

Computability over the partial continuous
functionals

Dag Normann ∗

February 5, 1998

Abstract

We show that to every recursive total continuous functional Φ there
is a representative Ψ of Φ in the hierearchy of partial continuous func-
tionals such that Ψ is S1 − S9 computable over the hierarchy of par-
tial continuous functionals. Equivalently, the representative Ψ will be
PCF -definable over the partial continuous functionals, where PCF is
Plotkin’s programming language for computable functionals.

1 Introduction

In [6] Kleene extended the concept of relative computations to computations
relative to objects of arbitrarily finite pure types. He defined the relation
{e}(φ1, . . . , φn) ≈ k inductively using 9 clauses generally known as S1 − S9.
The functionals in Kleene’s hiererchy are total, Tp(0) is the set N of natural
numbers, and Tp(k + 1) will consist of all total functions φ : Tp(k) → N.
In [7] Kleene isolated some of these functionals as countable. φ : Tp(k) → N

is countable if the global action of φ on countable inputs can be coded in a
countable way via the associates.
Kleene showed that any functional S1 − S9-computable in countable func-
tionals will itself be countable.

∗Department of Mathematics, The University of Oslo, P.O. Box 1053, Blindern, N-0316
Oslo, Norway. e-mail: dnormann@math.uio.no

1

Simultanously and independently Kreisel [8] introduced the hierarchy of
continuous functionals. The continuous functionals is a hierarchy (we restrict
to the pure case here) {Ct(k)}k∈N where φ is in Ct(k + 1) if φ : Ct(k) → N

in some continuous way.
The main difference beteween Kleene’s hierarchy and Kreisel’s hierarchy is
that Kleene’s hierarchy is not extensional. If we take the hereditarily exten-
sional collapse of the countable functionals we get the continuous functionals.
From now on we will work with the extensional variant, i.e. the continuous
functionals.

Both the original definitions had some ad hoc features, but experience has
shown (via a number of characterisations) that the hierarchy constructed is
the natural choice for a hierarchy of functionals of pure types where applica-
tion is determined from finitary information.

Ershov [4] characterised the continuous functionals as the hereditarily to-
tal objects in a hierarchy of partial continuous functionals. In essence he used
domains to define the continuous functionals. With the now established the-
ory of algebraic domains, or Scott-Ershov domains, see Stoltenberg-Hansen
& al. [16] for a general introduction, it seems natural to use domain theory
as the framework for constructing the continuous functionals. This approach
is taken in Normann [12], where S1 − S9 is also given. Berger [2, 3] use the
smooth theory of domains to discuss the concept of totality in an abstract
setting and to establish the Kreisel-Lacombe-Shoenfield theorem for higher
types.

The introduction of the continuous functionals via domain theory actu-
ally gives us three hierarchies to consider, the partial continuous function-
als {P (k)}k∈N, the hereditarily total objects in P (k) forming the hierarchy
{T (k)}k∈N (which is not extentional) and the hierarchy {Ct(k)}k∈N where
we identify hereditarily extentionally equal objects. The Kleene Schemes
S1−S9 make sense for both the hierarchies {Ct(k)}n∈N and {P (k)}n∈N. The
requirements for termination is however more restricted over the Ct-hierarchy
compared to the P -hierarchy. In the scheme for functional application

φ(λξ{e}(ξ, φ,−))

we will require λξ{e}(ξ, φ,−) to be total when we compute in the
Ct-hierarchy, while it may be partial when we compute in the P -hierarchy.
We might consider S1 − S9 over the T -hierarchy as well, but since every

2

computation in this case will respect extensional equality, this is essentially
the same as computing over the Ct-hierarchy.

The higher type functionals computable over the Ct-hierarchy and the
P -hierarchy will actually not be the same. Berger [2] observed that the fan
functional, shown by Tait [17] not to be computable, is indeed computable if
the computations take place in the P -hierarchy. By a straitforward applica-
tion of the recursion theorem, we can show that the functional Γ introduced
by Gandy and showed by Hyland [5] not to be computable in the fan func-
tional, is computable over the P -hierarchy.
Berger [2] conjectured that any recursive functional is computable in the
P -hierarchy. The main result of this paper is that this conjecture is true.

The recursion theory of {P (k)}k∈N has also atracted the interest of the-
oretical computer scientists. Plotkin [14] defines a programming language
PCF based on typed λ-calculus with local fixpoint operators at each type.
His type structure has two ground types, the natural numbers and the
boolean values, and it is closed under the formation of function types. Us-
ing algebraic domains he defines a semantics for PCF over an extension
{P (σ)}σ type. He shows that every recursive object (see Section 2 for defini-
tions) is PCF -definable relative to a parallel, continuous OR-operator and a
parallel, continuous ∃n-operator. Plotkin [15] discuss totality in connection
with denotational and operational semantics. Our theorems actually answer
problems stated in [15].
The PCF -definable objects of pure types are exactly the P -computable ob-
jects, i.e. S1 − S9 over the partial, continuous functionals. This has been
observed by Bellantoni [1] and Berger [2]. The proof follows a line of ar-
gument developed by Platek and used in Moldestad [10] establishing the
conection between Platek’s notion of computability and Kleene’s notion.
Now, every mixed type is isomorphic to a retraction of a pure type, with
primitive recursive projection- and inclusion maps. This is shown in detail
in Moldestad [10] for total and partial objects using the same construction
in the two cases. As a consequence, our results hold for mixed types as well.
In this setting our Main Theorem also reads:
To every recursive total Φ ∈ P (σ) there is an equivalent total Φ̂ ∈ P (σ) that
is PCF -definable. Indeed, we may find Φ̂ � Φ.

3

Acknowledgements I am grateful for useful discussions with U. Berger
and enlightening comments from G. Plotkin and S. Bellantoni.

2 The Main Theorem

In this section we will give the basic definitions, state some standard facts
from domain theory and state the main theorem. Any standard text, e.g
[16], on domain theory can be used as background. We will consider an
algebraic domain, or just a domain, to be the set of ideals in a set of partially
ordered compacts closed under the least upper bounds of finite bounded sets,
the ideals being ordered by inclusion, and we define our hierarchies in this
setting.

Definition 1
a) Let P (0) be the flat domain N⊥ = {⊥} ∪ N.

b) Let P (k + 1) be the domain P (k) → N⊥

where the details of the definition are given below.

The compacts in P (0) will just be the domain elements, while the compacts
in P (k + 1) will be given as sets {(σ1, a1), . . . , (σs, as)} where σ1, . . . , σs are
compacts in P (k), a1, . . . , as are numbers and ai = aj whenever {σi, σj} is
bounded. We let P0(k) be the set of compacts in P (k).
P0(k) will be ordered as follows:

1. We order P0(0) by ⊥ � ⊥, ⊥ � n and n � n for each n ∈ N.

2. In P0(k + 1) we let

{(σ1, a1), . . . , (σs, as)} � {(τ1, b1), . . . , (τt, bt)}

if
∀i ≤ s∃j ≤ t(τj � σi ∧ bj = ai).

The domain elements are given as ideals of compacts, and we identify a
compact with the ideal generated from it.

We organise {P (k)}k∈N to a typed hierarchy by defining application as
follows:

4

If α ∈ P (k + 1) and β ∈ P (k), we let α(β) = a if there is a compact τ in β
such that the compact {(τ, a)} is in α. In this way {P (k)}k∈N is viewed as a
hierarchy of partial, continuous functionals.
We will call a pair (τ, a) a basic compact , and we will identify it with {(τ, a)}.

Definition 2
a) Let T (0) ⊆ P (0) be the set of natural numbers.

b) Let
T (k + 1) = {α ∈ P (k + 1) | ∀β ∈ T (k)(α(β) ∈ N)}.

T (k) will be the set of hereditarily total objects in P (k). Longo and Moggi
[9] showed that the relation

α ∼ β ⇔ α � β ∈ T (k)

is an equivalence relation on T (k) and that each total object of type k + 1
respects this relation.
By the Kleene-Kreisel density theorem this is also equivalent to {α, β} being
bounded, or in other words, to α and β being consistent. This relation
is further the same as hereditarily extentional equality. We will state the
Kleene-Kreisel density theorem below.

Definition 3 Let {Ct(k)}k∈N be the typed hierarchy isomorphic to the set
of equivalence classes in {T (k)}k∈N under the induced application operator.

It is easy to see that the compacts in P0(k) can be enumerated in such a
way that all relevant relations and operations on compacts can be replaced by
primitive recursive operations on the numbers. We will use this enumeration
to define recursive sets of compacts and recursive enumerations of sets of
compacts.

Definition 4
a) If φ ∈ Ct(k), a representative for φ will be an element in the corre-

sponding equivalence-class in T (k).

b) φ ∈ Ct(k) is recursive if it has one representative that is recursively
enumerable. Using generally accepted terminology we will also call
φ ∈ P (k) recursive when the set of compacts is recursively enumerable.
This concept has also been called Scott-computable.

5

c) Ψ ∈ P (k) is P -computable if it is S1−S9-computable over the hierarchy
{P (n)}n∈N.

d) φ ∈ Ct(k) is P -computable if it has one representative that is P -
computable.

The enumerations of elements in T (k) will to some extent correspond to
Kleene associates. Our definition of recursive is equivalent to the classical
one as a functional with a recursive associate. This is discussed in Normann
[12]. It is also standard to view the recursively enumerable elements of an
effective domain as the effective objects.

Theorem 1 Main Theorem
A functional in Ct(k) is recursive if and only if it is P -computable.

Remark 1 This statement is weaker than the statement that every recur-
sively enumerable element of T (k) is S1 − S9-computable over the partial
continuous functionals, a statement that is incorrect, as observed by Plotkin
[14], for the equivalent PCF .

We will lead the reader to a proof of the main theorem in several steps.
The theorem is trivially correct for k = 0 and k = 1 and easy for 2, so the
first challenge comes at type 3. We will first consider a special case of type
3 functionals, where the key algorithm is transparent, before we adjust this
algorithm to the general case of type 3.
We will then prove Theorem 2, a strengthening of the main theorem, by
induction on the type. Finally we will prove Theorem 3, which will be the
same as Theorem 2, but restricted to the effective operators. Unfortunately
we seem to need a slightly more elaborate construction in order to obtain
Theorem 3.

The induction hypothesis will require the theorem to be correct two types
below. Theorem 2 is also easy (and well known) for types ≤ 2, and the general
proof for type 3 is just a special case of the general proof for higher types.
Thus the reason for splitting up between type 3 and type > 3 is to improve
the readability of the argument, as is the reason for focusing on the special
case in section 3.

We will use the Kleene-Kreisel density theorem, which can be stated as
follows in our setting:

6

Proposition 1 Uniformly recursive in any σ ∈ P0(k) there is an object
E(σ) ∈ T (k) with σ � E(σ).

From any of the standard proofs of the density theorem, we can find
an enumeration of the compacts in E(σ) primitive recursive uniformly in σ.
Kleene even shows that E(σ) represents a primitive recursive functional in
Ct(k). It is however not correct that E(σ) can be chosen to be primitive
recursive in P (k), we will give an example below.

3 A special case

Definition 5 Let {rm}m∈N be an enumeration of all functions r : N → N

that is constant 0 exept on a finite set. This constitutes a dense set in the
standard topology on N

N.
If σ is a finite sequence of natural numbers, and r is a function from the
set of natural numbers to the natural numbers, we let σr denote the infinite
sequence obtained by concatenation.

Definition 6 Let T be a recursive, non-wellfounded tree of sequences of
natural numbers, with a recursive enumeration T = {σn | n ∈ N}.
For F ∈ T (2) let

ΦT (F) = µn∀m ≥ n∃k ≤ m(F is constant on {σkri | i ≤ m}).
Remark 2 At the face of it we have defined ΦT (F) using the µ-operator
over a Π0

1-set and a priori ΦT need not be everywhere defined or continuous.
We will show that ΦT is the restriction of a P -computable element in T (3)
to T (2).
Functionals in Ct(3) corresponding to ΦT and similar functionals played
an important rôle in showing the limitations of S1 − S9 computability in
{Ct(k)}k∈N itself, see Normann [13]. If T has no recursive infinite branch,
ΦT will not be S1 − S9-computable in the hierarchy {Ct(k)}k∈N. This is
proved by an argument similar to the one used by Tait [17] to prove that the
fan functional is not computable.

Lemma 1 is not really used in the proof of Lemma 2 or anywhere else in this
paper, and is actually a consequence of Lemma 2. We state and prove it in
order to give the reader a better intuition about the nature of the functional
ΦT :

7

Lemma 1 ΦT is the restriction of a recursive object Φ̃T ∈ T (3) to T (2).

Proof
Let F ∈ P (2). Let Φ̃T (F) = n if for some n0 ≥ n we have

1. F (σn0) ∈ N.

2. ∀m ≤ n0∀i ≤ n0F (σmri) ∈ N.

3. n is the least number ≤ n0 such that
∀m(n ≤ m ≤ n0 → ∃k ≤ m(F is constant on {σkri | i ≤ m})).

If we let F0 vary over P0(2) we have that {(F0, n) | Φ̃(F0) = n} is r.e.
Now, let F ∈ T (2). We can find a n0 such that F (σn0) ∈ N because the

tree T is not well founded. Clearly 2. is satisfied by a compact F0 � F for
this n0. Finally n0 will be an upper bound for ΦT (F) and then the n (that
will exist) satisfying 3. will be the actual value of ΦT (F).

Lemma 2 Let ΦT be as above.
ΦT is the restriction of a P -computable Φ̂T ∈ T (3) to T (2) .

Proof
Let N ∈ N and F ∈ T (2). Let ΦN be the N ’th approximation to ΦT (F):

ΦN(F) =
µn ≤ N∀m(n ≤ m ≤ N → ∃k ≤ m(F is constant on {σkri | i ≤ m})).
where we let ΦN(F) = N if we cannot find such n ≤ N .
If N ≤ M , then ΦN(F) ≤ ΦM(F) ≤ ΦT (F), and ΦT (F) = limN→∞ ΦN(F).
We consider the ΦN defined above as the restriction of a uniformly P -
computable ΦN ∈ T (3) to T (2), where we give the obvious algorithm for
computing ΦN(F) also for partial F . The one thing to notice is that we
verify the quantifiers ∃k ≤ m by a sequential test, and not by a parallel
test. In particular this means even for partial F that if Φ̃T (F) ↓ then the
computation of ΦN(F) terminates.

We introduce two auxilliary functions with F ranging over P (2):

φ(F, n) and ψ(F, n)

which are defined simultaneously as follows:
If F (σnrψ(F,n)) �= F (σnr0), let φ(F, n) = φ(F, n + 1).

8

If F (σnrψ(F,n)) = F (σnr0), let φ(F, n) = Φn(F).

We compute ψ(F, n) as follows: Search for the least m such that F (σnrm) �=
F (σnr0) or (m > n, F (σnrm) = F (σnr0) and F (σmr0) = F (σmrψ(F,m))).

By the recursion theorem, we have partial computable functionals φ and
ψ satisfying these equations. We will show that whenever F ∈ T (2) then
φ(F, 0) = ΦT (F) which means that we let Φ̂(F) = φ(F, 0) for F ∈ P (2).

Let F ∈ T (2). Let n0 and a ∈ N be such that (σn0 , a) is a basic compact
in F . Then Φn0(F) = ΦT (F). When we try to compute φ(F, n0), we realise
that F (σn0r0) = F (σn0rψ(F,n0)) without knowing anything about ψ(F, n0), so
by our algorithm

φ(F, n0) = Φn0(F) = ΦT (F).

By reversed induction we will prove that for n < n0 we have that φ(F, n) =
ΦT (F) and that ψ(F, n) ∈ N. Finally we will then reach our conclusion that
φ(F, 0) = ΦT (F) for F ∈ T (2).
We will show that the computation of ψ(F, n) terminates and that φ does
what it is supposed to do.
By the induction hypothesis, and using that F ∈ T (2), we see that for
every step in the search up to n0, the test will terminate. Since F (σn0r0) =
F (σn0rψ(F,n)), the test will terminate also at stage n0 and the search will stop
there if it ever gets that far. So, let m ≤ n0 be the point where the search
stops. There are two cases:

Case 1
F (σnrm) �= F (σnr0).
Then ψ(F, n) = m and by our algorithm and the induction hypothesis

φ(F, n) = φ(F, n + 1) = ΦT (F).

Case 2
F (σnrm) = F (σnr0).
Then m > n and F (σmr0) = F (σmrψ(F,m)) since we stopped the search here.
Thus φ(F,m) = Φm(F) by the algorithm and φ(F,m) = ΦT (F) by the
induction hypothesis.
Moreover, φ(F, n) = Φn(F). We will show that Φn(F) = Φm(F), obtaining
that φ(F, n) = ΦT (F).
We prove the nontrivial inequality Φm(F) ≤ Φn(F):
Choose m′ with Φn(F) ≤ m′ ≤ m.

9

We show that there is a k ≤ m′ such that F is constant on {σkri | i ≤ m′}:
If n ≤ m′ we may choose k = n since we are in case 2. If m′ < n we have
assumed that Φn(F) ≤ m′ so in particular Φn(F) < n. Then by definition of
Φn(F) there is a k ≤ m′ such that F is constant on {σkri | i ≤ m′}.
The proof is complete.

Remark 3 We have designed the algorithm for φ(F, n) (also for partial F)
such that we get imediate termination exactly when F (σn)) ∈ N, and then,
provided that ΦT (F) is defined, with the correct value φ(F, n) = ΦT (F).
In the other case, we have to ”climb” up to an n0 > n for which we have
imediate termination.

Since we will refer to Lemma 2 in the proofs of Theorems 1 and 2, let us
see why we consider this as a special case, and how it relates to the general
case.

Corollary 1 Let T be a recursive, non-wellfounded tree, and let Φ ∈ T (3)
be defined by

Φ(F) = 0 ⇔ ∃σ ∈ T (F (σ) ∈ N)

for F ∈ P (2).
Then there is a P -computable (PCF -definable) Φ̂ ∈ T (3) with Φ̂ � Φ.

Proof
Let φ be as in the proof of Lemma 2 and let Φ̂(F) = 0 · φ(F, 0).
Φ̂ will be P -computable,
Termination of Φ̂(F) requires termination of φ(F, 0), which again will require
imediate termination of some φ(F, n0), i.e. that F (σn0) ∈ N.

4 Type 3

We will now prove the Main Theorem for type 3 in general. The key idea in
the proof is as in the special case above, but the generality forces the proof
to be technically more complicated, and the key algorithm may be hidden in
these technicalities. In a sense we can say that we replace the tree T by the
set of basic compacts for a Φ ∈ T (3).

In this section, we will let Φ ∈ T (3) be recursive, and we let

{(σn, an)}n∈N

10

be a recursive enumeration of the basic compacts in Φ. Then for every
F ∈ P (2) we have that

Φ(F) = a ⇔ ∃n(σn � F ∧ a = an)

We will construct a functional Φ̂ P -computable in {(σn, an)}n∈N such that
for all F ∈ T (2) we have

Φ(F) = Φ̂(F).

We may assume that each σn will be of the form

σn = {(τn,1, bn,1), . . . , (τn,sn , bn,sn)}

where each τn,i is a finite sequence of natural numbers, though this is not
really essential for the argument to work. Let {ri}i∈N be the sequence of
almost zero functions as in the previous section.

Now, if ai �= aj there will be i′ ≤ si and j′ ≤ sj such that τi,i′ and τj,j′ are
consistent while bi,i′ �= bj,j′ . We say that m is critical for (i, j) if τi,i′ ⊆ τj,j′rm
or τj,j′ ⊆ τi,i′rm for at least one choice of i′ and j′ as above. For each m, we
let ρ(m) be the least number ≥ m such that for each i ≤ m and j ≤ m with
ai �= aj there is a critical m′ ≤ ρ(m) for (i, j).
We say that σn �m F if we for all i ≤ sn and j ≤ ρ(m) have

F (τn,irj) = bn,i.

Finally, for F ∈ T (2), let

Ψ(F) = µn∃a∀m ≥ n∃k ≤ m(σk �m F ∧ ak = a).

We will show that there is a P -computable functional Ψ̂ ∈ T (3) that agrees
with Ψ on T (2). First we will show how to compute a total Φ̂ equivalent to
Φ from such a Ψ̂.

Lemma 3 If Ψ agrees with Ψ̂ ∈ T (3) on T (2), there is a Φ̂ ∈ T (3) that is
S1 − S9-computable from Ψ̂ and that is equivalent to Φ.

Proof
For any m, {an | n ≤ m∧ σn �m F} contains at most one object (this is the
point of introducing ρ(m)).

11

We then let Φ̂(F) be the unique a such that if n ≤ Ψ̂(F) and σn �Ψ̂(F) F
then an = a.

We will now use the argument from the special case to define Ψ̂ as a
P -computable function, and prove that it agrees with Ψ on T (2).
For N ∈ N let

ΨN(F) = µn ≤ N∃a∀m(n ≤ m ≤ N → ∃k ≤ m(σk �m F ∧ ak = a))

where ΨN is a P -computable object in T (3) in analogy with the ΦN of the
special case. We observe the same monotonicity properties as for the ΦN ’s.

Now we define the two auxilliary functions φ and ψ by the recursion
theorem in analogy with the construction in the special case:

1. If for all i ≤ sn we have that F (τn,irψ(F,n)) = bn,i we let
φ(F, n) = Ψn(F), otherwise we let φ(F, n) = φ(F, n + 1).

2. In computing ψ(F, n) we search for the least m such that either

F (τn,irj) �= bn,i for some i ≤ sn and some j ≤ ρ(m)

(where termination requires that F (τn,irj) terminates for all i ≤ sn and
j ≤ ρ(m), this to avoid the need for non-deterministic parallellism)
or

m > n, F (τn,irj) = bn,i for all i ≤ sn and j ≤ ρ(m) and
F (τm,irψ(F,m)) = bm,i for all i ≤ sm.

In the first case we select ψ(F, n) to be one j ≤ ρ(m) with
F (τn,irj) �= bn,i for some i ≤ kn, while in the second case we let
ψ(F, n) = 0.

We can now end the proof as in the special case. Let F ∈ T (2). We
choose some n0 such that σn0 � F . Then φ(F, n0) = Ψ(F). Moreover, by
reversed induction we show that for n < n0 we have that ψ(F, n) terminates
and that φ(F, n) = Ψ(F). We do not repeat the details of this argument, just
notice that some care has to be shown in case 2, the argument that shows
that Ψn(F) = Ψm(F) for n < m ≤ n0. There we observe that an will be the
unique a used both in the definition of Ψn(F) and Ψm(F).

12

As an extra bonus we will obtain that if Φ ∈ P (3) is recursively enumer-
able and we construct Φ̂ from the enumeration as above, we get Φ̂ � Φ. This
is a consequence of

Lemma 4 Let {(cn, an)}n∈N be a recursive enumeration of the basic compacts
of an object Φ ∈ P (3) (not neccessarily total).
For any F ∈ P (2), let φ(F, n) and ψ(F, n) be defined as in the construction.
Then for any n.

If ∀m ≥ n(σm �� F) then φ(F, n) = ⊥.

Proof
In computing φ(F, n) we must rely on finding ψ(F, n). There are four possi-
bilities:

1. The search for ψ(F, n) does not terminate.
Then φ(F, n) = ⊥.

2. We find ψ(F, n) but F (τn,irψ(F,n)) = ⊥ for some i.
Then φ(F, n) = ⊥.

3. We find ψ(F, n) with some F (τn,irψ(F,n)) �= bn,i.
Then we must compute φ(F, n + 1) in order to compute φ(F, n).

4. Otherwise, i.e. we find ψ(F, n) with F (τn,irψ(F,n)) = bn,i for all i ≤ sn.
This, however, requires that we find some n1 > n such that
F (τn1,irψ(F,n1)) = bn1,i for all i ≤ sn1 , and in order to obtain this we
need n2 > n1 with the same property etc.

Alltogether, we see that there is no way that our algorithm for φ(F, n) can
terminate. Thus the lemma is proved.

Corollary 2 Let Φ ∈ P (3) be recursively enumerable and let Φ̂ be as con-
structed. Let F ∈ P (2).
If Φ̂(F) = a, then Φ(F) = a.

Proof
If Φ̂(F) = a, then φ(F, 0) terminates. Then by Lemma 4 there is an n such
that σn � F and a = an.
This means that Φ(F) = a.

13

5 The general case for arbitrary types

The proof in type 3 does not imediatly adjust to the situation of higher
types. Let us return to the special case in order to discuss the problem. In
the algorithm we want to compute F (σnrψ(F,n)) and for the case n = n0 we
argue that this terminates if (σn, a) is a compact in F for some a. This is the
case because we actually have an algorithm for σnrψ(F,n) whose interpretation
extends σn even if ψ(F, n) does not terminate.

If we want to carry out a similar construction for types larger than three,
we will somehow need to enumerate a dense set of total extensions of a com-
pact δ of type k − 2 (even then we will need some more elaborate notation,
but that is not a main obstacle). The problem is that the algorithm for com-
puting the primitive recursive extensions of a compact δ will induce elements
of T (k − 2) not containing δ, just being consistent with δ. We will illustrate
this at the lowest possible type.

Example 1 Let π1, π2 and π3 be three pairwise inconsistent compacts of
type 1, π1 = {(1, 1), (2, 2)}, π2 = {(2, 1), (3, 2)} and π3 = {(3, 1), (1, 2)}.
Let δ = {(π1, 1), (π2, 2), (π3, 3)}.
Let F be a total, recursive functional of type 2 consistent with δ. For any f ,
the computation of F (f) can be seen as a sequential process, where we at a
first stage independently of f ask ”What is f(x)?” This in particular means
that if (π, c) is a basic compact in F, then π(x) must be in N. Thus F cannot
extend δ, because the intersection of the domains of π1, π2 and π3 is empty.

The construction in section 4 can be seen as the construction of a uniform
algorithm for computing Φ̂ from an enumeration of the basic compacts in Φ.
We will use the fact that there is such a uniform algorithm at type k − 2 in
order to prove the Main Theorem for type k.
We have produced such an algorithm for type 3, and it is trivial to produce
such an algorithm for type 2:
Let {(σn, an)}n∈N be an enumeration of the basic compacts in F ∈ T (2).
We compute F̂ (f) by the following algorithm: Search for the least n such
that σn is consistent with f . Then F̂ (f) = an. We of course mean the
sequential interpretation of this algorithm.

The Main Theorem will be a consequence of the more general

Theorem 2 Let k ≥ 0 and let Φ ∈ P (k).
Let {δn}n∈N be an enumeration of the basic compacts in Φ.

14

Then uniformly P -computable in {δn}n∈N there is a Φ̂ � Φ such that if Φ ∈
T (k) then Φ̂ ∈ T (k)

Proof
We will assume that k > 3 and that the theorem holds for k − 2.
Let Φ ∈ P (k) be given, and let {(σn, an)}n∈N be an enumeration of the basic
compacts in Φ.
Let

σn = {(τn,1, bn,1), . . . , (τn,sn , bn,sn)}
for n ∈ N.
Let F ∈ P (k − 1). We will give an algorithm for computing Φ̂(F).

Let {(πi, ci)}i∈N be a fixed, effective enumeration of all basic compacts of
type k − 2.
Then each compact τ ∈ P0(k − 2) has a unique finite enumeration

τ = {(πi0 , cio), . . . , (πil , cil)}

where i0, . . . , il is an increasing sequence.
Likewise, the enumeration {(πi, ci)}i∈N induces an enumeration of each g ∈
P (k − 2). This enumeration will not neccessarily be effective even when g is
recursive.
If g ∈ T (k−2), let ĝ � g be the functional constructed from this enumeration.
Here we use the induction hypothesis. Similarily, if τ ∈ P0(k − 2) we let τ̂
be the partial functional in P (k − 2) obtained from the enumeration of τ
described above. τ̂ is P -computable uniformly in (an index for) τ , and by
the induction hypothesis τ̂ � τ .

Let
{ξn,i,j}n∈N,i≤sn,j∈N

be a primitive recursive indexed family of primitive recursive enumerations
of basic compacts of type k − 2 such that

1. For all n, i and j, ξn,i,j extends the enumeration of τn,i.

2. For all n, i and l, ξn,i,j enumerates the basic compacts in an element of
T (k − 2).

3. For all n and i, {ξn,i,j}j∈N is dense in the set of all enumerations of
elements in T (k − 2) extending the given enumeration of τn,i.

15

The existence of this enumeration is a consequence of the Kleene-Kreisel
density theorem.

Claim 1
If σ = {(τ1, b1), . . . , (τs, bs)}, F ∈ P (k− 1) and F (τ̂j) = bj for all j ≤ s, then
σ is consistent with F .

Proof
Assume not.
Then there is a j and a g ∈ P (k − 2) with τj � g and with bj �= F (g) ∈ N.
Choose an enumeration of g extending the fixed enumeration of τj. By the
induction hypothesis, let f � g be constructed from this enumeration. Then
f extends τ̂j so F (f) = bj, contradicting that f � g.

Claim 2
If F ∈ T (k − 1) and Φ ∈ T (k), there is an n ∈ N such that F (τ̂n,i) = bn,i for
all i ≤ sn.

Proof
We define F̃ ∈ P (k − 1) by (τ, b) ∈ F̃ if F (τ̂ ′) = b for some τ ′ � τ .
We first show that F̃ is consistent:
Let (τ1, b1) and (τ2, b2) be in F̃ where τ1 and τ2 are consistent.
Choose τ ′1 � τ1 and τ ′2 � τ2 such that F (τ̂ ′1) = b1 and F (τ̂ ′2) = b2.
Let g be total extending τ1 � τ2 and choose two enumerations of g, one
extending the fixed enumeraton of τ ′1, the other extending the enumeration
of τ ′2. Let f1 and f2 be the total objects equivalent to g obtained from the
two enumerations of g. f1 and f2 will be equivalent, so

b1 = F (f1) = F (f2) = b2.

Now, let g ∈ T (k − 2). Then by the induction hypothesis, ĝ ∈ T (k − 2) so
F (ĝ) = b ∈ N.
There will be a compact τ � g such that the enumeration of τ is an initial
segment of the enumeration of g and such that F (τ̂) = b. We then have that
(τ, b) ∈ F̃ .
This argument shows that F̃ is total and equivalent to F .
Then there is a σ � F̃ and an a ∈ N such that Φ(σ) = a, i.e. (σ, a) is a basic
compact in Φ.
Let

σ = {(τ1, b1), . . . , (τs, bs)}.

16

By construction of F̃ there are τ ′j � τj for all j ≤ s such that F (τ̂ ′j) = bj.
Then σ � σ′ = {(τ ′1, b1), . . . , (τ ′s, bs)} and in turn (σ′, a) � (σ, a). Conse-
quently (σ′, a) is also a basic compact in Φ, and is of the form (σn, an) for
some n ∈ N. This ends the proof of the claim.

We are now ready to do the induction step. With some change of notation
we may use the same proof as in the case of type 3.
We replace τn,irj by ξ̂n,i,j, where we mean the functional in T (k−2) computed
from the enumeration ξn,i,j.
We replace the definition of m being critical by:
m is critical for (i, j) if τi,i′ is consistent with ξj,j′,m or vice versa for a relevant
choice of i′ and j′. (This will be decidable, and we can always find one m
critical for (i, j) if ai �= aj.)
Then the final change is to use a σn0 satisfying Claim 2 in showing that the
algorithm terminates for all total F when Φ is total.

We end the proof by showing that

Φ̂(F) = a ⇒ Φ(F) = a

for all F ∈ P (k − 1).
In the algorithm for Φ̂ we need the value φ(F, 0), so it is sufficient to show
that

φ(F, 0) �= ⊥ ⇒ Φ(F) �= ⊥.

For each σ = {(τ1, b1), . . . , (τs, bs)} let

σ̌ = {(τ̂1, b1), . . . , (τ̂s, bs)}.

By the argument of section 4 we get

φ(F, 0) �= ⊥ ⇒ ∃n(σ̌n � F).

But σn � σ̌n since τ̂n,j � τn,j so σn � F . It follows that Φ(F) �= ⊥, and the
proof is complete.

Remark 4 When τ is a finite sequence of natural numbers, there is no
problem in making an algorithm for τri uniformly in i such that we extend
τ even for i = ⊥.
The problem was that we could not do the same for the standard dense

17

set of extensions at higher types. However, the algorithm for ξ̂i,j,l will give
us τ̂i,j for l = ⊥, simply because we are using enumerations of ξi,j,l that
extend the enumeration of τi,j, and the partial enumeration of ξi,j,⊥ is indeed
the enumeration of τi,j. Thus we use the induction hypothesis, and the
underlying construction on suitable associates of the extensions of a compact
to get a P -computable version of the extension maps.

Remark 5 As an alternative to using complete domains as a basis for the
semantics of programs one may use effective domains. This is standard and
means that one restricts the attention to domain objects corresponding to r.e.
ideals. This again leads to an alternative notion of totality, the hereditarily
effective operators. It seems that we have to modify the construction of Φ̂ to
a construction of a Φ̈ in order to obtain Theorem 2 for the effective case. On
the other hand, the construction Φ̈ will also prove Theorem 2 in the complete
case.

Definition 7 Let R(0) = N.
Let R(k + 1) = {Φ ∈ P (k + 1) | Φ is recursive and Φ ∈ N for all F ∈ R(k)}.

Theorem 3 Uniformly P -computable in a recursive enumeration of the basic
compacts in Φ ∈ P (k), there is a Φ̈ � Φ such that if Φ ∈ R(k) then Φ̈ ∈ R(k).

Proof
Most of the proof of Theorem 2 is directly valid for R(k) as well as for
T (k). We will explain where the difficulty is and how the construction can
be adjusted in order to avoid it. In the proof of Claim 2 in the general case,
we need to show that F̃ ∈ R(k − 1) when F ∈ R(k − 1).
By the construction, F̃ will be recursive when F is recursive. However, when
we prove that F̃ is total we use the ineffective enumeration of a g ∈ T (k−2).
We do this because we use the given enumeration of all basic neighbourhoods
in order to enumerate each τ ∈ P0(k − 2) and in turn to define τ̂ .

The way we get around this obstacle is to consider all possible versions of
basic compacts (σn, an), a version being one way to write down the compacts
such that each τn,i is enumerated, but not neccessarily in the prefixed way.
We then replace the enumeration {(σn, an)}n∈N by an enumeration of all
versions of each (σn, an).
We construct Φ̈ based on this new enumeration {σ′

n, a
′
n}n∈N using the τ̈n,i as

18

we previously used τ̂n,i. The point is of course to use the enumeration of the
τn,i’s corresponding to the version.
We then define F̃ (τ) = b if there is one τ1 � τ with one enumeration giving
rise to a τ̈ with F (τ̈) = b. This F̃ will still be recursive when F is, and
we may use any recursive enumeration of a recursive g when we prove that
F̃ ∈ R(k − 1).
The rest of the argument will then be as in the proof of Theorem 2.

References

[1] Bellantoni, S. Comments On Two Notions Of Higher Type Computabil-
ity, Unpublished notes, 1990.

[2] Berger, U. Totale Objekte und Mengen in der Bereichtheorie (in Ger-
man), Thesis, München 1990.

[3] Berger, U. Total sets and objects in domain theory, Annals of Pure and
Applied Logic 60 (1993) 91 - 117.

[4] Ershov, Yu. L. Computable functionals of finite type, Algebra and Logic
11 (1972) 203 - 277.

[5] Hyland. J.M.E. Filterspaces and continuous functionals, Annals of
Mathematical Logic 16 (1979) 101 - 143.

[6] Kleene, S.C. Recursive functionals and quantifiers of finite types I,
T.A.M.S. 91 (1959) 1 - 52.

[7] Kleene,S.C. Countable functionals, in A. Heyting (ed.) Constructivity in
Mathematics, North-Holland (1959) 81 - 100.

[8] Kreisel, G. Interpretation of analysis by means of functionals of finite
type, in A. Heyting (ed.) Constructivity in Mathematics, North-Holland
(1959) 101 - 128.

[9] Longo, G. and Moggi, E. The hereditarily partial effective functionals
and recursion theory in higher types, Jour. of Symbolic Logic 49 (1984),
1319 - 1332.

19

[10] Moldestad, J. Computation in Higher Types Springer Lecture Notes in
Mathematics 574, (1977).

[11] Normann, D. Recursion on the continuous functionals, Springer Lecture
Notes in Mathematics 811 (1980).

[12] Normann, D. The continuous functionals, to appear in E.R. Griffor (ed.)
Handbook of computation theory, Elsevier (1998?).

[13] Normann, D. The continuous functionals; computations, recursions and
degrees, Annals of Mathematical Logic 21 (1981) 1 - 26.

[14] Plotkin, G. LCF considered as a programming language, Theoretical
Computer Science 5 (1977) 223 - 255.

[15] Plotkin, G. Full Abstraction, Totality and PCF, Draft.

[16] Stoltenberg-Hansen, V., Lindström, I and Griffor, E.R. Mathematical
Theory of Domains, Cambridge Tracts in Theor. Comp. Science 22,
Cambridge University Press (1994)

[17] Tait, W.W. Continuity properties of partial recursive functionals of finite
type, unpublished notes.

20

