Computability of the Radon-Nikodym derivative

Mathieu Hoyrup, Cristóbal Rojas and Klaus Weihrauch

LORIA, INRIA Nancy - France

- Let λ be the uniform measure over [0, 1].
- Let $f \in L^1(\lambda)$ be nonnegative.
- Let $\mu(A) = \int_A f \, d\lambda$.
- One has $\mu \ll \lambda$, i.e. for all A, $\lambda(A) = 0 \implies \mu(A) = 0$.

- Let λ be the uniform measure over [0, 1].
- Let $f \in L^1(\lambda)$ be nonnegative.
- Let $\mu(A) = \int_A f \, d\lambda$.
- One has $\mu \ll \lambda$, i.e. for all A, $\lambda(A) = 0 \implies \mu(A) = 0$.

Conversely,

Theorem (Radon-Nikodym, 1930)

For every measure $\mu \ll \lambda$ there exists $f \in L^1(\lambda)$ such that

$$\mu(A) = \int_A f \, \mathrm{d}\lambda$$
 for all Borel sets A.

f is the **Radon-Nikodym derivative** of μ w.r.t. λ , denoted $f = \frac{d\mu}{d\lambda}$.

- Let λ be the uniform measure over [0, 1].
- Let $f \in L^1(\lambda)$ be nonnegative.
- Let $\mu(A) = \int_A f \, d\lambda$.
- One has $\mu \ll \lambda$, i.e. for all A, $\lambda(A) = 0 \implies \mu(A) = 0$.

Conversely,

Theorem (Radon-Nikodym, 1930)

For every measure $\mu \ll \lambda$ there exists $f \in L^1(\lambda)$ such that

$$\mu(A) = \int_{A} f \, \mathrm{d}\lambda$$
 for all Borel sets A.

f is the **Radon-Nikodym derivative** of μ w.r.t. λ , denoted $f = \frac{d\mu}{d\lambda}$.

Our problem

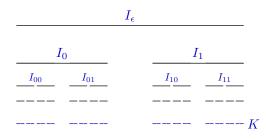
Is $\frac{d\mu}{d\lambda}$ computable from μ ?

Theorem On [0, 1], there is a computable measure $\mu \ll \lambda$ (even $\mu \leq 2\lambda$) such that $\frac{d\mu}{d\lambda}$ is not $L^1(\lambda)$ -computable. **Theorem** On [0, 1], there is a computable measure $\mu \ll \lambda$ (even $\mu \leq 2\lambda$) such that $\frac{d\mu}{d\lambda}$ is not $L^1(\lambda)$ -computable.

Proof.

The measure will be defined as $\mu(A) = \lambda(A|K) = \frac{\lambda(A \cap K)}{\lambda(K)}$ where $K \subseteq [0, 1]$:

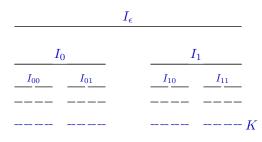
- is a recursive compact set,
- $\lambda(K) > 0$ is not computable (only upper semi-computable, or right-c.e.).



Theorem On [0, 1], there is a computable measure $\mu \ll \lambda$ (even $\mu \leq 2\lambda$) such that $\frac{d\mu}{d\lambda}$ is not $L^1(\lambda)$ -computable.

Proof cont'd.

There is a computable homeomorphim $\phi : \{0, 1\}^{\mathbb{N}} \to K$ and μ is the push-forward $\phi_*\lambda$ of the uniform on Cantor space, so it is computable. $\frac{d\mu}{d\lambda} = \frac{1}{\lambda(K)} \mathbf{1}_K$ is not $L^1(\lambda)$ -computable.



(Non-)computability of RN

Theorem

There exists a computable measure $\mu \ll \lambda$ such that $\frac{d\mu}{d\lambda}$ is not $L^1(\lambda)$ -computable.

Question

How much is the Radon-Nikodym theorem non-computable?

(Non-)computability of RN

Theorem

There exists a computable measure $\mu \ll \lambda$ such that $\frac{d\mu}{d\lambda}$ is not $L^1(\lambda)$ -computable.

Question

How much is the Radon-Nikodym theorem non-computable?

Answer

No more than the Fréchet-Riesz representation theorem.

Theorem

 $\mathsf{RN} \leq_{W} \mathsf{FR}.$

(Non-)computability of RN

Theorem

There exists a computable measure $\mu \ll \lambda$ such that $\frac{d\mu}{d\lambda}$ is not $L^1(\lambda)$ -computable.

Question

How much is the Radon-Nikodym theorem non-computable?

Answer

No more than the Fréchet-Riesz representation theorem.

Theorem

 $\mathsf{RN} \leq_W \mathsf{FR}.$

And even, Theorem

 $\mathsf{RN} \equiv_W \mathsf{FR} \equiv_W \mathsf{EC}.$

• \leq_W is due to Weihrauch (1992).

- \leq_W is due to Weihrauch (1992).
- According to Klaus Weihrauch, W in \leq_W stands for *Wadge*.

- \leq_W is due to Weihrauch (1992).
- According to Klaus Weihrauch, W in \leq_W stands for *Wadge*.
- Nevertheless, \leq_W is now called *Weihrauch-reducibility*.

- \leq_W is due to Weihrauch (1992).
- According to Klaus Weihrauch, W in \leq_W stands for *Wadge*.
- Nevertheless, \leq_W is now called *Weihrauch-reducibility*.
- $f \leq_W g$ if given x, one can compute f(x) applying g once.

- \leq_W is due to Weihrauch (1992).
- According to Klaus Weihrauch, W in \leq_W stands for *Wadge*.
- Nevertheless, \leq_W is now called *Weihrauch-reducibility*.
- $f \leq_W g$ if given x, one can compute f(x) applying g once.
- $f \equiv_W g$ if $f \leq_W g$ and $g \leq_W f$.

Consider two representations En and Cf of $2^{\mathbb{N}}$:

 $\begin{aligned} \mathsf{En}(p) &= \{ n \in \mathbb{N} : 100^n 1 \text{ is a subword of } p \}, \\ \mathsf{Cf}(p) &= \{ n \in \mathbb{N} : p_n = 1 \}. \end{aligned}$

Let $E \subseteq \mathbb{N}$:

- *E* is r.e. ⇐⇒ it is En-computable,
- *E* is recursive \iff it is Cf-computable.

Let EC : $(2^{\mathbb{N}}, En) \rightarrow (2^{\mathbb{N}}, Cf)$ be the identity: it is not computable for these representations.

- Δ_2^0 objects can be computed from one application of EC (subsets of \mathbb{N} , real numbers, real fonctions, points of computable metric spaces, etc.)
- Actually, for $f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$,

$$f \in \Delta_2^0 \iff f \leq_W \mathsf{EC}.$$

- Let $\mathcal{J}(X)$ be the Turing jump of $X \subseteq \mathbb{N}$: $\mathcal{J} \equiv_W \mathsf{EC}$.
- EC $\equiv_W \lim_{\mathbb{R}^+} \mathbb{R}$.

Due to Brattka, Gherardi, Yoshikawa, Marcone (2005-2011).

Used to classify mathematical theorems: to a theorem

$\forall X \exists Y P(X, Y)$

is associated the operator $X \mapsto Y$ (possibly multi-valued).

Due to Brattka, Gherardi, Yoshikawa, Marcone (2005-2011).

Used to classify mathematical theorems: to a theorem

$\forall X \exists Y P(X, Y)$

is associated the operator $X \mapsto Y$ (possibly multi-valued).

• Let FR be the operator associated to the Fréchet-Riesz representation theorem (on suitable spaces):

 $\mathsf{EC} \equiv_W \mathsf{FR}.$

Due to Brattka, Gherardi, Yoshikawa, Marcone (2005-2011).

Used to classify mathematical theorems: to a theorem

$\forall X \exists Y P(X, Y)$

is associated the operator $X \mapsto Y$ (possibly multi-valued).

• Let FR be the operator associated to the Fréchet-Riesz representation theorem (on suitable spaces):

 $\mathsf{EC} \equiv_W \mathsf{FR}.$

- Let $\mathsf{BW}_{\mathbb{R}}$ be the Bolzano-Weierstrass operator:

 $\mathsf{EC} <_{W} \mathsf{BW}_{\mathbb{R}}.$

Due to Brattka, Gherardi, Yoshikawa, Marcone (2005-2011).

$\mathsf{EC} \leq_W \mathsf{RN}$

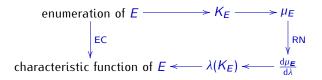
Let RN be the Radon-Nikodym operator, that maps $\mu \ll \lambda$ to $\frac{d\mu}{d\lambda} \in L^1(\lambda)$. Corollary

 $\mathsf{EC} \leq_W \mathsf{RN}.$

Proof.

Given an enumeration of $E \subseteq \mathbb{N}$:

- **1** construct K_E such that $\lambda(K_E) = \sum_{n \notin E} 2^{-n}$,
- **2** apply RN to compute $\lambda(K_E)$,
- **3** compute *E* from $\lambda(K_E)$.



A classical proof of the Radon-Nikodym theorem works as follows:

• apply the Fréchet-Riesz representation theorem to the continuous linear operator

$$\begin{array}{rcl} \phi_{\mu}: L^{2}(\lambda + \mu) & \to & \mathbb{R} \\ f & \mapsto & \int f \, \mathrm{d}\mu. \end{array}$$

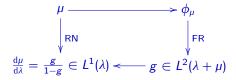
It gives $g \in L^2(\lambda + \mu)$ such that for all $f \in L^2(\lambda + \mu)$,

$$\phi_{\mu}(f) = \langle f, g \rangle,$$

i.e. $\int f d\mu = \int fg d(\lambda + \mu).$

• show that $\frac{g}{1-g}$ has the required properties for being $\frac{d\mu}{d\lambda}$.

To compute the Radon-Nikodym derivative,



one shows that from $g \in L^2(\lambda + \mu)$ one can compute $g \in L^1(\lambda)$, knowing that $\int g d\lambda = 1$.

(a simple proof can be obtained using Martin-Löf randomness!)

It was proved by Brattka and Yoshikawa that on suitable spaces,

 $FR \equiv_W EC.$

Hence we get

 $\mathsf{EC} \leq_W \mathsf{RN} \leq_W \mathsf{FR} \equiv_W \mathsf{EC}.$

FR: Fréchet-Riesz RN: Radon-Nikodym

EC: Enumeration → Characteristic function