction

The SN P system performing the addition is shown in Fig. 6. The negative numbers

are represented in 2's complement form using the system SN P system given in the

previous section and then fed as input.

a a
a a

a
a

2
a

 a a

3

input

2

1
a4
/

a a
a a

a a
a a

3
output

Fig. 5. SN P system computing 2's complement.

Table 1. Number of spikes/anti-spikes present in

each neuron of an SN P system during the com-

putation of 2's complement of 01100.

Time Input Neuron 2 Neuron 3 Output

t ¼ 0 — a3 — —

t ¼ 1 að0Þ a3 — —

t ¼ 2 að0Þ a4 — —

t ¼ 3 að1Þ a4 a —

t ¼ 4 að1Þ a2 a að0Þ
t ¼ 5 að0Þ a a að0Þ
t ¼ 6 — a a að1Þ
t ¼ 7 — — a að0Þ
t ¼ 8 — — — að1Þ
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Theorem 5.2. Addition of two binary numbers can be performed using an SN P

systems with anti-spikes.

Proof. The system has two input neurons, the ¯rst number is provided through

input neuron 1 and the second one is through input neuron 2. Input neuron 1 is

connected to neurons 1 and 2 and input neuron 2 is connected to neurons 3 and 4. The

presence of a spike in the output neuron indicates a carry of the previous addition.

Each input neuron has two rules to complement the input and send the output to its

neighboring two neurons. Here we are having 3 cases:

(1) If both the inputs are 1(spike), then in each input neuron uses the second rules

and sends an anti-spike two of its neighboring neurons where the anti-spikes are

converted spikes. So the output neuron 5 receives four spikes, one from each of

the four neurons of the previous stage. If the output neuron is already having a

spike(carry), then the number of spikes become 5 and ¯res using a rule a5=a4 !
a otherwise it has four spikes and ¯res using the rule a4=a3 ! a leaving one spike

in the output neuron in either case. The presence of a spike in the output neuron

indicates a carry. This encodes the two operations 1þ 1 ¼ 0 with carry 1 and

ð1Þ þ 1þ 1 ¼ 1 with carry 1.

(2) If one of the input bit is zero, then the input neuron receiving an anti-spike sends

a spike to each of it's neighboring neurons. For example if the input 1 is 0 and

input 2 is 1 then input neuron 1 sends a spike two each of neighboring neurons 1

and 2. In the neuron 1, the spike remain the same and where as in neuron 2 it is

forgotten, so the number of spikes sent to the output neuron is 1, where as the

neighboring neurons of input neuron 2 sends two spikes to the output neuron. So

three spikes are received if one of the input is zero. The output neuron has either

three or four (in case carry) spikes and ¯res using a3 ! a or a4=a3 ! a re-

spectively. These rules encode the two operations 0þ 1 ¼ 1 and ð1Þ þ 0þ 1 ¼ 0

with carry 1 respectively.

(3) If both the input neurons receive anti-spikes(0), then the output neuron receives

two spikes and it will have either two or three (again in case of carry of the

a a
a a a

2

a

a a

input1
5

1

4

a a

a a
a a

outputa
a a

λ

2

input2

3

4

3

a a
a a

a a
a a

a
a a

λ

a5/

a a3a4/

a λ

Fig. 6. An SN P system with anti-spikes simulating addition operation.
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previous operation) spikes and ¯res using a2 ! a or a3 ! a. These two rules do

not leave any carry encoding the operations 0þ 0 ¼ 0 and ð1Þ þ 0þ 0 ¼ 1 re-

spectively.

The last rule in the output neuron a ! � allows the last over°ow bit to be ignored.

The procedure con¯rms the correctness of the system for performing the addition of

two numbers.

As an example, let us consider the addition of 7 and �5. Number 7 is represented

in binary form as 0111 and �5 is represented in 2's complement form as 1011. The

two binary sequences will form the input for the SN P system. The number of spikes

present in each neuron in every step and the output produced by the system is

depicted in Table. 2.

Two's complement subtraction is the binary addition of the minuend to the 2's

complement of the subtrahend (adding a negative number is the same as subtracting

a positive one). That means a� b becomes aþ ð�bÞ. The SN P system for addition

can be used to perform subtraction. The multiplication is viewed as repeated addition

and division as repeated subtraction. This implies that SN P systems with anti-spikes

can very well perform the binary operations in a natural way.

6. Conclusion

In this paper, we designed SN P systems with anti-spikes to perform arithmetic

operations like 2's complement, addition and subtraction. The advantage of using

this variant of SN P system is that spikes and anti-spikes can encode the binary digits

in a more natural way and we can perform the operations on negative numbers also.

The input to the systems is a binary sequence of spikes and anti-spikes which encodes

the digits 1 and 0 respectively, of a binary number. The negative numbers are in 2's

complement form. The outputs of the computations are also expelled to the en-

vironment in the same form. We also designed SN PA systems simulating the

operations of NAND and NOR gates. This motivates the implementation of CPU

using SN P systems with anti-spikes.

Table 2. Number of spikes/anti-spikes present in each neuron of

addition SN P system during the addition of 0111 and 1011.

Time Input 1 Input 2 �1 �2 �3 �4 �5 Output

t ¼ 1 að1Þ að1Þ — — — — — —

t ¼ 2 að1Þ að1Þ a a a a — —

t ¼ 3 að1Þ að0Þ a a a a a4 —

t ¼ 4 að0Þ að1Þ a a a a a5 að0Þ
t ¼ 5 — — a a a a a4 að1Þ
t ¼ 6 — — — — — — a4 að0Þ
t ¼ 7 — — — — — — a að0Þ
t ¼ 8 — — — — — — — —
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