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Abstract

Topologists Nabutovsky and Weinberger discovered how to embed
computably enumerable (c.e.) sets into the geometry of Riemannian
metrics modulo diffeomorphisms. They used the complexity of the
settling times of the c.e. sets to exhibit a much greater complexity
of the depth and density of local minima for the diameter function
than previously imagined. Their results depended on the existence of
certain sequences of c.e. sets, constructed at their request by Csima and
Soare, whose settling times had the necessary dominating properties.
Although these computability results had been announced earlier, their
proofs have been deferred until this paper.

Computably enumerable sets have long been used to prove undecid-
ability of mathematical problems such as the word problem for groups
and Hilbert’s Tenth Problem. However, this example by Nabutovsky
and Weinberger is perhaps the first example of the use of c.e. sets to
demonstrate specific mathematical or geometric complexity of a math-
ematical structure such as the depth and distribution of local minima.

1 Introduction

1.1 Computability and Differential Geometry

1.1.1 Astonishing Richness of Riemannian Metrics

In the book from his Porter lectures, topologist and geometer Shmuel Wein-
berger [2005] explained the significance of the present interaction between
computability and differential geometry on the space Riem(M) of Rieman-
nian metrics (modulo diffeomorphisms) on certain smooth, compact man-
ifolds M , a space which is of interest to a variety of mathematicians and
physicists. Nabutovsky and Weinberger describe in their paper [2003] on
fractals “the astonishing richness of the space of Riemannian metrics on a
smooth manifold, up to reparametrization.” This “astonishing richness” of
the space depends on two main parts: constructing a sequence of c.e. sets
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with a certain complexity of the settling time functions; and embedding c.e.
sets into the geometric space using diverse results of mathematics, group
theory, differerential topology, differential geometry, and other items.

1.1.2 Computably Enumerable Sets and Unsolvability

First, Nabutovsky and Weinberger expanded a long tradition of embedding
c.e. sets into mathematical objects; unsolvability of the word problem and
triviality problem for finitely presented groups; associating such a group
with the fundamental group of a manifold; the unsolvability of the home-
omorphism problem for manifolds, and much more. However, instead of
merely obtaining unsolvable problems in a new area of mathematics, they
linked sequences of computably enumerable (c.e.) sets Wn, and their settling
times to the geometry of this space. Remarkably they related the halting
time of the Turing machine enumerating Wn to the depth and distribution of
local minima for certain functions on the space such as the diameter func-
tion as explained in §1.4. (Previously, embeddding c.e. sets into a given
mathematical structure had been used primarily to show undecidability of
some associated theory, not the mathematical or geometric complexity of
that structure.)

1.1.3 C. E. Sets and Geometric Complexity

Second, Weinberger asked Soare to prove a specific result about sequences
of computably enumerable sets so that the complexity of halting times of
the Turing machines could be transferred into the geometric complexity
of the local minima. Soare constructed the required sequence of c.e. sets.
Later Weinberger asked for a sequence with a stronger property in order
to simplify the geometric part of the proof. Csima [2003] constructed this
stronger sequence. In the present paper we prove the Main Theorem 5.1
which builds a sequence of c.e. sets {An}n∈ω which combines these two
results and further generalizes them by making the sequence decrease in
Turing degree as well. We give more details of the Nabutovsky-Weinberger
results and their relation to c.e. sets and degrees in §1.4.

1.1.4 C.E. Turing Degrees and Depth of Minima

The main domination property requested by Weinberger of Soare and Csima
was that the settling time of An dominates that of An+1, denoted by
An >st An+1, and defined below in Definition 1.5. However, the original
results of Nabutovsky and Weinberger used the Sacks density theorem as
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we explain in §1.4.1. This is because their full results, quoted in §1.4.2 and
explained further in Soare [2004, §9], relate the Turing degree of a c.e. set
(not merely the structure of the c.e. set itself) to the depth and distribution
of the local minima of the diameter function on A`(M). Therefore, it is of
interest when constructing the sequence {An}n∈ω to consider both partial
orderings An >st An+1 and An >T An+1 and this is accomplished in our
Main Theorem 5.1 developed by Csima and Soare jointly.

In an upcoming paper, Csima and Shore [ta] show that any partial or-
dering embeds into the >st ordering. This result also implies the required
result for the Nabutovsky Weinberger work, though it does not control Tur-
ing degree.

1.1.5 Settling Time Reducibility and ibT -Reducibility

In addition, the partial ordering >st and its underlying ordering, identity
bounded Turing reducibility (>ibT ), were of interest to Weinberger and had
previously been studied in computability theory and in Kolmogorov com-
plexity.1 The special case of identity bounded Turing reducibility (B ≤ibT A)
if A ≤bT B with h(x) the identity, has been explicitly identified in Soare
[2004], but the concept has often been used in the literature for decades.
For example, the standard permitting method in Soare [1987, p. 85] to build
a simple set B computable in a noncomputable c.e. set A arranges that x en-
ters B only when some y ≤ x enters A. This ensures not only that B ≤T A,
but in fact that B ≤ibT A, although this is not always explicitly mentioned.
(See Definition 2.1 for bT and ibT .)

1.1.6 Kolmogorov Complexity and ibT -reducibility

The ibT -reducibility is also used in Kolmogorov complexity. Lewis and
Barmpalias begin their papers [ta] and [ta2] with a definition of ibT and
in [ta1] they explain, “This gives a reducibility which is complexity sen-
sitive and which, in particular, preserves most notions of randomness for
binary strings.” They go on to relate ibT to the “computably Lipschitz”
(B ≤cl A) condition where the bound is h(x) = x + c for some constant c
called (B ≤sw A), a linear condition studied by Downey, Hirschfeldt, and
LaForte, who wrote in Randomness and Reducibility [2004, p. 5],

1In the literature bT -reducibility has also been called weak-truth-table(wtt) reducibil-
ity, viewed as a weakening of tt-reducibility which is already a strengthening of Turing
reducibility, whereas bT reaches the same destination in one step from Turing reducibility.
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“We begin with sw-reducibility, which has some nice features
but also some shortcomings. It is related to a reducibility [ibT ]
recently studied by Soare [2004] and Csima [2003] in connection
with computability-theoretic notions arising from the work of
Nabutovsky and Weinberger [2003] in differential geometry. In-
formally, sw-reducibility says that there is a natural way, with
little compression, to produce the bits of one real from another.
It agrees with Solovay reducibility on strongly c.e. reals, but is in
general different. Recently Yu and Ding have proven a number
of interesting results about sw-reducibility, one of which is that
there is no maximum sw-degree of c.e. reals. . . . ”

The concept of sw-reducibility is natural and useful, as studied in Downey,
Hirschfeldt, and LaForte [2004, §2], and as they explain on page 6 of §2.

1.1.7 Other Papers on Settling Time and ibT

Csima [2003] developed new results about these reducibilities and related
them to earlier work in the subject by R.W. Robinson and others. Some of
these results are given in §2. Further properties of the >st ordering will be
given in Csima and Shore [ta].

1.2 Background Sources

All the computability results related to differential geometry and announced
previously in Soare [2004], Csima [2003], Nabutovsky and Weinberger [2003],
and Weinberger [2005] are contained in this paper. The notation and back-
ground results on computability theory can be found in Soare [1987] and the
forthcoming book Soare [cta] on computability theory and applications.

Soare [2004] gives a account of the Nabutovsky-Weinberger results in
[NW, 2000] and [NW, 2003] and provides a background for logicians of the
topology, number theory, and differential geometry needed to understand
these results. There in §9 the Nabutovsky-Weinberger results are stated
and very brief sketches of some of the main ideas of the proofs are given.
Weinberger [2005] gives a very interesting description of the main mathe-
matical areas needed to understand the proof including logic. This provides
much more explanation and intuition into the geometry and topology than
the original papers by Nabutovsky and Weinberger [2000] and [2003]. How-
ever, the present paper can be read without knowledge of the geometry
because the results here are purely computability theoretic, and deal with:
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(1) properties of the ordering >st in §2; and (2) the Main Theorem 5.1 on
the existence of dominating sequences.

1.3 Notation

We use the notation of Soare [cta] which is an update of that in Soare
[1987], defining any new notation not in Soare [1987]. The following notation
appears not only in Soare [cta], but also in Cooper [2004] and is becoming
standard.

Definition 1.1 (i) Let Pe be the eth Turing program and let ϕe denote the
eth partial computable (p.c.) function, that computed by Pe.

(ii) We let P̂e be the eth oracle Turing program and ΦA
e (x) = y the partial

function computed by P̂e with A on the oracle tape on input x if it halts
with output y. We call Φe the Turing reduction (Turing functional) defined
by oracle Turing program P̂e.

(iii) Corresponding to ΦA
e (x) = y is the use function ϕA

e (x) = u, where u is
the maximum argument in the characteristic function of A scanned (used)
during the computation.

Convention 1.2 The p.c. function ϕe(x) in part (i) should never be con-
fused with the A-computable use function ϕA

e (x) in part (iii). The latter
always has a supersript of the corresponding oracle set A, but the former
never does.

1.3.1 Quantifiers, Domination, and Setting Time

Definition 1.3 (i) (∃∞x)R(x) abbreviates (∀y)(∃z > y)R(z), which is
read, “there exist infinitely many x such that R(x).”

(ii) (∀∞x)R(x) abbreviates (∃y)(∀z > y)R(z), which is read, “for almost
every x we have R(x),” and is often written as “(a.e. x)” in text, while
(∀∞x) is used in displayed equations. (These quantifiers are dual to each
other because (∀∞x)R(x) holds iff ¬(∃∞x)¬R(x).)

(iii) For a set A (and similarly for a function f) we define two restrictions,

A�x = { y ∈ A : y < x } and A��x = { y ∈ A : y ≤ x }.

(iv) For strings σ, τ ∈ 2ω we write σ ⊂ τ if σ is an proper initial segment
of τ , and write σ < τ if σ ⊂ τ or if

(∃i) [ σ(i) < τ(i) & σ� i = τ� i ].
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Definition 1.4 (i) Function g dominates function f , written f <∗ g, if

(∀∞x) [ f(x) < g(x) ].

(ii) f escapes (domination by) g if f 6<∗ g, i.e.,

(∃∞x) [ g(x) ≤ f(x) ].

(iii) An infinite set A = {a0 < a1 < · · · } dominates or escapes g according
as its principal function pA does, where pA(n) = an.

1.3.2 Modulus Function and Settling Time Ordering

Definition 1.5 (i) For every computably enumerable c.e. set We define
modulus function, as in Soare [cta], which is also called in this paper and in
Soare [2004] the settling function,

(1) me(x) = (µs) [We,s��x = We��x ]

with respect to the canonical enumeration {We,s}e,s∈ω. If A is a c.e. set with
enumeration {As}s∈ω understood, we write the modulus

mA(x) = (µs) [As��x = A��x ].

(ii) A c.e. set A with enumeration {As}s∈ω settling-time dominates a
c.e. set B with enumeration {Bs}s∈ω (written A >st B) if

(2) (∀ computable f)(∀∞x)[ mA(x) > f(mB(x)) ].

Andre Nies showed that (ii) is independent of the choice of enumerations,
which we generalize in §2.

(iii) A uniformly c.e. sequence {An}n∈ω of c.e. sets is a settling-time
dominating sequence if

(3) (∀n)[ An >st An+1 ].

(iv) If g is a computable function, then the sequence {An}n∈ω is a
settling-time g-dominating sequence if place of (2) we have

(4) (∀n)(∀ computable f)(∀∞x) [ mAn(x) > f(mAn+1(g(x))) ].
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1.4 The Nabutovsky-Weinberger Results

1.4.1 The Sacks Density Theorem and Infinite Injury

Before seeing the Soare result, Nabutovsky and Weinberger had used the
Sacks density theorem as they explain in [2003] Theorem 11.1 page 25. They
used the fact that if A and B are c.e. sets with enumerations which have
modulus functions mA(x) and mB(x) and if A <T B, then for every com-
putable function f the modulus function mB(x) escapes f ◦mA(x), i.e.,

(5) (∃∞x) [ f ◦mA(x) ≤ mB(x) ],

because otherwise B ≤T A. Using this and the Sacks density theorem
which they cite in [2003] Theorem 11.1 page 25 they can get an infinite
sequence {An}n∈ω with the weak escape ordering of (5). From this they
concluded that the associated basins (local minima) corresonding to An were
infinitely often much deeper than those corresponding to An+1 even when
the latter is composed with any arbitrary computable function f . This
produces a settling time escape sequence in place of our stronger settling-
time dominating sequence of Definition 1.5.

This surprising connection to the structure of local minima in differ-
ential geometry is probably the first application of an existing theorem in
computability theory (the Sacks Density Theorem) which was applied to
obtain structural results in differential geometry (as opposed to merely un-
decidability results). It was also the first application in differential geometry
of any theorem on c.e. degrees proved with the infinite injury method. The
advantage of the Sacks density theorem is that they did not have to explic-
itly construct the sequence {An}n∈ω, but rather they could apply the Sacks
theorem infinitely many times to get a sequence off the shelf. The disadvan-
tage is that it had each settling time exceed the next only infinitely often,
not for almost all x.

1.4.2 Deeper Local Minima Almost Everywhere

In spite of partial success with the Sacks density theorem and local minima
greater on infinitely many arguments, Nabutovsky and Weinberger wanted
the sequence {An}n∈ω to have the property that the settling time of each
was much more complex for almost every argument, not merely infinitely
many, so they turned to Soare. Later to simplify their proof they asked the
question which Csima anwered, improving the Soare sequence. Nabutovsky
and Weinberger cited the result of Soare on dominating settling-time se-
quences as they write in Nabutovsky-Weinberger [2003] “Section 11. C.E.
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Sets,” on page 24. On page 26 of [2003] they write “Theorem (R. Soare)”,
and they are even more explicit.

In [2003] “Section 12. First Fractal Properties of Met(M)” in Theorem
0.1 (Rigorous version) on page 27 they again cite Soare’s c.e. sets and then
they state the following remarkable theorem which relates the notions of
“dense” and “deep” to c.e. degrees. Nabutovsky and Weinberger write the
following.

“In order to use Soare’s c.e. sets βi explained in the previous
section we need the following stronger c.e. set version of our
Theorem 0.1 (and which is, in fact, the version we proved):”

“THEOREM 0.1 (Rigorous version). Let M be a closed smooth
manifold of dimension n > 4. Let S be any c.e. set. Let T denote
the halting function of a Turing machine τ enumerating S. There
exist a constant c(n) > 0, depending only on n, and increasing
unbounded computable functions f and g, (f < g), such that
for all sufficiently large x, the number of local minima of the
diameter, D, on Al(M), such that the value of the diameter does
not exceed x and of depth between f(T ([x])) and g(T ([x])) is at
least [exp(c(n)xn)]. Moreover, these f(T ([x]))-deep local minima
form a g(T ([x]))-dense in the path metric subset of D−1((0, x]) ⊂
Al(M)). These minima are C1,α-smooth Riemannian structures
on M for any α ∈ (0, 1).”

This means that for every suitable n-manifold there are infinitely many
local minima of the diameter functional on the subset A`(M) of Met(M).
Moreover, there is a constant c(n) depending only on n such that for every
c.e. degree α the local minima of depth at least α are α-dense in the path
metric on A`(M), and the number of α-deep local minima where the diam-
eter does not exceed d is not less than exp(c(n)dn). For further explanation
see Soare [2004].

1.4.3 Fractals

Using the results stated more precisely in §1.5 and explained in §1.4.4 Nabu-
tovsky and Weinberger observed the fractal nature of the local minima. That
is, An determines an infinite sequence of “basins” (local minima), An+1 de-
termines an infinite sequence of much smaller basins coming off of them, and
the latter contain still smaller basins coming off the sides of them, and so
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on, where the relative size of one set of basins to the next exceeds any com-
putable function. The fact that the second set of basins comes off the first
comes from the relatively close distribution of the local minima explained in
Soare [2004, §9]. In the preface of [2003] Nabutovsky and Weinberger wrote,

“In particular, we will see that there are large ‘basins’ that have
topology, and are repeated infinitely often within the space (and
even, in some sense, ‘all over the space’). On the other hand, the
structure is rather more complicated than what is usually asso-
ciated with fractals. There seem to be infinitely many different
sorts of basins with different geometries from each other.”

For a discussion of the fractal nature of the results see Weinberger [2005]
Part IV, The Large Scale Fractal Geometry of Reimannian Moduli Space.
The dependence of the depth and distribution of the local minima on the
settling function for a c.e. set and its degree were described in §1.4.2 and is
further described in Soare [2004].

1.4.4 Computably Enumerable Degrees

The reason to consider c.e. degrees in Theorem 5.1 as well as modulus func-
tions of c.e. sets in Corollary 1.7 is twofold. First Nabutovsky and Wein-
berger used the Sacks density theorem on c.e. degrees as a kind of first
theorem to obtain the weaker sequence which is the settling-time escaping
sequence (not dominating) as explained in §1.4.1.

Second Nabutovsky and Weinberger thought in terms of degrees not
just sets in their applications to geometry. (See the α-dense and α-deep
basins mentioned above for a c.e. degree α.) In their final draft of [2003]
the computability theorem which they quote and apply is the increasing c.e.
degree version, proved by Csima and Soare as Theorem 5.1. Nabutovsky
and Weinberger [2003] §11 p. 26 wrote,

“ Theorem. There exists an infinite strictly increasing of c.e.
degrees di and an infinite sequence of c.e. sets βi ∈ di with the
following property: Let for any i = 1, 2, . . . , Ti be an arbitrary
Turing machine enumerating βi and hi be its halting function.
. . . .”

Nabutovsky and Weinberger never cite or apply the nondegree version
Corollary 1.7 in either [2000] or [2003]. For more on the relation of c.e.
degrees to the geometric properties see Nabutovsky and Weinberger [2003]
of Soare [2004].
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1.5 A Precise Statement of Our Main Theorem

To apply their results in differential geometry [2000], [2003] Nabutovsky
and Weinberger asked Soare to construct a dominating sequence which he
did, as described in Soare [2004]. To simplify their proof Weinberger then
asked for a g-dominating sequence which Csima [2003] constructed. The
proofs of the results cited in Soare [2004, §8] and also cited and used by
Nabutovsky and Weinberger [2000], [2003] have been deferred to this paper.
Combining these methods with those to ensure strictly decreasing Turing
degree (An >T An+1). Csima and Soare obtained the Main Theorem 5.1
proved in §5 and restated here as Theorem 1.6.

Theorem 1.6 (Main Theorem) For every computable function g there is
a g-dominating sequence {An}n∈ω such that An >T An+1 for every n.

Corollary 1.7 For every computable function g there is a g-dominating
sequence {An}n∈ω.

Because the proof for the general case of the theorem and even the
corollary can become quite cumbersome in notation, we develop the main
ideas through a series of special cases. In §3 we consider a Lachlan game
between two players which captures the dynamic relationship A >st B. We
prove that if B is infinite and A >st B, then A is high, but not necessarily
complete. In §4 we build three c.e. sets A, B, C such that A >st B >st C
and A >T B >T C, and in §5 we extend this to an infinite sequence to prove
the Main Theorem 5.1.

2 Examining the Ordering

We first examine basic properties of the ordering <st on c.e. sets.

Definition 2.1 (i) A set A is bounded Turing reducible to a set B
(A ≤bT B) if A ≤T B and there is a computable function h(x) and a Turing

reduction A = ΦB
e with use function ϕB

e (x) ≤ h(x).

(ii) Set A is identity bounded Turing reducible to B (A ≤ibT B) if
A ≤bT B with h(x) = x, namely A = ΦB

e with ϕB
e (x) ≤ x for all x.

Properties of the reducibilities bT and ibT are developed in Chapter 5 of
Soare [cta], and here in §1.1.5 and §1.1.6. The following generalizes Nies’s
observation that the notion of A >st B does not depend on the particular
enumerations of A and B.
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Theorem 2.2 Let A and B be c.e. sets, B infinite, with enumerations
{As}s∈ω and {Bs}s∈ω respectively.

(i) Suppose A ≤bT B, with use bounded by h. Then there is a strictly
increasing computable function f such that

(∀x)[mA(x) ≤ f ◦mB(h(x)) ].

(ii) Suppose A ≤ibT B. Then there is a strictly increasing computable
function f such that

(∀x)[mA(x) ≤ f ◦mB(x) ].

Proof. Note that (ii) follows immediately from (i), so we prove (i). Say
A = ΦB

j , with ϕB
j (x) ≤ h(x) for all x. We assume without loss of generality

that h is non-decreasing and that h(x) ≥ x for all x. Let f(0) = 0. Let f(n)
be the max of f(n− 1) + 1 and tn, where tn is obtained as follows.

Find sn > n such that some zn enters Wi at sn. Let tn > sn be the least
t such that

(6) At��zn = {y ≤ zn : ΦBt
j,t (y) = 1}

Note that tn must exist since A = ΦB
j .

Verification: Suppose n = mB(h(x)). Then since sn > n, we have zn > h(x).
Also, since tn > n, we have Btn��h(x) = B��h(x).

So by (6) and since x ≤ h(x) < zn, we have

Atn��x = {y ≤ x : ΦBtn
j,tn

(y) = 1}(7)

since Btn��h(x) = B��h(x) and ϕB
j (y) ≤ h(y),

Atn��x = {y ≤ x : ΦB
j (y) = 1}(8)

= A��x(9)

That is, mA(x) ≤ tn ≤ f(n) = f(mB(h(x))).

Theorem 2.3 Let A, B, and C be c.e. sets with enumerations
{As}s∈ω,{Bs}s∈ω, and {Cs}s∈ω, respectively. If A ≤ibT B and B <st C
then A <st C.
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Proof. We wish to
show that for g computable, for a.e. x, g(mA(x)) < mC(x). Note that it
suffices to show this for g strictly increasing, so we assume this w.l.o.g. By
Theorem 2.2, there is a f strictly increasing function such that for all x,
mA(x) ≤ f(mB(x)). So for all x, g(mA(x)) ≤ g(f(mB(x))). Since B <st C,
we have g(f(mB(x))) < mC(x) for a.e. x. So for a.e. x, g(mA(x)) < mC(x),
as desired.

Theorem 2.4 Let A, B, and C be c.e. sets with enumerations
{As}s∈ω,{Bs}s∈ω, and {Cs}s∈ω, respectively. If A <st B and B ≤ibT C
then A <st C.

Proof. We wish to show for g computable, for a.e. x, g(mA(x)) < mC(x).
By Theorem 2.2, there is exists f strictly increasing such that for all x,
mB(x) ≤ f(mC(x)). Since A <st B, f(g(mA(x))) < mB(x) for a.e. x. Now
since f is strictly increasing, this gives g(mA(x)) < mC(x) for a.e. x as
desired.

Corollary 2.5 <st is well-defined on ibT -degrees.

Corollary 2.6 (Nies) <st is well-defined on c.e. sets. That is, it is in-
dependent of the particular enumeration. So if {As}s∈ω and {Ãs}s∈ω are
enumerations of the same c.e. set A = Ã, {Bs}s∈ω and {B̃s}s∈ω are enu-
merations of the same c.e. set B = B̃, and A <st B, then Ã <st B̃.

Proof. If A = Ã then A ≡ibT Ã, similarly for B.

The same does not hold for Turing degrees, as is a consequence of the
next theorem.

Theorem 2.7 Given A >st B, B infinite, there exists C ≡T A such that
C 6>st B.

Proof. We wish to construct a c.e. set C ≡T A and a computable function
g such that g ◦ mB(x) ≥ mC(x) for infinitely many x. First we define a
computable function f as follows:

f(x) = max{ {0}
⋃

{s ≤ x | (∃y ≤ x)[y ∈ Bs −Bs−1] } }.

Note that f is a nondecreasing, unbounded computable function with
mB(x) ≥ f(x) for all x. Hence it suffices to build g computable, nonde-
creasing such that there are infinitely many x with g ◦ f(x) ≥ mC(x). We
now construct g and C.
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Construction:

Stage 0: For k ∈ ω, set x0
k = k, g0 = ∅.

Stage s + 1: If there is some k ∈ As+1 − As, enumerate xs
k into C. Let

xs+1
k = µy[f(y) 6∈ domgs]. For l > k let xs+1

l = xs+1
k + (l − k). For l ≤ k let

xs+1
l = xs

l . Let gs+1(x) = gs(x) for all x ∈ domgs, and let gs+1(x) = s + 1
for all 0 ≤ x ≤ f(xs

k) where g has not yet been defined.
If no element enters A at stage s + 1, set xs+1

l = xs
l for all l, and set

gs+1 = gs.

Let g = ∪sgs. Note that g is defined on progressively larger intervals.

Verification:

Let xk = lims→∞ xs
k. This limit is always finite since xs

k is only redefined
if some l ≤ k enters A.

Lemma 2.8 A ≡T C.

Proof. Note that k ∈ As+1 −As iff xs
k ∈ Cs+1 − Cs.

Suppose we want to know whether y ∈ C. A computes the stage s by
which As��y = A��y. Then

y ∈ C ⇐⇒ (∃t ≤ s)(∃k ≤ y)[ k ∈ At −At−1 ∧ y = xt
k ].

Suppose we want to know whether k ∈ A. As xs
k is only redefined if

some xs
l ≤ xs

k enters C, C computes the stage s by which Cs��xs
k = C��xk.

Then k ∈ A iff (∃t ≤ s)[xt
k ∈ Ct − Ct−1].

Lemma 2.9 C 6>st B.

Proof. Claim: For all k ∈ ω, mC(xk) ≤ g ◦mB(xk). Indeed, let s = mC(xk).
Note that s = mA(k). Suppose that l < k is such that l ∈ As − As−1

(a unique such l exists). Then since k > l, f(xs+1
k ) 6∈ domgs and so

g(f(xs+1
k )) > s. As f and g are non-decreasing, and since xk ≥ xs+1

k ,
we must have g(f(xk)) ≥ g(f(xs+1

k )) ≥ s.
So mC(xk) = s ≤ g ◦ f(xk) ≤ g ◦mB(xk), as desired.

Corollary 2.10 <st is not well-defined on Turing degrees.

In Csima and Shore [ta] it is shown that <st is not well-defined on 1-1
degrees.
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3 Building A >st B

3.1 The game for A >st B

We wish to build two sets, A >st B, in such a way that we can extend the
method to build a whole chain of such. The idea is that we have control
over both A and B, and we wish to ensure that A settles much more slowly
than B. Indeed, we require that for each partial computable function ϕj , if
ϕj is total then

(∀∞x) [ mA(x) > ϕj(mB(x)) ].

Viewing this as a game, where we win if we can build A >st B, the only
tools the opponent can use against us are the partial computable functions
ϕj . We win by enumerating members into B very sparsely, so that for every
x that enters B, there are many xj < x ready to enter A at a later stage, to
guard against various possibly total functions ϕj . To illustrate the method,
we prove the following theorem.

Theorem 3.1 For any computable function g there exist infinite c.e. sets
A and B such that for any computable function f

(∀∞x) [ mA(x) > f(mB(g(x))) ].

Proof. We first assume g is strictly increasing. For each j ∈ ω we meet the
requirements:

Pj : ϕj total =⇒ (∀∞x)[ mA(x) > ϕj(mB(g(x))) ].

We construct the sets A and B by stages as follows.

Stage s: Let αs be greater than any number mentioned so far in the con-
struction. Enumerate g(αs + s) into B at stage s. If at a later stage t,
ϕi,t(s) ↓ for some i ≤ s, enumerate αs + i into A at stage t. We think of
αs + i as the “guard” ready to enter A if ϕi converges on s.

Verification:

Suppose f is any computable function. Then f = ϕj for some j. Let t
be the stage by which B��g(αj) = Bt��g(αj).

Suppose x is such that mB(g(x)) ≥ t. This is true for a.e. x. To show
that mA(x) > f(mB(g(x))), it suffices to show that for each y ≤ g(x) which
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enters B at a stage s ≥ t, there is some z ≤ x that enters A at a stage
greater than f(s). Suppose y ≤ g(x) enters B at a stage s ≥ max{t, j}.
Then y = g(αs + s) by construction. Now αs + j is enumerated into A at
the stage where ϕj(s) converges, which exists since ϕj is total. This stage is
greater than f(s) since f(s) = ϕj(s) and ϕj(s) must be less than the stage at
which it converged. Note that g(αs + s) = y ≤ g(x), so since g is increasing
αs+s ≤ x. So αs+j < x, and so a number less than x was enumerated into A
at a stage greater than f(s). Thus mA(x) > ϕj(mB(g(x))) = f(mB(g(x))).

To show that the theorem holds for arbitrary computable g, we make
use of the following definition.

Definition 3.2 For any computable function h, define h∗ as follows.
h∗(0) = h(0), h∗(n+1) = max{h(n+1), h∗(n)+1}. Then h∗ is computable,
increasing, and (∀x)[h∗(x) ≥ h(x)].

Now suppose g is any computable function. Then by the above, there
exist c.e. sets A and B so that for any computable f , for a.e. x, mA(x) >
f(mB(g∗(x))). In particular, for any computable f , for a.e. x we have

mA(x) > f∗(mB(g∗(x))) ≥ f∗(mB(g(x))) ≥ f(mB(g(x)))

So the result holds for arbitrary computable g.

This is just the basic game for the condition A >st B, and in applications
we shall use extensions of the game to control the Turing degree of A.

3.2 Dominant functions and e-dominant sets

We use the following definitions from Soare [1987] pages 208 and 214.

Definition 3.3 (i) A function f is dominant if it dominates every com-
putable function g, namely f(x) > g(x) for all but finitely many x.

(ii) A c.e. set A is e-dominant if A = We for some e such that its settling
function me(x) is dominant.

By Martin’s theorem (see Soare [1987, p. 208]) any e-dominant set A is
high, namely A′ ≡T 0′′. (See the results on e-dominant sets by R.W. Robin-
son in Soare [1987, p. 214].)

Theorem 3.4 If A and B are c.e. sets such that A >st B and B is infinite
then A is e-dominant, and hence high.
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Proof. Let {As} and {Bs} be enumerations of A and B. Since B is in-
finite, we may choose an infinite computable subset C ⊆ B such that
C = {c0 < c1 < . . .}. For all k ∈ ω let sk be the stage at which ck en-
ters B. Note that the function h(k) = sk is computable, and we may
choose C so that h(k) is increasing. Let {ϕe}e∈ω be an effective listing
of all partial computable functions. If ϕe(y) ↓ for all y ≤ ck+1, then
define ψe(sk) = max{ϕe(y) | y ≤ ck+1}. For sk−1 ≤ s < sk, define
ψe(s) = ψe(s − 1). Suppose ϕe is total. Then so is ψe, so since A >st B
there is some N such that

(∀x ≥ N)[ mA(x) ≥ ψe(mB(x)) ].

Choose x ≥ N . Let k be such that ck ≤ x < ck+1. Note that mB(ck) ≥ sk

and that ψe is non-decreasing. Then

mA(x) ≥ mA(ck) ≥ ψe(mB(ck)) ≥ ψe(sk) ≥ ϕe(x).

Thus mA dominates ϕe.

This method is well suited to force an infinite computable set into A
but has limitations. To make ψe of any use one must threaten to make it
total, namely arrange that the values are defined in order. This is not so
well suited to more delicate coding, such as trying to improve the preceding
theorem by showing that A is complete. In fact, this is not possible.

Theorem 3.5 There are c.e. sets A and B such that A >st B, B is infinite
and computable, and A is incomplete (A <T K).

Proof. This is an immediate consequence of the Main Theorem 5.1.

4 Strictly increasing Turing degrees

Theorem 4.1 There are c.e. sets A and B such that A >st B, B is infinite,
and A >T B.

Proof. In addition to meeting the requirements to make A >st B, we must
meet requirements to ensure A 6≤T B. That is we must meet the require-
ments

Ne : A 6= ΦB
e .

This is not difficult. Since we control B, we just spread out B more, so that
there are enough guards ready to enter A both for the sake of the Pe as in
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Theorem 3.1, and also to diagonalize against the possibly total ΦB
e . Again,

since we control B, it is no problem to hold B on a segment in order to
preserve a disagreement between A and ΦB

e .

The above case was not enough to give a proper feel for construct-
ing an entire sequence as in the main theorem, since there was no pres-
sure to enumerate into B. Suppose now that we want to build three
sets, A >st B >st C, with strictly increasing Turing degrees. Not worry-
ing about the Turing degrees for a moment, it is easy to see that to build
A >st B >st C, we just need to spread out C sufficiently so that there are
sparse enough guards ready to enter B for some PB>stC

e , so that when these
guards enter B there are guards ready to enter A for some PA>stB

e . To have
B 6≤T C is also easy, as before, since it is not a problem to spread out C
more, and to hold C for the sake of keeping a computation. However, it is no
longer so easy to ensure A 6≤T B. We can still spread out B (and so also C)
to have enough witnesses to enter A in order to diagonalize, however, we can
no longer simply hold B to maintain a disagreement, since the requirements
PB>stC

e may want us to enumerate into B. So now we must use a priority
argument, noting that each ϕe is either total or is not.

Theorem 4.2 There are c.e. sets A, B, and C such that A >st B >st C,
A >T B >T C, and C is infinite.

Proof. For each e ∈ ω we meet the requirements:

PA>stB
e : ϕe total =⇒ (∀∞x)[ mA(x) ≥ ϕe(mB(x)) ]

PB>stC
e : ϕe total =⇒ (∀∞x)[ mB(x) ≥ ϕe(mC(x)) ]

NA>T B
e : A 6= ΦB

e

NB>T C
e : B 6= ΦC

e

At each stage, we will enumerate a large number into C. We will also
appoint numbers that may enter A and B, in the future, should certain
events come to pass. If a number is appointed as a guard or witness to enter
a set, it will only have one possible reason for doing so. We will enumerate
numbers into A and B at stage s+ 1 if they had been appointed at a prior
stage and the event they were waiting for has come to pass.

At stage s+ 1, we will enumerate into C, so as to make C infinite. We
will choose a number c large enough so that there are s+ 1 many numbers
less than c eligible to enter B for the sake of the PB>stC

e for e ≤ s, labeled
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cB0 , ..., c
B
s . A number b will be “eligible to enter B” if there are s+ 1 many

numbers less than b ready to enter A for the sake of the PA>stB
e for e ≤ s,

labeled bA0 , ..., b
A
s . We will also appoint s+1 many witnesses eligible to enter

B for the sake of NB>T C
e for e ≤ s, labeled [B]s+1

0 , ..., [B]s+1
s+1, and 2s+1 many

witnesses ready to enter A for the sake of NA>T B
e , labeled [A]s+1

τ where τ is
a string in 2e−1, and e ≤ s.

At stage s, αs will be a string of length s guessing at which functions
are total. For β ∈ 2ω we call s a β-stage if β�s ⊂ αs. Let α0 = ∅, so 0 is a
β-stage for all β. For s > 0, we define αs(i) by induction on i for 0 ≤ i < s
as follows. Let αs(i) = 0 iff ϕi increased its length of totality since ts where
ts = max{t | t < s & t is an αs� i-stage}.

For β ∈ 2<ω, let rB(β, 0) = 0. Let RB(γ, s) = max{rB(β, s) | β ≤ γ}.
Stage s+ 1: Enumerate c into C.
Action for “PB>stC” requirements: If ϕe,s+1(sC

d ) ↓, where d was enu-
merated into C at stage sC

d , then if e ≤ sC
d , and dB

e > RB(αs� e, s), then
if not already done so, enumerate dB

e into B, and set rB(β, s + 1) = 0 for
those β > αs�e for which dB

e < rB(β, s).
Action for “PA>stB” requirements: If ϕe(sB

b ) ↓ at stage s + 1, where b
was enumerated into B at stage sB

b , then if there was some bAe assigned,
enumerate bAe into A.

Action for “NB>T C” requirements: Choose the least e such that there is
some [B]ke 6∈ Bs, [B]ke > RB(αs�e, s), and (B�� [B]ke = ΦC

e �� [B]ke)[s]. For that
e, choose the least such k, and enumerate [B]ke into B. Set rB(β, s+ 1) = 0
for those β > αs�e for which [B]ke < rB(β, s).

Action for “NA>T B” requirements: Choose the least e ≤ s such that
rB(αs�e, s) = 0 and there is [A]kαs�e with (A�� [A]kαs�e = ΦB

e �� [A]kαs�e)[s], and
ϕj “spent” for all j < e with αs(j) = 0. By ϕj being “spent”, we mean
that for every cBj ≤ ϕB

e ([A]kαs�e), if cBj > rB(αs � j, s), then ϕj(sC
c ) ↓ and cBj

has already been enumerated into B. That is, requirement PB>stC
j will not

cause a change in B below the use. If such e exists, choose the least such k
for that e, enumerate [A]kαs�e into A, set rB(αs� e, s + 1) = ϕB

e ([A]kαs�e), and
rB(β, s+ 1) = 0 for those β > αs�e for which [A]kαs�e < rB(β, s).

Set rB(β, s+ 1) = rB(β, s) for all β for which it has not been defined.

Verification:

The PA>stB
e are met. For any b enumerated into B after stage e, a bAe

was assigned. And so if ϕe(sB
b ) ↓ at stage s, bAe < b was enumerated into A

at stage s.

Lemma 4.3 lim inf RB(αs� e, s) < ∞ for all e. Indeed, we will show that
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there is an infinite set T of true stages such that limt∈T RB(αt� e, t) < ∞
for all e.

Proof. Let f ∈ 2ω be the “true path” on our tree of guesses at the total
partial functions. That is, f(i) = 0 iff ϕi is total. We’ll say a stage t is a
true stage if the length of agreement between f and αt is longer than it has
been at any previous stage.

We will show that for each e, lims rB(f� e, s) < ∞. This will show that
limt∈T RB(αt� e, t) < ∞ since for β off the true path, either β will only be
visited finitely often (there will be only finitely many β-stages), or rB(β, t)
will be reset to 0 at every true stage.

Let s0 be a true stage such that for all j < e, if ϕj is not total, then ϕj will
never appear total after stage s. That is, αs0�e = f�e and αs�e ≥ f�e for all
s ≥ s0. Let s0 also be such that for all j < e, rB(f� j, s0) = lims rB(f� j, s).
Let s1 > s0 be a stage such that rB(f � e, s1) 6= rB(f � e, s1 − 1) = 0. If
no such s1 exists then lims rB(f� e, s) = rB(f� e, s0) or lims rB(f� e, s) = 0
and we are done. So assume s1 exists, i.e. that NA>T B

e received attention
at stage s1. The only way this could be injured is if at some stage s > s1,
αs � i < f � e, and either PB>stC

i or NA>T B
i received attention. We must

have i < e by the assumption on s0. So NA>T B
i cannot receive attention

by induction hypothesis, and PB>stC
i will not desire to enumerate below

rB(f � e, s1) as if ϕi were total it would have appeared so at s1 and there
would be no ci < rB(f�e, s1) that wasn’t already enumerated into B. Thus
lims rB(αt�e, s) = rB(f�e, s1).

Note that it follows that the NA>T B
e are satisfied. Indeed, this is clear

if limt∈T rB(αt � e, t) 6= 0. Suppose limt∈T rB(αt � e, t) = 0. Assume for a
contradiction that A = ΦB

e . Let [A]kf�e be least such that [A]kf�e 6∈ A. Let
t be a true stage such that A has settled up to [A]kf�e and B has settled
on ϕB

e ([A]kf�e), and αt � e = f � e. Now if j < e and αt(j) = 0, then ϕj

really was total, and so any cBj > rB(f� j, s) would be enumerated into B.
If cBj ≤ ϕB

e ([A]kf�e) then this must have happened by stage t since we know
that the stage t approximation is correct. So at stage t, [A]kf�e would be
enumerated into A, a contradiction.

To see that the PB>stC
e are met, note that any dB

e > lim inf RB(αs�e, s)
that wants to be will eventually be enumerated, and that if something is
enumerated later than it first wanted to be, that doesn’t hurt anything.

For the NB>T C
e , note that if any [B]ke is ever enumerated, the diagonal-

ization will be preserved (we won’t change C). So suppose for a contradiction
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that B = ΦC
e . Let [B]ke > lim inf R(αs� e, s). Then at the next true stage

after ΦC
e converged up to [B]ke , [B]ke would have been enumerated into B, a

contradiction.

5 Proof of Main Theorem

We are now ready to prove the main theorem:

Theorem 5.1 (Main Theorem) There is a dominating sequence
{An}n∈ω such that An >T An+1 for all n. (Furthermore, for every com-
putable function g, the sequence may be chosen to be g-dominating.)

Proof. For each 〈e, n〉 ∈ ω we meet the requirements:

P〈e,n〉 : ϕe total =⇒ (a.e. x)[ mAn(x) ≥ ϕe(mAn+1(x)) ]

N〈e,n〉 : An 6= ΦAn+1
e

At stage s, αs will be a string of length s guessing at whether the re-
quirements P〈e,n〉 will require infinite action. As before, for β ∈ 2ω we call
s a β-stage if β � s ⊂ αs. Let α0 = ∅, so 0 is a β-stage for all β. For
s > 0, we define αs(i) by induction on i for 0 ≤ i < s as follows. Let
αs(i) = 0 iff i = 〈e, n〉 and ϕe increased its length of totality since ts where
ts = max{t | t < s & t is an αs� i-stage}.

For β ∈ 2<ω, let ri
n(β, 0) = 0. Let

Rn(δ, s) = max{ri
n(β, s) | β ≤ δ & i ∈ ω}.

These will be the restraint functions for An.

Stage s+ 1: We consider the sets A0, ..., As. For each 0 ≤ n ≤ s we appoint
witnesses [n]s+1

τ where e ≤ s and τ ∈ 2〈e,n〉−1, which may later enter An

for the sake of N〈e,n〉. Also, for each 0 < n ≤ s and for each number c we
appoint to possibly enter An+1, we appoint guards cn0 , ..., c

n
s , all less than

c, to possibly enter An for the sake of P〈e,n〉. All the numbers appointed
at this stage should be larger than any numbers mentioned so far in the
construction. Note that since we are considering only finitely many sets, we
can certainly arrange to appoint the possible future entrants in this fashion.
Also note that any possible entrant of An of the form cni is linked to a
possible entrant of Am of the form [m]s+1

τ for some n < m ≤ s.
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Action for “P” requirements: If ϕe,s+1(sn+1
d ) ↓, where d was enumerated

into An+1 at stage sn+1
d , then if dn

e was appointed, and dn
e > Rn(αs�〈e, n〉, s),

then if not already done so, enumerate dn
e into An, and set ri

n(β, s+ 1) = 0
for those β > ms�〈e, n〉, i ∈ ω for which dn

e ≤ ri
n(β, s).

Action for “N” requirements:
When we enumerate into An for the sake of some requirement N〈e,n〉,

we can only restrain with priority 〈e, n〉. Hence we must be careful to put
restraint onto the sets Am with m ≥ n, since if something of low priority
is enumerated into Am it could cause something of high priority to want to
enter An at a later stage. Also, we wish to only believe computations that
we don’t think will be injured by higher priority requirements.

Choose the least 〈e, n〉 ≤ s such that r〈e,n〉n+1 (αs � 〈e, n〉, s) = 0 and there
is an [n]kαs�〈e,n〉 > Rn(αs�〈e, n〉, s) with

An�� [n]kαs�〈e,n〉 = ΦAn+1
e �� [n]kαs�〈e,n〉,

and a sequence rn+1, ..., rs with the following properties:

1. rn+1 = ϕ
An+1
e ([n]kαs�〈e,n〉)

2. For n+ 1 ≤ m < s, if dm
i < rm then rm+1 > d.

3. For n+ 1 ≤ m < s, if dm
i < rm, 〈i,m〉 ≤ 〈e, n〉, d has already entered

Am+1, and αs(〈i,m〉) = 0, and dm
i > Rm(αs� 〈i,m〉, s), then dm

i has
already entered Am.

If such 〈e, n〉 exists, choose the least such k for that 〈e, n〉, enumerate
[n]kαs�〈e,n〉 into An, and set r〈e,n〉m (αs � 〈e, n〉, s + 1) = rm for n < m ≤ s,
ri
n(β, s+ 1) = 0 for β > αs� 〈e, n〉, and ri

m(β, s+ 1) = ri
m(β, s) for all other

β,m, i.
If no such 〈e, n〉 exists, set ri

m(β, s+ 1) = ri
m(β, s) for all β,m, i.

Verification
Let f ∈ 2<ω be the true path. That is, f(〈e, n〉) = 0 iff ϕe is total. We

call t a true stage if the length of agreement between αt and f is longer than
at any previous stage. We let T denote the set of true stages.

Lemma 5.2 For all 〈e, n〉, lim r
〈e,n〉
n (f � 〈e, n〉, s) < ∞. Therefore, for all

〈e, n〉, lim r
〈e,n〉
m (f�〈e, n〉, s) <∞ and limt∈T Rn(αt � 〈e, n〉, t) <∞.

Proof. By induction. Suppose holds for all 〈i,m〉 < 〈e, n〉. Let s0 be a stage
by which αs� 〈e, n〉 ≥ f� 〈e, n〉 for all s ≥ s0 and by which r〈i,m〉

m (f� 〈i,m〉, s)
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has reached its limit for all s ≥ s0, 〈i,m〉 < 〈e, n〉. Let s1 > s0 be a stage such
that r〈e,n〉n (f�〈e, n〉, s1) 6= r

〈e,n〉
n (f�〈e, n〉, s1−1) = 0. If no such s1 exists then

lim r
〈e,n〉
n (f � 〈e, n〉, s) = r

〈e,n〉
n (f � 〈e, n〉, s0) or lim r

〈e,n〉
n (f � 〈e, n〉, s) = 0 and

we are done. So assume s1 exists, i.e. that N〈e,n〉 received attention at stage

s1. We show that the restraints rm = r
〈e,n〉
m (f � 〈e, n〉, s1) for n ≤ m ≤ s1

are never injured. First note that nothing of the form [m]kτ will injure rm
since if 〈i,m〉 < 〈e, n〉 then [m]kτ will not enter by induction hypothesis and
if 〈i,m〉 > 〈e, n〉 then αs� 〈i,m〉 ≥ αs� 〈e, n〉 ≥ f� 〈e, n〉 for all s ≥ s0 and so
if β = αs� 〈i,m〉, Rm(β, s) ≥ r

〈e,n〉
m (f� 〈e, n〉, s). Hence rs1 is never injured.

Assume rm+1 is never injured. Suppose dm
i < rm. Then by (2), d < rm+1.

Since rm+1 is never injured, dm
i is only a threat if d was enumerated into

Am+1 by stage s1. If 〈i,m〉 > 〈e, n〉 then αs� 〈i,m〉 ≥ αs� 〈e, n〉 ≥ f� 〈e, n〉
for all s ≥ s0 and so Rm(αs � 〈i,m〉, s) ≥ r

〈e,n〉
m (f � 〈e, n〉, s). If 〈i,m〉 ≤

〈e, n〉 then αs� 〈i,m〉 ≥ αs1 � 〈i,m〉, and so if dm
i > Rm(αs� 〈i,m〉, s) then

dm
i > Rm(αs1� 〈i,m〉, s1) and so if αs(〈i,m〉) = 0 then dm

i has already been
enumerated into Am by (3). If αs1(〈i,m〉) = 1 then since 〈i,m〉 ≤ 〈e, n〉
and αs1 � 〈e,m〉 = f � 〈e,m〉, ϕi won’t converge on sd and so dm

i won’t be
enumerated into Am. Hence rm will never be injured.

Lemma 5.3 The requirements N〈e,n〉 are met.

Proof. By construction, certainly if lim r
〈e,n〉
n+1 (f � 〈e, n〉, s) 6= 0 then, by the

previous lemma, requirement N〈e,n〉 was met. Assume for a contradiction

that An = ΦAn+1
e and hence that lim r

〈e,n〉
n+1 (f � 〈e, n〉, s) = 0. Let s be

a true stage such that for all t ∈ T , t ≥ s, αt � 〈e, n〉 = f � 〈e, n〉 and
Rn(f� 〈e, n〉, t) = Rn(f� 〈e, n〉, s). Let k be least such that [n]kαs�〈e,n〉 6∈ An,

[n]kαs�〈e,n〉 > Rn(f� 〈e, n〉, s) and An�� [n]kαs�〈e,n〉 = ΦAn+1
e �� [n]kαs�〈e,n〉. Such k

must exist since An = ΦAn+1
e and lim r

〈e,n〉
n+1 (f� 〈e, n〉, s) = 0. Now let t > s

be a true stage such that An�� [n]kf�〈e,n〉[t] = An�� [n]kf�〈e,n〉 and

An+1��ϕ
An+1
e ([n]kf�〈e,n〉)[t] = An+1��ϕ

An+1
e ([n]kf�〈e,n〉).

Let rn+1 = ϕ
An+1
e ([n]kf�〈e,n〉). For n + 1 < n ≤ t let rm+1 be minimal

such that if dm
i < rm then rm+1 > d. Let t′ > t be a true stage with

Am��rm[t′] = Am��rm for n+ 1 ≤ m ≤ t. For t < m ≤ t′, let rm = rt. Then
the sequence rn+1, ..., rt′ clearly satisfies (1) and (2) (since by construction
any future member of Am must be greater than rt for m > t). The sequence
also satisfies (3). Indeed, suppose dm

i < rm, 〈i,m〉 ≤ 〈e, n〉, d has already
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entered Am+1, and αt(〈i,m〉) = 0, and dm
i > Rm(αt� 〈i,m〉, t). Note that

n + 1 ≤ m < t. Since t > s is a true stage and αt(〈i,m〉) = 0, ϕi is total.
If dm

i > Rm(αt� 〈i,m〉, t) then dm
i will be enumerated into Am at the next

true stage after ϕi(sm+1
d ) ↓. But Am has settled up to rm, so ϕi(sm+1

d )
must already have converged and dm

i must have been enumerated into Am

by stage t′.

Lemma 5.4 The requirements P〈e,n〉 are met.

Proof. For every possible entrant d of An+1 appointed after stage e there
was a dn

e < d appointed to possibly enter An. So for a.e. d which entered
An+1, there was some dn

e < d appointed with dn
e > limt∈T R(mt�〈e, n〉, t).

Hence, dn
e was enumerated in An at the first stage after ϕe(sd) ↓ that

R(αs�〈e, n〉, s) < dn
e .

If g is any computable function, the above proof can be modified to
give a settling-time g-dominating sequence by ensuring that the guards
cn0 , ..., c

n
s are such that g(cn0 ), ..., g(cns ) are all less than c (this works if g

is non-decreasing, which we may assume without loss of generality).

Question 6 Does there exist a uniformly computably enumerable sequence
{An}n∈ω of c.e. sets that is settling-time g-dominating for all computable
functions g?
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