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ABSTRACT 

This thesis is concerned with an error analysis of approximate 

methods for second order linear two point boundary value problems, 

in particular for the method of collocation using piecewise polynomial 

approximations. 

As in previous related work on strict error bounds an operator 

theoretic approach is taken. We consider operators acting between 

two spaces Xl and X2 with uniformly equivalent metrics. The concept 

of a "collectively compact sequence of operators" is examined in 

relation to "pointwise convergence" - relevant to many approximate 

numerical methods. The introduction of a finite dimensional 

projection operator permits considerable theoretical development 

which enables us to relate various inverse approximate operators 

directly to a certain inverse matrix. 

The application of this theory to the approximate solution 

of linear two point boundary value problems is then considered. 

It is demonstrated how the method of collocation can be expressed 

in terms of a projection method applied to a certain operator 

equation. The conditions required by the theory are expressed in 

terms of continuity requirements on the coefficients of the 

differential eq'-:at i.:m and in terms of the distribution of the 

collocation pOints. Various estimates of bounds on the inverse 

differential operator are presented and it is demonstra~cd that 

the "residual" can be a very useful error estimate. The use of 

a "weighted infinity norm" is shown to improve the applicability 

of the theory for "stiff" problems. Some real prctlems are then 

examined and a selection of numerical results illustrating the 

theory and application are presented. 
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The thesis concludes with a brief review, outlining some of 

the deficiencies in the work and possible improvements and 

extensions of the analysis. 
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Introduction 

§l.l An application 

An operator approximation theory is developed in Chapter 2 

and 3 in an attempt to unify and extend other work arising mainly 

from studies of approximate solutions to integral and differential 

equations. An abstract theoretical setting is maintained until 

the application considered in Chapter 4. This generalised approach 

is taken in order to permit the application of the theory to as 

wide a range of problems as possible. 

We now examine briefly an application of the work in this 

thesis, the rest of the introductory chapter will consist of a 

survey of related work followed by a summary of the fundamentals 

and main results of each chapter. 

We are primarily concerned with finding strict error bounds 

for approximate solutions of linear two point boundary value 

problems in ordinary differential equations. These soLlt:"O:1S will 

be the result of applying a piecewise polynomial collocation me::.,od. 

The theory developed in Chapters 2 and 3 does, howe""er, hd.ve ,~hlCh 

wider applications. Interesting error estimates arise ",;'i :. :J_' prc..'~0.:;t 

of the work in Chapter 4. 

We deal with linear eCf_,c.1::'ons of the form 

d 2x (t) + p(t) dx (t) + ~\~, x (t) 

dt2 dt 

subject to the boundary conditicns. 

x (-1) x (i) o (1. 2) 
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The theory also applies to any order linear equation provided 

that the L.H.S. of (1.1) can be expressed as the sum of two 

differential operators applied to x, one of which is invertible 

with the given boundary conditions. This simple second order 

case suffices as an example without clouding the arguments with 

too much detail. The approximate solution consists of a piecewise 

polynomial; conditions of continuity are not imposed on the second 

derivative. 

More details of this application are given in Sections 4.1, 

4.2, 4.3 and 4.4 preceding Lemma 4.1 which can be read now as part 

of the introduction. 

§1.2 Related work 

Chapter 2 consists of an operator approximation theory 

essentially developed by Anselone 1 which in turn was based on 

the work of the Russian school of functional analysts including 

Kantorovich 21 Akilov 22 and Krylov 23 Other work using 

similar theory includes Gilbert and Colton 16 , Phillips 35,36 

RaIl 38 and Vainikko 48. Coldrick 10 and Cruickshank 11 

also use Anselones theory. The presentation in Chapter 2 is 

devoid of any mention of the later application in order to retain 

a sufficiently wide base for the development of other applications. 

Chapter 3 introduces the concept of projections in a very 

general manner and proceeds with the development of the theory in 

Chapter 2. 

Chapter 4 is an illustration of the previous theory applied 

to approximate solutions of (1.1) obtained by a particular 

projection method - collocation. Projection methods for differential 

equations are discussed by de Boor 3 and Lucas and Reddien 31. 

3 



Collocation methods in particular are discussed widely and 

references include de Boor 4 , Cruickshank 11, Diaz 14, 

Hangelbrook, Koper and Leaf 17 , de Hoog and Weiss 19, 

Karpilovskaja 25, Lucas and Reddien 30, Phillips 35, 

Reddien and Schumaker 39, Russell and Shampine 41, Russell 42 , 

Sincovec 45, Vainikko 46,47 and Wright 50 . Section 4.3 of 

Chapter 4 describes an application of this method. 

Sets of points arising as zeros of certain orthogonal 

polynomials are widely used in such collocation methods, for 

example the Chebychev zeros by Cruickshank and Wright 11 and 

Gauss points by de Boor 4. 

Results from approximation theory of functions of a single 

real variable will play an important part in Chapter 4. References 

include Davis 13 , Natanson 33 and Powell 37. 

Other work directly concerning piecewise polynomial 

approximations for differential equations includes de Boor 3,4,5 

Diaz 14, Wittenbrink 49, Schmidt and Lancaster 44. A series 

of papers in Numerische Mathematik by Ciarlet, Shulz and Varga 

6,8 are also of interest. 

Although not discussed in this thesis it is possible to apply 

the theory to other numerical methods and to a wide range of 

equations including partial differential equations in several 

variables. Finite difference methods are discussed by Pereyra and 

Sewell 34 and a comparison with collocation is given by Schmidt 

and Lancaster 44. Integral equations and integro-differential 

equations are discussed by Anselone 1, Coldrick 10, Hanson and 

Phillips 18,35,36 , Hangelbrook, Koper and Leaf 17 , Mikhlin 

and Smolitskiy 32 
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It should be possible to apply the theory to singular boundary 

value problems, see de Hoog and Weiss 19 and Reddien and Schumaker 

39 , by a careful choice of the "prinCipal part" operator M. (see 

§2.1). Stiff boundary value problems are examined by Flaherty and 

O'Malley 15 and the work of §4.10 is relevant here. Linear 

partial differential equations can be treated by the theory in 

Chapters 2 and 3 but it is far more difficult to derive certain 

quantities required for strict error bounds than it is in the 

ordinary differential equation case, however, see Gilbert and Colton 

16 and Kantorovich 20. The work of de Boor 5, Lentini and 

Peryra 29 ,Peryra and Sewell 34 and Russell and Christiansen 43 

are also relevant to the final discussions in §4.10. 

Non linear equations cannot be treated directly by the theory 

described here, but error bounds for each linear equation of an 

iterative sequence could be found and, hopefully, combined with 

further convergence results to produce a final error bound. Non 

linear problems are considered by Bellman and Kalaba 2 , Clenshaw 

and Norton 9, Lucas and Reddien 30,31 , Rall 38, Vainikko 47 

Non linear boundary conditions are discussed by Ciarlet, Shullzand 

Varga 7 and Reddien 40. 

§1.3 Sununary 

Sections 2.1, 2.2, 2.3 form an introduction to Chapter 2, they 

contain the basic definitions of spaces, operators and norms used 

throughout. The aim is to generalise and express concisely various 

relations between inverse operators. Most of the theorems in this 

chapter are well known in the setting of a Banach space X and the 

associated space of bounded linear operators [X]. 
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In this chapter we consider the form of these theorems when the 

operators map elements of a space Xl to another space X
2

. It turns 

out that these spaces must have essentially the same structure, but 

useful results are achieved later using the extended theorems. 

Anselones 1 concept of "collective compactness" is a convenient 

way of expressing the convergence properties of certain numerical 

procedures - which often appear in other guises. 

In Chapter 3 a projection operator is introduced and various 

approximations are described in terms of it. A generalised 

approximation is developed from these ideas which includes for 

example the "collocation method" for differential equations and 

many quadrature formulae used for solving integral equations. 

Sections 3.1 to 3.4 can be read as an introduction to this chapter. 

The aim of this chapter is to produce bounds on an inverse operator 

(expressing x in terms of y) in terms of quantities which are 

computable. A projection onto a finite dimensional space is shown 

to permit considerable development of the theory in Chapter 2, 

without sacrificing generality. The bounds developed here, of 

course, will not be suitable for all applications and there is much 

room for more detailed investigations. 

An important convergence theorem (3.7) relates the norm of 

the inverse operator directly to the norm of an inverse matrix 

provided certain fairly general conditions are satisfied. This 

theorem is extremely valuable in justifying certain error estimates 

for the approximate solutions. 

In Chapter 4 a two point boundary value problem in ordinary 

differential equations is defined and expressed as an operator 

equation in the space of Riemann integrable functions with sup. norm. 

6 



An approximate solution generated by the method of collocation using 

piecewise polynomials is studied. These sections 4.1 - 4.4 form the 

basis of an example to which the theory in Chapters 2 and 3 can be 

applied. The latter half of Section 4.4 verifies that certain 

conditions of the theory are satisfied and concludes with a "plug in" 

statement of a-priori bounds on the inverse approximate operator and 

a-posteriori bounds on the actual differential operator. Section 

4.5 verifies certain extra conditions hold in order to apply Theorem 

3.7, stated here as Theorem 4.8. 

Having shown that the theory is applicable to this problem 

Sections 4.6 - 4.10 proceed to develop concrete numerical bounds 

on various operators and from these show how it is possible to 

obtain computable error bounds for an approximate solution. Particularly 

of note are the improved error bounds possible using Legendre zeros 

for the collocation points. The use of a weighted sup. norm is 

demonstrated which enables realistic error bounds to be produced for 

"stiff" problems. 

It would be interesting to apply the theory to other approximate 

methods such as finite difference schemes and to higher order problems 

but time does not permit this. 

We examine in Chapter 5 some numerical evidence which prompted 

the theoretical investigations in this thesis. In particular the 

behaviour of the inverse collocation matrix and the close relationship 

of the error to the 'residual' are studied for a series of problems. 

The chapter closes with some examples of error bounds for a small 

group of problems. 
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CHAPTER 2 

Theory of Approximation Methods 
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Theory of Approximation Methods 

§2.1 Introduction 

This chapter introduces the theoretical background for certain 

operator equations and their approximate solution. Most of the 

results are well known but are included for completeness. Kantorovich 

and Akilov 22 , Anselone 1 ,Coldrick 10 and Cruickshank 11 

cover much of the same work. 

The theorems are placed in a general setting so as not to 

restrict their application. Later chapters will be concerned more 

specifically with collocation as a projection method for the 

approximate solution of boundary value problems in ordinary differential 

equations. 

Let X and Y be complete normed linear (Banach) spaces and let 

I I· I Ix, I I· I Iy denote the norms in X and Y respectively. Let [x,~ 

denote the space of bounded linear operators mapping X~Y with the 

subordinate norm. We will be concerned with solving equations of 

the form 

Mx y y£.Y (2.1) 

M £. [X, Y] 

for x £. X. 

It is not always possible to solve (2.1) analytically and 

often a numerical method is used to approximate (2.1), e.g. 

MX Y Y £. Y (2.2) 

M £. [x, yJ 

Solving for x £. X. This equation is usually set in a space of 

finite dimension and corresponds to a finite set of linear algebraic 

equations. Now provided X £ X and M is invertible it follows that 
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x - x -1 -1 
M (M(x - x» = M (y - MX) (2.3) 

or II x - xlix < I 1M -111 . II y - MX II y 

which is a strict error bound on the approximate solution. 

-1 
The rest of this chapter will be concerned with the term M . 

In all of the following theory we shall be concerned with an 

operator M which may be split into two parts 

(2.4) 

where Ml is invertible. Under certain circumstances we may deduce 

that M is invertible. Note that equation (2.1) may now be written 

(2.5) 

-1 
where we may apply Ml E: [Y,x] , giving 

(2.6) 

-1 
Or we may replace x by Ml Z where z Mlx, giving 

y (2.7) 

The identity operator Ix E: [x ,x] , denoted [x] and Iy E: [YJ. 

Since M is invertible, error bounds of the form (2.3) may be 

recovered from (2.6) and (2.7). For example if it is known that 

x - x (2.8) 

10 



Because Ml E [x,y] is invertible there is a close relationship 

between the spaces X, Y and it is often the case that error bounds 

derived independently from (2.6) or (2.7) turn out to be equivalent 

when suitable practical norms are used. 

§2.2 Setting for Theory 

Since Ml is invertible it permits a 1-1 correspondence between 

the elements of X and the elements of Y. It is neater to work in 

one space consisting of the elements of X or Y alone, using the 

equations (2.6), (2.7). It is not necessary, however, for Y and 

the space M1X, for example, to have the same norm - it is only 

required that the norms are uniformly equivalent. With such norms 

the metric properties of Y and M1X are the same, allowing much of 

the present published theory in this field to be generalised. 

Let Xl' X
2 

be normed linear spaces consisting of the same 

elements but with (possibly) different norms I I· I Ix
l

, I I· I IX2 

respectively, and let [Xl' X
2

] denote the space of bounded linear 

operators mapping Xl ~ X
2 

with the subordinate norm. Both (2.6) 

and (2.7) may then be expressed, with appropriate choice of spaces, 

as (I
12 

- K)x y (2.9) 

It will be seen later how advantage may be taken of allowing Xl and 

X
2 

to have different norms. We are not entirely free to choose 

these norms as we like because the two (distinct) identity operators 

I12 : Xl ~ X
2 

and I21 : X
2 
~ Xl must be bounded. 

that the metrics P l' P 2 defined by 

11 

This also means 



PI(x,y) Ilx - yll 
xl 

P2(X,y) = Ilx - yll 
x2 

are uniformly equivalent. That is 3 a, 6 > 0 such that 

aPI (x,y)~ P2 (x,y) < 6 PI (x,y) v x ,y e: Xl 

This implies, letting u x - y 

(2.10) 

Further, as the metrics PI' P2 are uniformly equivalent the open 

sets of Xl are the same as the open sets of X2' The definitions 

of closed set, closure, continunity, completeness and compactness 

can all be expressed in terms of open sets. This means that 

theorems using these properties in the setting of a normed linear 

space X and the space of bounded linear operators [X] may be 

immediately generalised to the setting described at the beginning 

of this section. For this reason proofs of some theorems are given 

as references to the literature. 

The distinction between the spaces Xl and X2 occurs only in 

the definition of the norms in these spaces. Any element x e: Xl 

is also a member of X2' and vice-versa. Further any operator 

K e: [X 1 ,X2] is a member of [X2 ,X 1], [X 1] and [X2]' An element x or 

operator K will, however, have different norms in each case. For 

example (2.10) gives 

Ilxll < 
x2 

6 Ilx II 
Xl 

Ilxll < 
Xl 

12 



Now consider the four identity operators 

Using the subordinate norm gives 

II III " 
sup Ilxll 

x2 

Ilxil = 1 
xl 

1 

II 112 II = sup I I x II < s 
x2 

IIxil = 1 
xl 

(2.11) 

II 121 II = sup II x II <-
xl ex 

"xii = 1 
x2 

II 122 II = sup I I x II 1 
x2 

. IIxll =1 
x2 

Note also that 

II I 1 2 II > ex and I I 12 1 I I ~ s 

Using these values and the following theorem the norm of an operator 

given a bound in one. 

Let A, B, C be normed linear spaces, not necessarily all 

different, and let K
AB

, ~C and K
AC 

be three linear operators in 

[A, B] , [B, C] and [A, c] respectively such that ~ KAB = KAC ' Then 

(2.12) 
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For example K12 112 K11 therefore 

II K1211 < ~ II K11 II 

It will usually be clear from the context in which space an operator 

is considered to be. If it is necessary to make a distinction for 

the purpose of calculating norms subscripts will be used as in 

(2.11) and the above example. 

Most of the theory to be developed will require that certain 

operators are compact, although for some of the earlier theorems it 

is sufficient that Xl and X2 are complete. 

,§2.3 Definitions of Compactness 

Let S be a subset of a normed linear space X, then S is compact 

iff every open cover of S has a finite subcover. S is said to be 

relatively compact iff S is compact. S is sequentially compact iff 

each sequence in S has a convergent subsequence (with limit in X). 

With these definitions relative and sequential compactness are 

equivalent. 

When the space X is complete a useful result is that S is 

totally bounded iff S is relatively compact. (Anse Lol'\e.. 1'4-) 

An operator 1< e: [ X] is compact iff the set K B is relatively 

compact, where B is the unit ball in X : B {xe:X : II x I! 2; l}. By 

the comments in the previous section if an operator K is compact in 

[x] it is compact when considered as an operator betwe2n two spaces 

Xl and X 2 consisting of the same elements and with uniformly 

equivalent norms. 

14 



§2.4 Theorems on operator inverses 

In this section several theorems on operator inverses will 

be stated and proved. These theorems form the basis from which 

practical error bounds will be developed, as well as several weaker 

convergence results. Much use will be made of norms and the ideas 

of §2.2. 

For simplicity we will assume throughout Xl and X2 are 

complete; for those parts of the theory where this condition is 

sufficient it will be restated for emphasis. 

Theorem 2.1 

If K is a compact operator in [Xl' X2] then the following 

three statements are equivalent. 

1 
(i) (I-K) exists and is bounded; 

(li) (I-K)x = 0 ~ x = 0 

(iii) inf II (I-K)x II 
x2 

IIxll = 1 
xl 

M, for some M>O 

Proof 

In the case Xl = X2 = X is a standard result, see Appendix I 

of Anselone 1 The proof generalises by the remarks of §2.2. 

_1 

Further we may deduce the following bound on I I (I-K) I I· 

Consider (I-K)x e:X2 with II (I-K)xll = 1 
x2 

Now II (I-K) x II 
x2 IIx li

xl ·11 

II 
x \\ = 1 and soli 

Ilx ll
xl xl 

But 

_1 I 

Hence sup II (I-K) y II .2. M 
Xl 

Ilyllx"l < 1 
L 

15 

(I-K) x II 
IIxll x2 

Xl 

> M from (iii) 



The point in showing the above working in detail is to demonstrate 

that the factors a and 8 associated with the norms do not affect 

the bound on I I (I_K)-ll I. 

Theorem 2.2 

(a) K is compact and Xl' X2 are complete 

or (b) Xl' X2 are complete 

_1 
Then (I-X) has a unique inverse (I-K) £ [X2' Xl] and 

(2.13) 

Proof 

In case (a) simply use Theorem 2.1 noting that for x £ Xl' 

Ilx II = 1 we have 
xl 

II (I -1<) x II > II x II - II Kx II > a - II K 1 2 II > 0 
x2 x2 x2 

Note the appearance of the factor a associated with t~e operator I12. 

In case (b) we can show the convergence of the Neumann series 

00 m 1 
l: K to (I-1<) 

m=o 

N ow I: K
m 

here is a mapping from X z to X 1 for this series to be 
m=o 

absolutely convergent it is necessary that 

Now 1112111 
1 

< and II K 1 1 I I -a 
< 1 

16 



co 

So 1: 
m=o 

1 a 1 

I2111 ~ a a-IIK12 11 = -a--,I ...... '=R-12 ...... '..,...' < co 
(2.14) 

Since mIa KTI I21 is absolutely convergent we can re-arrange the 

terms in the series 

Similarly m~o ~1 I21 is a right inverse for (I12-KI2). 

Further from (2.14) we have 

Theorem 2.3 

with I IAI I < 1 and K and A are compact operators then 

1 -

(I-K) - e: [x 2, X 1] and further 

Proof 

\ 

\ 

\ / 
~/ 

\ 

_ _ ,-111 1 
No!:.£. that (I-A) e: [-1.1] and I- (I-A) ~ l-,IA!: 

_1 
Thus (I-Kj ha.=, ~. _eft inverse (I-il.) B e: [X2' Xl]' Tr.-

unique inverse p!"o. -..:!ed that the image of X I under L_,e 

is the whole Anselone 1 for example show_ -- .. ~ .. ) _. 
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whenever K is a compact operator. Xl and X2 have the same topology 

and that result holds here also. 

So 

I 
Also (I-K) -B 

Hence 

_1 
(I-A) B 

_1 
( (I-A) -I) B 

I 
(I-A) (I-(I-A»B 

_1 
(I-A) AB 

(2.16) 

_1 
The conditions for the existence of (I-K) in this theorem do 

not depend on a or S because the operator I-A is in (Xl]' It must 

be remembered, however, that B E [X2' X~ and care taken that the 

correct norm is used for B. Note that we have maintained the 

assumption that Xl' X2 are complete. 

Theorem 2.4 

_1 

Let, K, L E [Xl' X21 and suppose (I-L) E [X2' XIJ and either 

(a) K, L are compact and Xl' X2 are complete. 

(b) Xl' X2 are complete. 

If 110 
_1 

I I (I-L) (K-L) I I~l then there exists 

_1 r, 
(I-K) E LX2, Xl] and 

II 
(I-K) _111 < II (I-L) _111 i II (I-K) _1_(I_Lflll <11011 (I-L) _111 
. ~ 1 - 110 - 1 - 110 

(2.17) 
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Proof 

_1 
Consider (1-K) = (1-L) (1-(1-L) (K-L» 

_1 

In case (a) (I-L) (K-L) is compact. Apply Theorem 2.3 with 

1 _1 
B = (I-L) and A = (I-L) (K-L) £ [XI] to give 

_1 _1 
(1- (I-L) (K-L) ) £ [Xl]. 

_1 _1 _1 
Hence (I-(I-L) (K-L» (I-L) 

as the inverse of (I-K). 

In case of (b) apply Theorem 2.2 with X2 = Xl to show that 

_1 1 
(1- (I-L) (K-L» £ [Xl] (since ~o < 1). It is then a matter of 

_1 _1 1 
simple algebra to show that (1-(I-L) (K-L» (I-L) is a left and 

right inverse for (I-L) and hence the unique inverse. 

Again the comments at the end of Theorem 2.3 apply. 

Theorem 2.5 

Let K, L £ [Xl, X2]be compact and suppose (I_L)_1 £ [X2, Xu 

If lid = II (I-L) _1 (K-L) Kd II < 1 for some d > 1 then 

_1 d- 1 _1 d 
II (I-K) II < IIHK+ ... +K +(1-L) K II 

l-~d 

(2.18: 

Proof 

d- 1 _1 d 
Let B = I+K+ •.• +K + (I-L) K in Theorem 2.3, rou.ns that 

A 
_1 d 

(I-L) (K-L) K is compact. Theorem 4 (a) can bE interpreted .:i .• : 

a special case of Theorem 2.5 putting d = O. 

_1 
It is notJwhether (I-A) B is the unique inverse of 

the case when K, L are not compact. 

c: -i() in 

The caution at the end of Theorem 2.3 is importanL here. 

_1 ~ (J That is (I-L) (K-L)K £ Xl and if we split this operator ~nto 

_1 d 
two parts such as (I-L) and (K-L)K for the purpose of ~valuating 

norms it is necessary to be consistent, e.g. we could take 

19 



_1 d 
(I-L) E: [X2' Xl] and (K-L) K E: [Xl' X2]' 

d- 1 
Further B = 121 + K21 + .•• K11 121 

appropriate norms must be used. 

Theorem 2.4 and 2.5 can be used to bound the inverse operator 

1 . _1 
g1ven a sufficiently close approximate inverse (I-L) (I-K) 

Indeed these are the theorems on which the error bounds in later 

chapters are based. 

It is now shown how these theorems, applied with certain 

convergence results, can be used to give a-priori bounds on a 

_1 
sequence I I (I-K) I I of approximate inverse operators, and 

n 
give 

_1 

a-posteriori bounds on I I (I-K) I I from bounds 

an operator K sufficiently "close" to K. 
n 

§2.5 Collective Compactness 

_1 

on II (I-K) II for 
n 

It is convenient to define here the notion of "collective 

compactness" introduced by Anselone l. This idea is closely 

associated with the convergence of sequences of compact operators. 

There are two main types of operator convergence - convergence 

in norm and pointwise cor..'lergence. 

Let {K } be a sequence of operators; then we nave cc",~t::rge_l':;t 
n 

in norm of cr.13 operator sequence to some operator K pro',idee:. 

II K~'1 -, K I! -+ 0 as n -+ 00. 

This is a sufficl~nLly strong convergence critarion to allow pcweriu: 

convergence theorems ~o ~~ deduced from the theorems of the previous 

section. 
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Another form of convergence - pointwise convergence - often 

arising from numerical approximations does not admit to such easy 

application of these theorems. Pointwise convergence of an 

operator sequence {Kn} to K means that for any given x £ X 

11K x - Kx 11-+ 0 as n -+ (Xl 

n 

Such convergence is denoted K -+ K. Convergence in norm is a 
n 

uniform convergence (independent of any particular x) it implies 

pointwise convergence, but not vice versa. 

To derive certain convergence results from the theorems of 

the previous section we will require the convergence in norm of 

certain operator sequences. The idea of collective compactness 

is a convenient vehicle for relating pointwise and norm convergence 

in the context of the application of numerical methods to operator 

equations. 

Definition 

A set K C [X] is collectively compact ~rovifed t~nt the Se~ 

KB = {Kx K £ K, X £ B} is relatively compact. A seZr.:encE of 

operators in [X] is collectively compact whenever the corresponjir.c:' 

set is. 

The important result derived by Anselone linking pointwise 

and norm convergence is now stated. 

Anselone's Corollary 1.9 

Let K, Kn £ [x], n 1 2 , , ... 

{K } is collectively compact. Then 
n 

Assume K -+ K (pointwise) and 
n 

II(K-K)KII-+o 
n 

II (K -K) K II -+ 0 
n n 

Note that convergence in norm of K to K is achieved on a compact 
n 
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subset of X, not the whole of B. 

Another useful result given by Anselone is 

{K } collectively compact, K ~ K ~K compact. 
n n 

Also, trivially, any K E {K } is compact. 
n n 

It is not necessary to show {K } is collectively compact to 
n 

obtain a suitable convergence in norm. In a particular case, for 

example, it may be known that the elements of XB satisfy a Lipshitz 

condition in which case it may be possible to verify directly that 

11K -KII or II(K -K)KII tends to zero with increasing n. 
n n 

rather than attempt to show that {K lis collectively compact, 
n 

which could involve further assumptions or restrictions. 

The various possible convergence results deriving from the 

above discussion and theorems 2.4 and 2.5 can now be combined and 

stated in one pair of theorems. 

Theorem 2.6A 

Let K E rXl' X21 a~d {K }a sequence of appr:)x:..mat~jns co 
L J n , 

(a) 

(b) 

(c) 

1,2' ..• and suppose (I-K) 

Xl is a Banach space 

K, K (n 
n 

1 , L , ••• ) compact 

{K } collectively compact 
n 

II (K -te) Kd II ~ 0 
n 

for some (fixed) d v. 

K ~ K. 
n 

, 

then there exists N > 1 such that V n > N, I I (I - K ) _. I I < M for 
n 

some M > 0 

N.B. for (b) and (c) we still require Xl complete. 
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Proof 

(a) Apply Theorem 2.4 (b) with L=K, K=K . 
n 

l:!.o n ~ II (I - K) _1 I I . II K n - K II -+ O. 

so that in this case 

II 
_1 1 

(I-K) -(I-K)- I I -+ O. 
n 

(b) Apply Theorem 2.5. 

(c) Apply Theorem 2.5 + Anselones Corollary 1.9. 

Theorem 2.6B 

Let K E: [Xl' X2] and {Kn} a sequence of approximations to K 

1 

with Kn E: [Xl' X2]n= 1,2"" and (I-K
n

) 

_1 

E: [X2, Xi] in particular 

II (I-K) II < M for all n > N. 
n 

and either 

(a) Xl is a Bana~h space 11K -KII -+ 0 
n 

(b) K, K (n= 1 '2' .•. ) compact II (K _K)Kdll -+ 
n n 

then 

Proof 

(c) 

_1 
(I-K) 

(a) 

(fixed) 

{K } collectively compact K 
n n 

exists and is bounded. 

Apply Theorem 2.4(b) with L=K , 
n 

/:;.0 < M' 11K -KI' -+ 0 n - n I 

_1 
so that II (I-K) II < M. 

-+ K. 

(b) Apply Theorem 2.5 

C. > o. 

o for 

(c) Apply Theorem 2.5 + Anselone's Corollary 1.9. 

23 

some 



These theorems provide the basis for the more specific convergence 

results in Chapter 3. More detailed examination of the norms of 

various terms, particularly ~, will enable us to produce strict 

_1 
numerical bounds on the norm of the inverse (I-K) 
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CHAPTER 3 

The Inverse Approximate Operator 

I 
,'I 

1'1 .1 

I 
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The Inverse Approximate Operator 

§3.l Introduction 

The previous chapter developed theorems connecting the 

operator I-K and its inverse with an approximate operator I-L. The 

major problem in applying these theorems lies in verifying the 

conditions of applicability. For example in Theorem 2.5 we need to 

show ~d < 1 and if we split the norm into ~d~1 I (I-L)-ll I. I I (K-L)Kdl I 

we need to bound the inverse approximate operator and the term 

(K-L)K
d 

- which is a measure of the difference between K and L. 

The second term is dealt with in quite a straightforward way 

by the approximation theory associated with the operator L. 

Bounding the inverse approximate operator, however, presents some-

thing of a problem. In this chapter it is shown that fairly general 

bounds on the inverse approximate operator can be obtained for a 

class of approximations known as "projection methods", and some 

related schemes. 

§3.2 Projection Methods 

A projection in a normed linear space X is an operator P £ [X] 

such that 

p(Px) = Px v x £ X 

PX is a subspace of X with the property 

Pu = u v U £ PX 

Project (2.9) onto PX, giving 

p( (I-K)u-y) = 0 

This may be simplified by seeking an approximate solution u £ PX 

u - PKu = Py 

or (I - PK)u = PY (3.1) 
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This is one approximate equation arising in a very natural way 

from projection methods; it is not the only possibility. 

Cruickshank 11 suggested a variation analogous to the Nystram 

extension for integral equations. In that thesis it was shown 

how this extension could yield improved error bounds for 

approximate solutions of boundary value problems obtained by 

global polynomial collocation methods. 

§3.3 The extended projection method 

Suppose that the operator (I-PK) e: 

_1 
[px] . (I-PK) e: For any y e: X define U 

_1 

} U (I-PK) Py 

and z by z = Y + Ku 

Now observe that 

(I-KP)x = (I-KP) (y+Ku) 

1 
y+(I-KP)K(I-PK) Py-KPy 

1 
= y+K(I-PK) (I-PK) Py-KPy 

y. 

[px] has a unique inverse 

by 

(3.2) 

.. f h . t' method there is a."1c:her So that ar1s1ng rom t e proJec 10n 

approximate operator equation. 

(I-KP) z y 
(3.3) 

Note that there is now E imply a y on the right hand side as 

h f An 1 The solution u can be required in the approac 0 se one. 

obtained from z by noting that from (3.1) 
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u Py + PKu 

pz 
(3.4) 

It is not proposed to discuss in this chapter whether z is a more 

accurate solution than u*, the relevance of this solution lies in 

the structure of the approximate inverse from which it arises. 

_1 
It is easy to express the inverse operator (I-KP) £ [x] 

_1 
in terms of the inverse projection operator (I-PK) £ [pxJas follows: 

(I-KP) z y 

(I-KP) (y+Ku) y 

_1 
(I-KP) (I+K (I-PK) P) y y 

_1 
So that I+K(I-PK) P is a right inverse for(I-KP~ It is a matter 

of simple algebra to establish that this operator is also a left 

inverse of I-KP, hence the unique inverse. 

1 
(I-KP) 

§3.4 A generalisation 

_1 
I+K (I-PK) P (3.5) 

Anselone, in his treatment of Integral Equations, derives an 

approximate operator K in terms of n linear - functionals on X. 
n 

He obtains from common quadrature formulae, operators K ~ K 
n 

(pointwise) which have certain similarities to the operator KP when 

P is a projection onto a finite dimensional subspace of x. A 

generalisation which includes Anselone's method and the "extended 

projection method" is now described. 

*See Ch.4 §4.9 
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The extended projection method requires the solution of 

(I-KP)z = y for z E X. The solution obtained was 

1 
z = (I+K(I-PK) P)y (3.6) 

_1 

when (I-PK) E [px1. Since PX is in this case considered to be 

finite dimensional, it is complete and the existence of the inverse 

1 
(I-PK) implies its uniqueness. 

It is possible to obtain this solution in a more direct 

fashion as follows. Project (3.3) onto the subspace PX to give 

P(I-KP)z Py 

(I-PK) pz Py 

_1 
pz (I-PK) Py 

_1 
when (I-PK) E [Px]. 

The solution z is retrieved from pz by (3.2) 

z = y + KPz (3.7) 

which is equivalent to (3.6). This latter approach is generalised 

by replacing K in (3.3) by an operator K* E [Px,x]. Again we 

solve for Z E X 

(I-K*P) Z = y 

The solution is given by 

where 

wherever 

Z = l' • K*Pz 

_1 
pz (HPK*) Py 

(I-PK*) _1 t: [PxJ. 

(3.8) 

} '~. 9) 

Clearly the extended projection method is included simply by 

replacing K* by K. We now show the connection with Anselone's 

work. 

The action of K* on PX can be described uniquely by its 
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action on a set of basis elements in PX. In practice K* ~ill 

often be defined in such a manner. Let {~i} = B be a (finite) 

basis for PX, and let U E PX so that 

Clearly K*u K*Lai~i =Lai(K*~i) 

~iEB ~iEB 

Denote K*~l' by ~*, . {k~} is a (finite) set of elements of X 
1 1 

which define the action of K* with respect to a basis {~i} of PX. 

Consider K* defined by k*i = K~i. Then K*u = ~aiK~i 

KLai~i = Ku. This is simply the extended projection method. 

The treatment of integral equations by Anselone gives an 

example in which the subspace PX is not uniquely determined -

many subspaces suffice to define the same approximate equation 

and solution. In fact, in the discussion given there, PX plays 

a very minor role. For the purpose of illustration we will 

consider one particular projection. 

Let K be an integral operator defined on the space ~f 

continuous functions X by 

Kx(s) 

where k(s,t) is continuous on the unit square -1 < s,t < 1. 

Define linear functionals on X 

1 

~x f x(t) dt 

1 

n 

~nx=,L1W , x (t ,) 
1= n1 n1 

n = 1,2' •.. 

where -1 < t , < t < 1 and W , E~. Anselone (p.1S) defines 
n1 ni+l n1 
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an approximation to the integral operator K 

by 

Kx (s) 

1 

f k(s,t)x(t) dt 

_1 

n 

L x(s)=.LIW. K(s,t .)x(t .) 
n 1= n1 n1 n1 

1f
t 

k(s,t)x(t) 

Ifnt k(s,t)x(t) 

where the subscript t on If indicates that it applies to the 

following expression considered as a function of t. 

This approximation is included in the generalisation as now 

shown. Let P x(t) be the piecewise linear interpolant to x(t) 
n 

agreeing with x(t) at the points t . I linear in-between and 
n1 

constant for t < t and t > t 
- nl nn 

Take as a basis for P X the 
n 

'hat' functions ¢ni(t) £ P X defined by 
n 

Let x £ X, P x is given by 
n 

P x (t) 
n 

n 

.Llx(t .). ¢ . (t) 
1= n1 n1 

Now define K by the elements k. £ X 
n 1 

W . k (S,t .) 
n1 n1 

Hence K P xes) = L xes) I demonstrating that this approxi~at~8n 
n n n 

does in fact Delong to ~:1e generalisation of the projection ~etr.Jd. 

Clearly any other interpolation projection through the same points 

could be used to obtain the same result. Anselone chooses this 

particular projection because in his spaces X, P X it has the 
n 

minimum norm (=1). This helps in maintaining a reasonably tight 

bound on "(I-P nK) _I" in the space [p nX] . 
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§3.5 Approximate Inverse in P~ 

The generalisation in §3.4 includes a very wide class of 

numerical methods for solving operator equations and it has been 

_1 
shown that the existence of (I-K*P) depends crucially upon the 

_1 
existence of (I-PK*) in the subspace[p~ It is shown in this 

section that if P is a projection onto a finite dimensional 

subspace PX then the operator (I-PK*) has an inverse in the 

subspace [!:>x] if and only if a certain matrix inverse exists. 

_1 
Further the norm of (I-PK*) can be expressed in terms of a 

certain norm of the inverse matrix. 

It is now shown how the equation in the n-dimensional 

subspace [Pnx] is related to the solution of a finite system of 

linear algebraic equations. We use the vector space RR
n 

• The 

identity operator inR
n 

will be denoted by I and an element 
n 

V £ ~n in component form by a column vector 

v 

V 
n 

Let {cp .} be a basis for P X. An element u £ f X ':;ir, 0' .. e~preS32d 
n1 n L 

as a linear combination of the basis elements cP . 
n1 

by 

(H u). 
n 1 

J u 
n 

U. 
1 

} 
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The general equation in the subspace is 

(I-P K*)u y 
n 

Because we have now fixed[Pn~ as an n-dimensional subspace K* 

becomes a finite dimensional operator in [PnX' x] and will be 

denoted by K • 
n 

(I-P K)u 
n n 

(3.11) 

The operator H and its inverse J give a 1-1 correspondence 
n n 

between the space P X and IR
n 

so that 
n 

(3.11) 

where 

_1 

~ H (I-P K)\1 
..., 

H Y 
n n n n 

~ (H 
n 

H P K ) (J u) = ~ 
n n n n-

~ (H J - H P K J )u = _'1 
n n n n n n -

# (I 
n 

K)u = 'i.. 
n-

K 
n 

H P K J 
n n n n 

(I - K) exists 
n n 

or 

and 

1 
u J' (I -K) H Y 

n n n n 

_1 
(I-P K ) 

n n 

_1 
(I - K ) 

n n 

_1 
J (I -K) H 

n n n n 

_1 
H (I-P K) J 

n n n n 

There exists an interesting alternative expression for 
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1 _1 
involving (1-K P ) 

n n Note from (3.8), (3.9) that 

_1 
P (1-K P ) 

n n n 

so that 

_1 
H P (1-K P) J 

1 
(1-P K) P 

n n n 

1 

n n n n n 
H (1-P K) P J 

n n n n n 

Extend H to X by H 
n n 

H P and note that P J - J so that 
n n n n n 

or 

_1 
H (1-K P) J 

n n n n 

1 
H (1-P K) J 

n n n n 

_1 
(I -K ) 

n n 

1 
H (1-K P) J 

n n n n 

This argument can be extended as follows. 

Let J~ £ [lRn) X] be such that 

P J* 
n n 

J 
n 

1 

(3.15) 

(3.16) 

_1 
Then H P (1-K p) J * H (1-P K) P J * 

n n n n n n n n n n 

giving 

§3.6 

1 
H (1-K p) J * 

1 
H (1-P K) J 

n n n n n n n n 

E (1-K P ) 
n n n 

Bounds on the aE.!2roximate 

To proceed to investigate 

J* 
n 

inverse 

bounds 

requires explicit definition of Xl and 

on 

X2, 

(3.17) 

_1 

II (1-P K) II in 
n n 

in particular the 

detail 

definition of the norms in these spaces, and is better left to a 

discussion of the application of the theory to a particular example. 
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Nevertheless there are some results that can be derived for quite 

a general class of norms which at least illustrate what can be 

achieved. 

Suppose that the norm of an element u € P X can be related 
n 

in the following manner to a norm based on the components with 

respect to the basis {~ ,} 
n~ 

~nllullp .::. Ilull .::. vnllullp 

n lip 

where Ilulip =( i£l luil
P ·II~ nillP) 

(3.18) 

p > 0 

It is easy to verify that I I. I I satisfies the properties required 
p 

of a norm. Note that ~ , v (may) depend on n. Suppose further 
n n 

that the norms in the spaces P Xl and P X2 are related as follows 
n n 

W , > 0 i= I '2 , ••• n (3. 19) 
n~ 

N.B. This in no way defines the norms - it is merely a property 

of the norms induced on P Xl from Xl. We are now in a position to 
n 

relate the norm of an element in P Xl to that in P X2 
n n 

I 

I I· I I norm of an element in Xl by I I· I I . 
p p 

In P Xl 
n 

Denote the 

(3.20) 

It remains to verify for tnese norms that (2.10) holds. 

Multiply (3.20, by ~ 

max Wni 

1 1 

max Wni max Wni 
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~ ( iglluiIP.II4>nill~2 rIP 
So that Iliill~ ~ max Wni Iliill; 

Now multiply (3.20) by . 1 to give 
m~n W

ni 

1 

So that 

(3.21) 

(3.22) 

Inequalities (3.18), (3.21), (3.22) can now be combined to give 

Iln 

\)n max W • 
n~ 

as required. 

\) 

n 
(3.23) 

_1 
It is a simple procedure to relate the norm of (I-P K ) 

n n 
_ _1 

to that of (I -K) using this p-norm, as follows. 
n n 

Assume that the basis {4>ni} has been normalised in X2 -

this is not necessary but makes the algebra tidier. 

Now I I (I-P K )-11 I 1= sup 
n n 

P"X'1. 0. E:? ,X2 
n 

But II ii II x2 _< 1 '* II ii 112 < -=- ~ II u II < ~ 
p -:..." 1_ P - Ill) 

_ _1 

Using the p-norm for the inverse matrix (I -K) ~ow gives 
n n 

1 1 
II (I -K ) - H ii II < II (I -K ) - II 

n n n p - n n p 

from which we can proceed if the coarse bound in (3.23) is used 
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1 

to relate the norm for (I-P nKn) e: ~ nX2] to that in [p nX2, P nX1 J 
using the ideas in §2.2. It is far better, however, to notice 

that this is a convenient stage to introduce the "weighted" norm 

1 
I I· I I which will give directly the norm of (I-P K) considered 

p n n 

as an operator in [: nX2, P nxil. 

The norm I I· I I~ is found in the same way as the norm 1 I· 1 I~ 

modified by multiplying the elements of the corresponding vector 

norms by the weights wni ' i.e. 

litill~ 
_1 

Now «I -K ) 
n n 

n _1 

H ti) i = ,L (I -K ) " (H ti»), 
n )=1 n n~) n 

_1 _1 

so that W , « I - K) H ti) ~ 
n~ n n n ... 

,L W, (I -K ) ij (H ti) j 
)=1 n~ n n n 

1 

Define the matrix Wij = Wni (In-Kn) ij 

1 1 1 
11(1 -1<)- H 1111 < Ilwll 

n n n p - p)Jn 

1 \I 

so finally II(I-PnK
n
)- 112.)Jn Ilwllp 

n 

(3.24) 

Note that this bound for II (I-P K ) _111 applies only i;-, th2 Su:)S?dCe 
n n 

[p nX2 I P nX~. The following identity can be used "CCI extend t:r.t:

result to [X2, Xy. 

Hence i! (.:.-? :( ) 
I 11. .. : 

I + (I-? K) P K 
n n n n 

i i ::. , 'I,' I [-,- (!10rm in subspace) . i i P K - \·-/-;le::..2 
• j n !"~ 

(I-P K ) 
n n 

-:>.1:" P" ~re :-,-.Jv. .:.::msidered as operators on X2· 
_ .1 

The i8r~g~ing analysis can be expressed more concisely a~ 

follows. 
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_1 
(I-P K ) 

n n 

1 

J (I -K) H from (3.14) 
n n n n 

Let Ii( ~ denote the space rR n with the p norm 

Let lR f denote the space IRn 
with weighted p norm 

II x II Dn = [.£ , w . x., pJ 1/ P 
"'2 1=1 n1 1 

Consider H 
n 

11(1 _K)-lll = Ilwll by definition. 
n n p 

The fact that PnXl has a weighted norm does not alter this bound 

on I IJnl I because the weighting is component wise and is removed 

by virtue of the range space being Rf rather than simply ~n. 

Hence 

From (3.14) we also have 

(Hence 

\) 

n 
< 
-~ n 

Note that here (I-P K I 
n n 

, 
(3.24) 

(3.26) 

II (I-P K ) _111 ) 
n n 

Another bound for I IW
i 

II (an ~e obtained which involves an operator 
• I P 

defined on X2 rather than P~X2 and which offers some f1exit~=~~y ~n 

the choice of operator J . 
n 

Recall (3.17) we can choose any J~ E ORn,x] which satisfies 
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P J * - J and write 
n n n 

1 _1 
= H (I-K P) J* 

n n n n 

(3.27) 

v* 

(Hence II w II <--.:: 
p - lln 

II (I-K P ) _111) 
n n 

§3.7 The Behaviour of I Iwl I 

In the previous section certain bounds on I Iwl I were obtained 

using the weighted p norm. A striking feature of I Iwl I observed in 

examples in later chapters is the apparent convergence to a certain 

value. Further, for those examples, I Iwl I seems to approach the 

~ constant irrespective of the interpolation scheme used (e.g. 

polynomial interpolation at Chebychev zeros, Legendre zeros, 

piecewise polynomial interpolation, etc.). Implied in this 

observation is the use of the same norm in each scheme and for each 

" II degree of approximation. In fact to study convergence of .:,j ~ we 

need to fix the norms in Xl and X2 and we will drop the subs~ri~~ p 

of the previous chapter to indicate this. The suspicion arose from 

the observ ed Dehaviour of I! '" ' -:hat perhaps II w! 1 -+ II 
.:. 

- 'I 
-: .. , I I 

but this ~s ~ .. ~ ~asj tc :~ve in general - we pr~ve it is ~h~ c~se 

when the cC_'1di't': -' .. ~s in ~heorem 7 (to follow) are .:;~ ~.s:i.ec.. 

Certair: b3..sic 3.ss..unpt~c~1S will first be stated w;,_ eh er.£ ... re 

that the theorems i~ Chapter 2 apply. 

(a) K is compact 

_1 
(b) (I-K) exists (and is bounded) 

(c) {K P } collectively compact 

1 

n n 

(d) K P K 
~ (a) 

-+ 
n n 
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_ ._1 

Recall the definition of the matrix W = (I - K ) 
n n n 

_1 
W = H (1-K P) J * from (3.17) 

n n n n n 

Now suppose that Hn and I
n
* satisfy the following conditions in 

addition to those stated in their definitions. 

(3.28) 

Let S = J *H 
n n n 

(i) + (ii) = lis II < 1 
n -

(iii) II (1-S ) x II ~ 0 V fixed x E X. 
n 

_1 _1 

Choose Y
E 

£ X with IlyE11 .::. 1 such that II (I-K) II-II (I-K) YEll < E 

Y will be considered fixed below. 
£ 

Let XnE Hn Y£ 

Consider I IJ * z - (I-K) YE! ~ 
n -nE 

IIJ *z - S «I-K: 
1 _1 _1 I I 

v -(I-K) Y )-(1-K) Y I 
- £ £ E n -nE n 

< IIJ *z - S (I-K) Y ;+11 (I-S ) (I-K)-·y II 
n -n£ n ~ n £ 

1 1 _1 

li s (I-K P ) - S Y - S (I-K) - Y II + II (I-S ) (I-K) YEll 
n n n n £ n E n 

1 _1 _1 

I Is (I-K P )- (S -I)y + S {(I-K P )y-(I-K) YEll I 
n n nnE n nnE 

_1 

+ II (I-S ) (I-K) Y II 
n £ 

< lis (I-K P )_1(I_S)Y II 
n n nnE 

(A) 

_1 _1 I I 
+ I Is {(I-K P) Y -(I-K) Y I 

n nnE E 
(B) 
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+ II (I-S ) (I-K) -\ II 
n £ 

(C) 

1 

Consider (C); (I-K) y£ £ X is fixed so by (iii) (C) ~ o. 

Consider (A); Theorem 2.6A tells us for n ~ N,l I (I-K
n

P
n

)_l, I < M 

Further II Sn II 2. 1 and II (I-S
n

) y £ II ~ 0 hence (A) ~ o. 

Consider (B); Theorem 1.10 (Anselone pa) (Also see §4.9) gives 

II 

_1 1 
(I-K P) Y -(I-K)- y I I 

n n £ £ 

1 - 6 

_1 
if t:. = II (I-K) (K P -K) K P II < 1 

n n n n 

From conditions (b), (c), (d) above, t:. ~ 0; also (K P -K)Y ~ 0, 
n n £ 

_1 
giving II(I-KP)y -(I-K) y II ~o. Again IISnll2.1 so (B) +0 

n n £ £ 

_1 
Finally IIJ *z - (I-K) y II ~ o. (3.29) 

n ~e: e: 

therefore using (ii) and (3.29) 

e: is arbitrary so in the limit :: Wn II is bounded below by : I (:-l<.) -°11· 

Suppose that in addition to conditions (i), (ii) and (iii', P nKn 

J , J * satisfy the followi~g 
n n 

(iv) lip K - KII ~ 0 
n n 

(v) II P K (J -J *) II ~ 0 
n n n n 
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Then we can derive an asymptotic upper bound on 1 Iwl I as follows 

Recall (3.17), w 
n 

1 
H (I-P K) J 

n n n n 

_1 
Let W *= H (I-P K) J * 

n n n n n 

Consider W -w * 
n n 

Since H J 
n n 

H J * 
n n 

_1 
H (I - P K) (J -J *) 

n n n n n 

_1 
H (I-(I-P K) P K ) (J -J *) 

n n n n n n n 

_1 
H (I-P K) (p K ) (J -J *) 

n n n n n n n 

I 
n 

From condition (iv) and Theorem 4 we have 

So that II (I-P K ) _1 II -I- II (I-K) _111 
n n 

Applying condition (v) and (i) we have 

Ilw -w * II -I- 0 
n n 

(3.31) 

(3.32) 

(3.33) 

So that in the limit Ilw I! :'5 bounded above by II (I-K) _J.! !. 
n 

Together with the asyroptotic lower limit ~n I iw~l; Nt have ,. 

Theorem 3.7 

(In the context of previous chapters) Suppose 

_1 
(b) (I-K) exists 

(c) {K P } 
n n 

collectively compact 

(d) K P -I- K 
n n 

(i) IIHnl1 1 
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(ii) 

(iii) 

(iv) 

(v) 

Then 

IIJ * II = 1 n 

I I (I-J *H )xl I ~ 0 for any fixed x £ X 
n n 

lip K - KII ~ 0 
n n 

lip K (J -J *) II ~ 0 
n n n n 

II W II ~ II (I-K) _111 
n 

We shall find that all the conditions of Theorem 3.7 are satisfied 

by the problem examined in Chapter 4. 

We can obtain the result of Theorem 3.7 from the result in 

§3.6 in the particularly simple case of IIJ I I = 1; IIH I I = 1 plus 
n n 

f 

(b), (c), (d), (iv) for then (3.24) + (3.26) gives 

Note also from (3.32) and (3.33) 

W £ [Rn] is a discrete analogue of the operator (I-K) 
n 

space J * IRn. 
n 
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CHAPTER 4 

Theory of Application to Two Point Boundary Value Problems 
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Theory of Application to Two Point Boundary Value Problems 

§4.1 Introduction 

Chapters 2 and 3 have developed an abstract theory concerning 

approximate operator inverses and bounds. The theory can be 

applied to any problems for which the conditions of the theorems are 

satisfied. The rest of this thesis will be concerned with the 

application to linear two point boundary value problems of the 

second order in ordinary differential equations. In this chapter 

we will define the problem precisely, define the approximations 

that will be studied and verify the conditions of the theorems in 

previous chapters. At the end of the chapter various error 

estimates will be discussed which involve somewhat less work than 

the strict error bounds for the examples in Chapter 5. 

The theory could be applied to higher order problems with 

various boundary conditions and to linear partial differential 

equations with .~.:;. changes. However, the derivation of certain 

constants ra~~ired for strict bounds can be extremely lengthy ~~ 

tl.Ille cOT.S,-,::;":'~·'. Error estimates, however, could be produced in C;. 

similar m .. iLc. t-::;::his cn6.pter with far less effort. 

Al. th.:-,",-i: :L", theory d'Jes not apply directly to r."n-linear 

problems, the re~·_ll ts obta:.ned in the linear case could form a 

useful starting ?oint for further investigations. 

We use the space of Riemann integrable functions for X to 

allow the use of piecewise polynomial approximations. 
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§4.2 Form of Problem 

We consider problems of the form 

" x (t) + pet) x' (t) + q(t) x (t) 

x(-l) x (1) o 

yet) } 

(4.1) 

with p, q, Y E: C [-1, IJ R [-1, IJ (Riemann integrable on [-1, 1]) 

R
(2j 

x E: [-1, 1] 

The interval [-1, IJ will be dropped from further notation. In 

order to develop strict bounds we shall generally require that p, 

q, y have a bounded modulus of continuity or possess higher order 

of continuity thanC 

The equation (4.1) can be expressed in the form (2.5) by 

2 
noting that D is invertible with the boundary conditions in (4.1). 

The inverse can be expressed as the well known integral operator 

(G x)(s) 

where g (s,t) 

1 

J g(s,t) x (t)dt 

1 

{
~ (s+1) (t-l) 

~ (s-1) (t+1) 

s < t 

s > t 

Then D2G x _ x dlmost everywhere for x E: R 

(4.2) 

(4.3) 

GD 2 x _ x for x E: R \ 2) 3atisfying the boundo.1:"y ::0ndi tH ... 1:;. 

Keller (26, 9108) give~ the Greens functions (4.3) ~~r a var~~ty 

of differential opera~crs and boundary conditions. 

Consider the integral operator K defined by 

(1 

(Kx) s I k(s,t)x(t) dt 

~l 

where - k(s,t) = pes) ~ (s,t) + q(s) g (s,t) 
as 

(4.4) 

If x satisfies the boundary conditions of (4.1) it can be shown 
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that 
1 

-(Kx" ) s - f k(s,t) 
d 2x 

x' (s) --dt p (s) + q(s)x(s), " ER 
dt2 x 

_1 

(4.5) 

and equation (4.1) can be expressed in the integral form 

(I-K) u y (4.6) 

where u = x" E R. 

An alternative expression for K which will prove useful later 

is now given. Define the operator H as follows 

[Hx] (s) fSX(t)dt 

1 

f h(s,t) x (t) dt 

_1 _1 

{ : t < s 

where h(s,t) 

, t > S 

In a similar manner to deriving (4.6) we have 

[Kx] (s) = p(s) (Hx] (s) + q (s) [H2X) (s) 

_(p~S) + q(s) (S;l) ) (H~X) (1) 

(4.7) 

for x e: R (4.8) 

The usual sup norm will be used on R, so that R is a Sana;::., space. 

R takes the place of the space X in chapters 2 ~~d 3. S1nce .n0st 

of this chapter will not bE; concerned with the detc.ils of u3ir.s a 

weighted sup norm we need make no distinction between Lne spa~cs 

Xl and X2 for the present. 

§4.3 The method of collocation 

The method of collocation requires that an approximate 

solution x satisfies the equation to be solved exactly at a finite 

set of points. The approximate solution will generally be ~rl 

element of a finite dimensional subspace of R- yielding a finite 

set of linear equations to solve for x. 
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Suppose that the equation we wish to solve 1s 

(I-K) x=y x, y e: R, K e: [R). 

And the approximate solution x e: R c R is obtained by requiring 

i=l, .... ,m ; si e: [-1, IJ. 

This is equivalent to using an interpolation projection method to 

solve the equation 

R has an m dimensional basis {~i}; construct a new basis 

{ H} such that 

H (s.) = 
J 

i, j = l, ... ,m 

we need m distinct Sj in order to form this basis. 

Define a mapping Pm as follows 

(Pm x) (t) =J, ~i (t) • x (si) 

Pm is obviously a projection and gives rise to the same approximate 

solution as the collocation method - albeit from a different set of 

linear algebraic equations because of a change of basis perhaps. 

§4.4 Piecewise polynomial method 

We define here a projection of R onto a space of piecewise 

polynomials on [-1, IJ. Define the partition Tn of [-1,1] by the 

points ti i=O, ... ,n 

< t < ••• <t 
i r. 

1 

On eacL cf +:':'=. .:.c.E:rvals [to l' t. ) 
l- l 

i=l, ... ,n-l, 

(4.10) 

[t .t] tr.", 
:1-1 n 

approximc:ti.:;r. "'~.:.~ .0nsis~ uf a polynomial in t. The order of ",.:,.,.::h 

of these poly:-.ol:.ials wiL. CEO the same and each po.Lynomial will ()~ 

defined by~nterpolation within the corresponding interval on a 

set of points I the relative distribution of whl.c:-.... 1.1: re..:.2.~r. .. he 

same for all intervals. No conditions of continuity will be i7..posed 

from one interval to the next, i.e. we do not assume that 
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X (t i - 0) = X (t! + 0) 

at any partition point ti • 

Let {i;j} be a set of p distinct points in ~l,lJ, (including, 

possibly, the end points). The collocation, or interpolation points, 

will be defined in each interval [t
1

-
l

, t
i

] by 

= (4.11) 

i=l, ••• ,n j=l, ... ,p 

The projection P np is defined on each interval [t
i

_
l

, t
i

] by 

(4.12) 

for i=l, .•. ,n. 

Lji is the (unique) polynomial such that Lji (E;ki)=\j for 

each i=l, .•• ,n. L
j 

will denote the (unique) polynomial such that 

Note that the norm of P is given by the usual polynomial 
np 

projection norm corresponding to interpolation at the points ~, 
J 

and is independent of n. 

max sup ,~ I~i (t) I 
i t£ [ti-l ,ti] J 1 

~ u C) J, i ~ :t) I 
t .rl.\' .J ~. 
~ - I ... 

Define 

for j=l, •.. Ii? and 1 =0 
o 
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In order to satisfy conditions of theorems in chapters 2 and 3 

we shall restrict the projection Pp and ~np to those having the 

following properties 

(i) j = l, ... ,p 

(4.13) 

(H) max 

i=l, ... ,n 
It.-t. 11 

~ ~-
~ 0 as n ~ ex> 

The geometric significance of (i) and (ii) may not be 

immediately obvious. The second condition simply ensures that as 

n increases the width of the polynomial pieces decreases. There 

is no restriction at this stage on the manner in which this happens. 

Condition (i) means that each of the polynomial interpolation 

points E;j of Pp lies in the interval [lj_i l,lj-~ where the lj are 

the sum of the integration weights (positive) for the points 

E;l to E;j_l· This ensures that we can determine a direct correspondence 

(Lemma 4.1) between P and a certain Riemman sum (S ). 
np np 

Define a projection Sp on R as follows 

(sp xJ (t) = j~l x(E;j) X [lj-l-l, lj-l](t) 

X ~a.b] tt) = {: where a < t < b 

elsewhere 

S x is a ;~~~2w~se constant function. 
p 

Lemme... 4.1 

Proof 
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Similarly r (Sp X)(t) dt 
p 

['j] I:X Gj_l-l, j~lX Ij -1 J(t) dt 
_1 

. 

fX but 

_1 

[lj_l-l, 

Lemma 4.2 

Proof 

1 

Ij_1J (t) dt 1.-1 = f Ij(t) dt J j-l 
_1 

1 

dt -+ f x(t) dt 

1 

for any x E R 

giving 

(4.16) 

(4.15) 

Extend ~ in the obvious manner to Snp on the partition Tn' 

then 

1 1 

f (Pnp x](t) dt = f (Snp x](t) dt 
_1 _1 

Then note that since I ITnl I -+ 0, (Snp x) (t) is a Riemann sum so that 

1 1 

f (snp x) (t) dt -+ f x(t) dt 

_1 _1 

for x E R 

We now introduce some notation in order to make use of §2.10 in 

Anselone 1. 

t 
For any kernel k(s,t) define the functions ks (t) and k (s) 

as follows (cf Anselone §2.8) 

k(s,t) 

A set F of functions x (t), -1 ~ t ~ 1 is regular If for each 

x E F and each ill = 1,2, ... there exist x , xm E C such that 
m 

m 
x (t) < x (t) < x (t) 

m - -
t E [-1,1] 

1 

fl[x
m

(t)-X
m

(t»)dt -+ ° uniformly for x E F as m -+ 00 and for 

each fixed m, the sets 

F 
m 

{x 
m 

m 
x E F}, F 

are totally bounded. 

x E F} 
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Regular sets have the following properties. Subsets and 

closures of regular sets are regular, the convex hull of a regular 

set is regular. If F and G are regular then FuG, 

are regular. 

Lemma 4.3 

(a) 

(b) 

(c) 

Proof 

(a) 

F+G = {x+y X E F, y E G} 

F.G {x.y X E F, y E G} 

{ks : l2. s 2.l} is regular. 

Ilks - ks' III -+ 0 as 

kt E R, -1 < t 

The sets {ps} 

and {qs} 

< 1 

{p (s) 

{q(s) 

, 
s -+ s -1 < S, 

-1 < s < l} 

-1 < s < l} 

, 
< 1 5 

are regular because pes) and q(s) are uniformly continuous on the 

interval [-1, lJ and each function in {ps} or {~} is constant. 

The set {gs(t)} is regular because g(s,t) is continuous. 

The set {t-l} is trivially regular. 

The set {h (t)} is regular because each h (t) is constant with a 
s s 

single jump discontinuity at t=s. 

Recall the definition of h(s,t) in (4.7) and note that 

ag (s,t) 
as (t-l) .h(s,t) 

Hence {k
s

} {p } {t-l} {h } + {a } {g } is regular 
5 S""S S 
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I
I 

(b) Ik(s,t) - k(s' ,t) I dt 

1 

min (s, s' ) 

< I Ik(s,t)-k(~ ,t) Idt + 
_1 

1 

I Ik(s,t) -k(s' ,t) I 

max (s, s' ) 

+2 Is-s' I·sup Ik(s,t) I 

-l~s,t~l 

dt 

For t in the intervals [-1, min (s,s'» and (max (s,s'), 1] , k(s,t) 

is a continuous function of s for s>min(s,s') and s<max(s,s' 

respectively. Also k(s,t) is bounded since {k } is regular, so 
s 

that finally 

Ilks-ks .11
1 

+ 0 as Is-s'l + 0 

(c) { ~ (t -1) [ -p ( s) -q ( s) (s+l)] 

~(t+l) [-p(s)-q(s) (s-l)J 

For each t € [-l,lJ ' kt £ R. 

for s < t 

for s > t 

Now with Lemma 4.3, 4.2 and property 4.13 we have satisfied 

conditions (a)-(e) required for Theorem 2.13 of Anselone which we 

now state as Theorem 4.4. The proof follows that given in Anselone 

with very little modification. 

Theorem 4.4 

Proof 

K, KPnp ~ [R]. KRcC, K is compact 

{KPnp} is collectively compact 

KPnp + K :is n + 00 

II (I-Pnp)K: i + 0 as -+- 00 

(p fixed) 

Since {ks} is regular, ks € Rl (R with the seminorm I Ixl il)· 
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Define f: ~l,lJ-+ Rl by f(s)=k s . Then f is a continuous function 

on a compact set so that the convergence in Lemma 4.3(b) is uniform. 

I (Kx) (s) 1~llkslll·llxll = {~: Ilxll~ l} is bounded 

I (Kx) (s)-(Kx) (s') ~ Ilks-ks ' 111.llxll-+{i(x: Ilxll~l} is equicontinuous. 

Hence K £ [R], KRcC, K is compact. 

PAp £ [R] therefore KPnp £ [R] and each KPnp is compact. 

Consider the linear functionals ~and ~n, defined on R as follows 

1 1 

cp x = I x(t) dt ,er n
x = I [pnp x)(t) dt. 

1 1 

Lemma 4.2 says that <pn -+ cP • 

Let u be (fixed) in R. Then F= {k,u} is regular. Choose x and xm 
m 

as in the definition of a regular set. Since ~n -+f uniformly on 

m 
the totally bounded sets Fm and F and since 

m 
(x -x ) -+ 0 uniformly 

m 

for x £ F we have cpn -+ rp uniformly for x £ F. Since 

we havellKPnp u - Kull -+ o. 

Note 

1 

thatl[KP x)(S)-[KP x)(s')I< 11k (t)-k (t)I·I[p x)(t)ldt 
np np - 1 s s np 

< Ilk -k' I III . lip xII 
- s s np 

By an argument similar to that proving K compact we have 

[KPnp xJ (S)-[KPnp x) (s') -+ 0 as n -+ = and s' -+ s 

uniformly for I !xl I < 1 and -1< s < 1 

This implies that the sequence of sets {KP x: Ilxll~ 1;' is np 

asymptotically equicontinuous. These sets are bounded un~formly 

because II KPnp II ~ II K II· II Pnp II < M < co Also each of these sets 
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is totally bounded since each KPnp is compact. A construction 

similar to that used in Arzela's theorem then gives 

{KPnp x : n ~ 1, I Ixl I < l} is totally bounded, therefore 

relatively compact in R. Thus {KP } is collectively compact. 
np 

Note that P ~ I on C so that we have np 

p fixed. 

The conclusions of theorems 2.3 - 2.6 in Chapter 2 now 

apply, for example 

Theorem 4.5 

1 
Suppose (I~) exists, then there exists Nl > 1 such that 

_1 

V n ~ Nl II (I-PnpK) II ~ Ml 

Use theorem 2.6A(a) 

Also there exists N2 > 1 such that Vn > N 

Use theorem 2.6A(c) 

Theorem 4.6 

Suppose there exist~ :1 SL<.cL that either 

_1 , I 
II (I-Fnp :!\) (K-P _K)I 

n.c-' 
< 1 

or 

, , 

I
I (I-KF ) _. (K-KP )1~C.I! .... 1 for some d > 1 

!lP np I 

_1 
Then (I-K) ~xists. Use theorem 2.4 or 2.5. 
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§4.5 The Behaviour ofl IWnl I 

We remain in the space R = Xl = X2' §3 5 §3 7; Ch t 3 . - • ~n ap er 

make use of the operators En, I n , I n * sometimes called restriction 

(Hn) and extension (for I n and I n *) operators, they must possess the 

following properties in order to apply the theorems in those sections. 

(a) 

(b) 

(c) 

(d) 

Enp e: [R, IR np] , J np e: [lR np
, P np RJ, J np * e: [~ n

p
, R] 

Hnp Pnp = Hnp (e) IIHnp II = 1 

Hnp J np * = lnp (f) IIJnp*11 = 

Pnp Jnp * Hop = P (g) Jnp * ~p -+ 
np 

J np Hnp = Pnp ( *>Jnp Pnp J np*) 

These conditions implyllJ II 
np 

lip: II 
np 

1 

I on R 

Define Hnp' J np ' J np* as follows 

= x j=l, •.. ,p i=l, ... ,n 

,~ X 

p 

(J
np 

U
ji

) (t) = [t'-l.,t,)(t) ,L~, L .. (t) 
~=l ~ 1.. J=l ~ J~ 

n 
! (J

np 
* u .. ) (t) =, L u, . X[t't,j_l I T 1. .) (t) 

J~ ~=l j=l J~ ,) 

(4.17) 

(4.18 ) 

(4.19) 

(4.20) 

1 ( ) / 2 ( NB J * H. :: S :w Lemme. 1. 2 ) where T = t, 1 + . t; -t;_l ij ~- J ~ ~ np np np 
IO np 

We use the sup norm on R and the maximum norm on ~ 

Conditions (a) - (f) above are satisfied trivially b~ ·.~heS2 

d f ' ;t;on- Condl.'tl.'on (C;) "uE:S not hold on R, but on~~' ..)fl C, ·ir._ e l.n~ ~ • ~... ~ 

we must illa~.3 a ,-1..~(;:-lt addition to the proof of Theorem 3.7. 

However we now h" ~. dl.rc~~~_ from (3.26), and (3.27) s~nc~ 

II (l-PnpK~ Ip ,. 
np" 

II W I I <! I P II' . I I (: -P K) _1 II < 
n 00 -' np , np 
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For the stronger result of theorem 3.7 we need two further 

conditions, namely that lip K(J -J *) I I ~ 0 as n ~ ~ and that 
np n n 

_1 
(I-K) has the same norm in the spaces [eJ and (R]. 

Since Pnp is uniformly bounded, or from the fact that 

I I K-PnpK I I ~ 0, it is sufficient to show that 

Recall the integral operator H defined by 4.7 and consider 

Now since I ~i (t) dt = Tij - Ti,j_l 

~-l' ~) 

(4.21) 

i=l, ... ,n 

j=l, ... ,p 

we can replace the lower bound of the integral in (4.21) by the 

largest element of Th less than s call it ~, we have 

Is-tkl < I ITn l I and we can simplify the bound in (4.21) to 

< max a 

la" 1<1 
J~ -

sup IS .~ \Lji(t)-X [Ti,j_l,T ij ) \dt 
se:(-l,l] t

k
J - l 

(4.22) 

Since IITnl1 ~ 0 we have 

(4.23) 

In view of (4.23) and (4.8) we have 

(4.24) 
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Lemma 4.7 

Let (I-K) _1 E LRj then 

II (I-K) _1 11 = sup II (I-K) -\11 

YEC 

Proof 

L et Y E E R be such that II YEll 2. I 

Let t E [-1,1] such that 
E 

< E 

II (I-K) -\ II-II «I-K) -~ ) (t ) II 
E E E 

(A) 

< E (B) 

Let xn be a sequence of continuous piecewise linear function 

defined by xn(t) = (Pn2 Y
E

) (t) with ~1 = -1, ~2 = +1, 

tE = ti for some i=O •.. n. (1Ip"zll=l) 

By the results leading up to theorem 4.4 we have 

IllOC -Ky II -+ 0 as n -+ 00 n E 

Since each xn E C (forced by ~l -1, ~2 = +1) we can find an ~ 
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say such that 

1 
The operator (I-K) can be expressed as 

_1 
(I-K) 

_1 
I + (I-K) K 

_1 _1 
Therefore (I-K) (xN-y) (t,.)=(xN(t )-y (t »+(I-K) (Kx -Ky ) (t ) 

e: c e: e:e: N e: e: 

But by construction we have x (t) = y (t) 
N e: e: e: 

II 
_1 1 

Hence ( (I-K) YE) (t£) II-II ( (I-K) - xN) (te:) II < e: (C) 

Adding A, B, C 

II (I_K)-1 11 _ 11 ((I-K)-IX
N

) (te:) II < 3 e: 

But II (I-K) _I XN) (te:) II 2. sup II (I-K) _1 yll since IlxN11 < I 

ye:C 

As e: is arbitrary we have 

II (I_K)-III < sup II (I-K)-\II 
- ye:C 

CeR so that, finally 

II (I-K) _111 = supll (I-K) --yll 

ye:C 

Theorem 4.8 

1 

II Wn II co -Or I: (I - K) - II 

Proof 

Verify conditions of theorem 3.7 hold, apart from co~dition 

(iii). Replace y in proof of the theorem by an x e: C 
e: 

Lemma 4.7 guarantees that we can do this, and condition (iii) is 

satisfied for x e: C. 
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Wright 51 has demonstrated the conclusion of theorem 4.8 

_1 

for (I-K) £ C and approximations consisting of global 

polynomial collocation at the zeros of polynomials orthogonal 

with respect to a weight function of the form 

.::. Cl, t3 < ~ 

The result of theorem 4.8 is strong evidence that with the 

infinity norm the matrix W is a good choice for expressing the 
n 

inverse approximate operator, for, in the limit at least, it is 

not dependent on the form of the approximation. We can express 

the properties that an approximation must have to satisfy the 

conditions required to prove theorem 4.8 concisely as:-

for any x £ R, Snp x is a Riemann sum. 

Theorem 4.8 together with numerical corroboration, presented 

later, provides the justification for the form of bounds on the 

inverse approximate operators in the next section, which are there 

expressed in terms of computable quantities. 

§4.6 Bounds on ~he Inverse Approximate Operator 

In order ':.J develop pra.:::tical error bounds for apprOXL:1at:e 

solutions arisi.:d from equa~ions such as (3.1) or (3.3) ~~ is 

necessary to de~- ~:.Je bounds on the inverse approximate operator Eo 

_1 
(I-Pnp K) or (I-K Pnp ) It will not be sufficient to know that 

such bounds will exist. we shall want to be able to compute a 

numerical value for the bound for any given n. The theorems in 

Chapter 2 will be of no use since we have no bound on (I-K) 

instead we will use the results in §3.6 to relate these inverse 

approximate operators to the matrix W . 
n 
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Recall (3.24) 

II (I-P np K) _111 .::. Ilpnpll·llwnll 

The inverse approximate operator here has range space P- R and to 
np 

bound (I-Pnp K) on the whole of R we can use the identity (3.25). 

II (I-Pnp K) _111 < 1 + 

Giving 

(4.25) 

1 
Since IIPnpl1 is independent of n, Ilwnll -+ II (I-K) - II and 

Ilpnp KII .::.11(Pnp-I)KII+IIKII -+ IIKII, (4.25) is a fairly satis-

factory bound. 

_11 
Recall that (I-K Pop) can be expressed in terms of (I-P K) P R; 

np Of 

from (3.5). 

Giving 

_1 
I + K(I-P K) P~p np 

(~.26) 

Cruickshank, deriving bounds similar to ;4.~::) a .. ·: (.;.;(;6) 

notes that for the global polynomial case I Iplpl I increases wi~h p 

when Chebychev or Legendre collocation points are used (I IP
np

:! 

constant with n). Bounds which do not increase wit~ remains 

are derived by considering II K (I-P
lp 

K) _1 P
lp 

II in more 

detail and making use of the fact that the collocation points are 

zeros of orthogonal polynomials. The result achieved for Chebychev 

polynomials is 
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For Legendre polynomials 
(+.27) 

IIK(I-P1P K)-lPlpll 2. suplk(s,t) 1'21IwnI1a> 

-l2.s ,t2.1 

_1 
To express a bound for (I-P

lp 
K) 

_1 
in terms of K(I-P

lp 
K) P

lp 
we 

use the identify 

_1 _1 
= I + (Plp -I) K(I-P

lp 
K) + K(I-P

lp 
K) 

Then, provided I I (P1P-I)KI I 6p < 1 note that 

1 + 
(4.28) 

Then use (3.25) 

All these expressions (4.25) - (4.28) depend on the integral 

operator K as well as I Iwnl 100 , which is not very satisfactory when 

K is large. It is easy to show that 

_1 
In view of the fact that Ilwnlla> -+ II (I-K) II we must have 

_1 
asymptotically II (1-P np K) II '" II Wn 1100 but for the present we 

must rely on (4.25) and (4.26). A small improvement ir. the bound 

(4.26) might be achieved for the piecewise polynomial case by 

similar analysis to that for (4.27) but for small values of p it is 

probably not worthwhile. 
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§4.7 
d 

Bounds on K , (I-P ) Kd 
np 

The bounds in the previous section, together with bounds on 

Kd, (I-Pnp ) Kd will enable us to use theorems 2.4 and 2.5 of 

Chapter 2 to obtain strict bounds on I I (I_K)_1 1 I. 

Recall the definition of K as an integral operator 

II K x II sup / Jl k(s,t)x(t) dt/ 
s£[-l,l] _1 

< sup 

- s£ [-1,1] 

we can use (4.29) to bound IIKII. From 4.4 we have 

It is easy to show that 

for g(s,t) defined by (4.3). 

d 
To bound K I note that 

~ (Sit) dt ~ )11 / a / 

(4.29) 

P is an i:"!t:erpolation projection so that (I-P )x is the 
np np 

'error' in interpolating a given function x. Most of the error 

bounds for interpolation are given in terms of higher derivatives 

r d 
of x. For that reason we now consider the operator D K 1 < r < d 
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defined by 

Define k~(s) = p (s)~(l+s + q (s)~(1-s2) 
o 0 

Then IIKII < sup k~ (s) 

SE &1,1] 

Consider _(DKxh ) (s) "R C(l) x E ; p,q E 

1 

= ~s I (P(S) ~; (s,t) + q(S)g(S,t»)xII(t) dt 

_1 

= ~s (P(S) x' (s) + q(s) x (S)] 

(4.33) 

(4.34) 

= pes) x /I (s) + (pi (s) + q(S») x' (s) + q' (5j X (s' 

= pes) x· . (s) + ( [(P' IsH" (S);;(s. t) +q' (s) 9 Is. tj Jx" ttl at 

_1 

(The fact that x (-1) = x(i) 

Define 

1 

Then IIDKII < sup kl (s) 

SE [-1,1] 

" : 0 in no way restricts x ) 

Consider -(DK2x), make the substitution Kx = Y 

then 

(DK2x) (s) = (DK y) (s) 
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I 
Oefine k2(s) 

I 0 
Then IIoK211 < sup ki (s) ·llklll 

s£[-l,l] 

n-l 
Similarly define kO{s) 

n = k?(s) ·llk?11 

n-l 

Then II K
n 

II < sup k? (s) . Ilk? II 
- s£[-l,l] 

(4.36) 

We lose something in the bounds (4.36) and (4.37) by failing to 

take into account the form of (Kx) (s), but the extra algebra 

involved for higher order cases (e.g. 03 K5) might outweigh the 

reductions in bounds. 

Make the substitution Kr-1X " y 
(r+l) .. 

y £ C sat1sf1es Be. 

r r 
(0 K x) (s) 

r " o (p(s)y (s) + q(s)y(s» 

This can be expanded in a binomial series involving jerivatives 

of p and q and y. Note that 

r+l r-I " r-I r-l 
o y 0 y o K x 

r 
o y 

r-2 r-1 
o K X= 

r-2 r-2 
o K (Kx) 

" 
r-2 

y = K (K x) 

y' (s) ( ~ dS(S,t) (K
r

-
I 

x) (t) dt 

:"1 

y (s) ( g (s, t) (Kr-IXJ (t) dt 

_1 

r-l 
So that from the expressions k(s) up to k

r
_

l 
(s) and po~s), qo(s) 

f kr(s) with up to Pr(s) ~(s) we can derive an expression or r 
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I I DrK
r 

I I < sup 
- SE L-l,l] 

k
r 

r 
(s) 

d-r 
I I DrK

d 
I I Trivially 2. sup k

r 
(s)'llk?11 1 .::.r2.d r 

sE[-l,lJ 

This recursive definition of kr(s) is readily implemented as 
r 

a recursive procedure call in a computer program. The s-dependence 

r 
of the terms of k (s) could be dropped, giving somewhat poorer bounds. 

r 

where 

where 

2 3 
As examples consider k2(s), k3(s) 

Y3 (5) 

Y2 (5) 

Yl (s) 

Yo (s) 

Y4 (s) 

Y3 (s; 

Y2 (s) 

Yl (s) 

Yo (s) 

p (s) Y3(s) + 2Pl(s)Y2(s) + P2(s)Yl(s) 
o 

+ q (s)Y2 (s) + 2ql (s)Yl (s) + q2 (s)y (s) 
o 

1 
kl (s) 

0 
kl (s) (4.38) 

~(1+s2) ·llk?11 

~(1-s2) '1Ik?11 

+ q (s)Y3(s) 
0 

2 
k2 (5) 

k~(S)'llk?11 

k~(S) '1Ik?11 
(':;.39) 

~ (1+s ) '1Ik?1 ( 

~(l-s )·llk?ll2. 

Error bounds for the interpolant P Kdx can be found from Jacksons 
np 

Theorem, which states that if u E C(d) there exists a polynomial u 

of degree n-l with 

( J 
II u (d) II > d > 1 

·llu-ull2. fdn(n_l) •.• (n-d+l) ,n 
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In the notation of this chapter this gives, provided p,q £ C(r) 

I I Dr Kd II (1+ II P II ) 
np p > r > 1 

-p""':'"(P---l"""')-.-.-.-(-p---r+=-==l) -, d > r (4.40) 

where we can take 

The Peano kernel expression of the remainder for polynomial 

interpolation has smaller constants of proportionality than does 

Jacksons theorem, particularly for larger p and r as can be seen 

in Tables 3 g and 3'l. Unfortunately the computed Peano constants 

are not strict theoretical bounds as the processes of numerical 

integration and maximisation are not exact. Strict bounds on the 

errors in computing the Peano constants could, in principle, be 

found but this would involve considerably more effort. 

_1 

§4.8 Bounds on (I-K) 

We now have all the terms required for bounding (I-K) 

from theorems 2.4 or 2.5 applied to approximations ~f .::1-:e :0J..:~ ::1 .1) 

or (3.3) in a computable form. Call approximations of the for~ 

(3 . 1 ) "proj ection" and ( 3 . 3) "extended". We can nc.w compare t:'le 

usefulness of t.he "projection" and "extended" approximations. 

"projection" ap:!roximation 

Theorem 4.9 

Suppose that for some n, p, d > 1, Wn exists and 

Then 

1 
(I-K) exists and 

67 



d-l . 

i~01IKI11+{1+llp 11·llw II·cIIKII+licI-p )KII)}IIKI 1d- 1 

II CI-K) _1 II < np n np· 

1 - A 

where I IKI 1
0 

= 1 and the summation is empty if d < 2 

"extended" approximation 

Theorem 4.10 

Then 

Suppose that for some n, p, d ~ 1, W exists and 
n 

_1 
CI-K) exists and 

1 - A 

Proof of the above theorems, substitute (4.25), (4.26) into theorem 

(2.4) and (2.5). IIKlli and II (I-P )Kdll are computed fran (4.36) 
np 

and (4.40). The expression (I IKI I + I I (I-P )KI I) is used instead 
np 

of lip II·IIKII for lip KII in theorem 4.9 because in most 
np np 

practical applications where A < 1 it is generally true that 

II(I-p )KII < (lip II-1)·IIKII· (A notable exception is when 
np np 

I Ipnpl 1= 1, e.g. a continuous piecewise linear interpolant). 

If I IKI I ~ ~ it will generally be better to use theorem 2.2, 

and certainly much easier. The r\bove theorems will be most useful 

when K »~. The "projection" approximation bound will generally 

be applicable with less work (smaller n) and give smaller bounds on 

_1 
(I-K) than the "extended" approximation. The situation for global 

polynomial collocation (p ) is somewhat more complicated by poorer 
lp 

bounds on II (I-P ·K) _111. 
lp 

_1 

Since Ilwn II -+ II (I-K) II these bounds leave a lot to be 
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desired, but alternative bounds for the errors in the approximate 

solutions mitigate this to some extent. 

§4.9 Error Bounds 

Define the residual of any approximate solution x of 
n 

(I-K)x = y 

by 

1 
If (I-K) exists then 

rn = (I-K) (x-Xn) = (I-K) ~ 

and we have the following error bound on Xn. 

(4.41) 

We can calculate r from x , y, p and q and bounds on 
n n 

_1 
I I (I-K) I I are available from theorems 4.9 and 4.10. 

Unfortunately we are not yet in a position to say that 

Ilr I I tends to zero for the approximations described in this 
n 

chapter. 

Note the identity 

_1 1 
T (S-T) S 

Applied to an approximation such as (I-KPnp)Zn y 

gives 

( 
1 _1) 

(I-KP np) - (I-K) y (
_1 _1) 

= (I-KP ) (K-KP ) (I-K) y 
np np 

Z - x = (I-KP ) 
n np 

1 
(K-KP )x 

np 

since x is fixed IIKx-KP 'x II -+ 0 (from Theorem 4.4). 
np 
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_1 

Also I I (I-KPnp) I I is bounded uniformly for n sufficiently large 

(Theorem 4.5), therefore 

II zn - xii + 0 as n + 00 

But z n = y +Kx where x is given by n n 

(I-P K)x 
np n 

= P npy (4.43) 

giving IIKxh - Kx II +0 as n + 00 

Note that the residual for x can be expressed as follows 
n 

So 

r 
n 

y (I-K)x 
n 

y - (I-P K)x + (I-P )Kx 
np n np n 

(I-P:) (y + Kx ) 
np n (4.44) 

Ilrhll .::.II(I-Pnp)yll + (l+llpnpll) I I Kx-Kxn I I + II(I-Pnp)KII'llxll 

and provided y is sufficiently "smooth", II(I-P I)yll tends to zero, 
np 

giving as n -+ 00 

Note that we have convergence of the "extended" solution z without 
n 

this restriction on y. 

It can be seen from (4.44) that rn will behave like the 

remainder for interpolation of the function y+Kx
n 

and useful 

properties of rn can be obtained from this fact. 

It was discovered during the course of numerical experiments 

that the error term en for piecewise polynomial solutions was 

approximately equal to the residual. This "property" was remarkably 

consistent over a wide range of problems and held to a high degree 

of accuracy for large n. In view of the error bound (4.41) which 

_1 
depends significantly on a bound for II.(I-K) II an attempt at a 

theoretical justification of this "property" was prompted. We 

_1 
start with an identity which expresses (I-K) in terms of the 

_1 
resolvent operator (I-K) K. 
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Hence 

1 1 
(I-K) I+(I-K) K 

e 
n 

1 
(I+(I-K) K)rn 

_1 
rn + (I-K) Krn (4.45) 

If we can show that IIKrnl1 tends to zero faster than Ilrnll we 

have en~rn for n sufficiently large. We now examine the behaviour 

of rn and Krn in terms of the derivatives of y and Kx . 
n 

Suppose that f(p+r) is uniformly continuous on the intervals 

(ti - 1 , til i = l, ... n. Then by Jacksons theorem there exists 

polynomials Ui(t) of degree p+r-l with 

i=l, ... ,n. 

Then 

II (I - Pnp ) f (t) - v. (t) II < £i ( 1 + II P ·11 
~ - np 

Ilv~ (t) II < II (I-P )f(t) II + (i(l+llp II) ... - np np 
and 

Now, for f substitute y+Kx and recall (4.44). 
n 

} 

Equation (4.47) tells us that provided y and Kx are sufficiently 
n 

(4.46) 

(4.47) 

differentiable, rn can be expressed as a piecewise polynomial 

"principal part" plus a remainder. For example if Ilf(2) (t) II < 1, 

Ilf(4) (t) II.::. 30.p=2, n=50 and each (t
i 

-'S._1)=0.04 then (4.47) tells 

us that the interpolation error (I-P )f(t) is within approximately 

np (1+, I P " ) 
np 

viet) of magnitude 2000 0.25% of a piecewise polynomial 

This effect becomes more pronounced as r and ~ increase. In a 

computer program one could use Jacksons theorem and evaluate f(t) 

at various points in order to obtain a tighter bound on viet). 
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The piecewise polynomial viet) is zero at each point ~ji 

j=l, ••. ,p i=l, ••. ,n and is of degree p+r-l in each interval 

[ti-l' ti)' also an overall bound is given by (4.47). We hope 

to use this information to obtain better bounds on Kv(t) than 

we can achieve on K(I-Pnp)f(t). A particularly interesting 

example is given by using the Gauss-Legendre zeros for ~j' For 

such points it is known that the integral of any polynomial of 

degree up to 2p-l is given by a weighted sum of the values at the 

points ~j' therefore 

i 
,L

l J= 
fVj(t)dt = 0 

[tj -1 ,tj) 

i=o, ... ,n 

since Vj(t) = 0 at every ~ji' Further, since we have a bound on 

II vi II we can say that 

(4.48) 

we then have the following bound on K(I-Pnp)f(t) 

IITnl1 r; J 
I IK(I-Pnp)fl I < (p +2<io) -2-~1 (I-Pnp)fll+e:(1+llpnpll~ 

+ II K II· e:' (1+ II P np II) 

Since the polynomials forming viet) can have degree at most 2p-l 

it follows that we must take r ~ p. Equation (4.49) shows that if 

we use Legendre zeros (p>l) I IK(I-Pnp)fl I tends to zero faster than 

does I I (I-Pnp)fl I, provided f is suffici~ntly differentiable 

(piecewise) . 

In order to apply the above argument to Krn we need bounds 

on high order derivatives of y and~. Bounds on high order 

derivatives of Kx
n 

exist in the open intervals (ti_l,ti ) and since 
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xn is known we can compute them by a similar process to that 

described for bounding I I DrK
d I I in §4.7. 

The property (Hv) (t i ) = 0 for various degrees of piecewise 

polynomial holds for many sets of points other than Legendre zeros -

for example any symmetrical arrangement of the ~j about 0 with P 

odd will suffice for v of degree p. What is particularly interesting 

about the Legendre polynomials Pi(t) is that all the integrals from 

the first up to the i th over [-1,1] are zero. This is easily seen 

from the orthogonality relationship. 

1 

f Pi(t) Pj(t) dt 

_1 

o 
i " j 

Then since [Hj-ll) (t) is a polynomial of degree j-l, 

o j=l, •.. ,i 

= [~t) [Hi -"] it) 1: - It HPi] it) [Hi-2
,] it) dt 

o . 

0, j=l, ... , i (4.50i 

Using (4.49) we have en~rn. Then apply (4.49) again to (4.45) 
2 

taking p=l, q=0 and p=O, q=l to give improved bounds for Hen and Hen 

these are related to, respectively, the errors in first derivative 

and actual approximate solution of the original differential 

equation (4.1). From the above observations we can produce error 

bounds much more in keeping with actual measured errors than the 

bounds given by (4.41). Indeed we can obtain a higher order of 
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accuracy for first derivative and actual error bounds from this 

analysis (see also De Boor & Swartz for a proof based on "order" 

arguments (4J.) 

Perhaps the most important conclusion of this section is 

that provided p, q, and yare sufficiently differentiable we may 

take the norm of the residual r as an error estimate for the 
n 

approximate solution x. This estimate is likely to be in better 
n 

keeping with the actual error than the bound (4.41). 

Unfortunately it is not possible to determine how large n must 

be in order that this estimate is valid without entering again into 

a discussion on strict error bounds. Further investigation might 

reveal other criteria upon which some measure of confidence in this 

estimate could be based. 

See the results in Chapter 5 for a comparison of rn and en 

for some sample problems. 

§4.10 Use of weighted norm 

We keep the definitions of the previous sections ~n this 

chapter but extend the examination of the results to use a weighted 

norm as introduced in §2.2. By the comments there ~ost of the 

theory extends trivially but particular care must be exercised ~n 

extending any convergence proofs and where norms are ca~cul~~ed. 

We will make the following assumptions about the weighted :'0~-':: and 

the approximations used in conjunction with it. 

The norm in X2 will be the usual sup norm 

The norm in Xl will be defined by 
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max 

i=l , .•. m 

with 0 < E < wi < 1 

w . 
i sup I x (t) I 

tE [Si_l ,sJ 

i=l , •.• ,m (4.51) 

The points 8
i 

and weights wi will be considered as fixed in any 

convergence results (increasing n). Further any approximation 

using this weighted norm will be such that {5
i

} C {t.}. That is 
- ~ 

the set of partition points of the piecewise polynomial approximations 

contains the set of points defining the weighted norm (hence m < n) 

We may note that 2.10 becomes 

(4.52) 

_1 
We have seen in §3.6 how the norms of (I-Fn~) and are related 

when using weighted norms but first we return to the basic equations 

in Chapter 2 in order to see how advantage may be taken of this 

weighted norm. 

Recall ~o and ~d used in Theorems 2.4 and 2.5 

~o 

_1 

II (I-L) (K-L) II 

_1 d 
II (I-L) (K-L)K II 

Our ability to make use of Theorems 2.4 and 2.5 for producing error 

bounds depends critically on finding an approximate operator L 

sufficiently "close" to K to make ~o or ~d less than 1. Consider 

the operator (I-K) E [Xl' xiJso that (I-:-L)_l E [x2' x1Jand 
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(I - K) 

Instead of computing the values of 60 and 6d in the usual manner of 

_1 
with (I-L) and (K-L) considered both in X (Xl) we are at liberty 

_1 
to use instead the norm of (I-L) considered as an operator in 

[X2' Xl] and the norm of (K-L) considered as an operator in [Xl, X2] . 

(Note we may consider Kd £ Xl for the purposes of calculating 

I I (K-L)Kdl I). In particular we consider this technique applied to 

Theorem 4.6. 

Bounds on (1-PnpK)-llp: R are given in §4.6 in terms of Wn 
np 

and other factors, also 

II (I-P
np 

K)-lll.s. 1 +11 (I-P
np 

K)-llp RII'llpnp KII and 
np 

II (I-KP
np

) _111 .s. 1 +IIKII'II (I-PnpK) _lip RII 
np 

To express this in [X2' xJ terms we evaluate IIPnpKl1 in [X2~ 

II K II in [X J and use the now weighted form of II Wn II developed in 

§3.6 (Note also 1112111 < 1). 

Summarising, we find bounds in [X2' Xl] for 4.25 and 4.26 

simply by using the weighted row'norm described in §3.6 - the 
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appropriate weight is determined simply by examining ·.·:hier. interval 

ri-l, si) the collocation point corresponding to that row falls 

into. 

To develop bounds on (I-Pnp)K in the space [Xl, X2] we must 

re-examine the analysis of §4.7. Let w(t) be the piecewise constant 

function defined by 

w(t) (4.53) 

Then Ilx II 
xl. 

Recall the expression for DKx : 

- ( DKx) (s) =p (s) x (s) + 

1 

f (P'(S)+q(S~(S,t)+q'(S)g(S,t»)X(t) dt 

_1 

Substitute z(t) = x(t) ·w(t) with I Ixl I < 1 (so that I Izl I ~ 1) 
XI - x~ 

() 

z (s) 
- DKx ( s) =p ( s) w ( s) + 

1 ) d , z (t) f (pI (s)+q(s~ (s,t)+q (s)g(s,t) w(t) dt 

_1 

Taking norms in the space [Xl]' 

IIDKII < sup [p (S)+(P1 (S)+q(S») 

s tl,l] 0 

1 1 

J i~(S,t):~~~ idt+ql (5) J ig(S,t):~~~ Idt 
_1 _1 

Consider 

I

1\ w(S)\ 
g(s,t)w(t) dt 

_1 

(4.54) 

= IS'(l-<)(l+t):~~~ dt + 
_1 

1 

I 

w(s) 
~(l+J) (l-t)w(t) dt 

s 
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And 

1 

I l
ag W(S)I 
a;(s,t)w(t) dt 

_1 

~ (l-t) w (s) dt 
w (t) 

Now provided 

(i) 1 
wet) 

< max (_1 , 1 I 
- l+t l-tJ 

and (ii) w(s) ~ w(t) for lsi> It I 

we have 

l+t 
1 < 

wet) 
for t < 0 

l-t 
1 < 

wet) 
for t > 0 

w(s) 

w(t) 
< 1 for 151 > It I 

Giving the following bounds for (4.54) and (4.55) 

1 

J /~; (s,t) :~~~ /dt 
_1 

1 

I /g(S,t) 
_1 

w(s) /dt < 1+151 _ s2 
w (t) - 2 

(4.55) 

(4.56) 

(4.57) 

(4.58) 

If (i) and (ii) are not satisfied bounds still exist but may be much 

larger. 

Finally, in [Xl] terms, 

IIDKII ~ sup [Po(S)+(P1 (S)+'1o(S») [lJf-l+ql (5) [l+JSI - 52)] (4.59) 
se: [-l,l] J 

The fact that the bound on (DKx) (5) is larger in an interval with 

small weight is offset by the fact that due to (4.56) this interval 

must be narrower and the interpolation error bounds correspondingly 
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. 
smaller. The inequalities (4.57) (4.58) give the following bound 

Using these results the analysis of §4.7 extends quite simply to 

give bounds on (I-Pnp)K
d 

in [Xl, Xii 

is not bounded with m and this places a further restriction on the 

weights if we wish to use this analysis in higher order cases (d > 0). 

To bound K in [Xl' X2] note that if we take 

1 

then noting that J l/w(t) dt < 2m, we have 

_1 

1 

f Ig(S,t)W(~) Idt ~ m 
_1 

1 

f 1%;(S,t)W(~) Idt < 2m 
_1 

(4.61) 

(4.62) 

(4.63) 

We are now in a position to select the points si in such a manner 

that the weights w. reduce the effect of large modulus row sums of 
1. 

the matrix"n. The elements in rows of Wn corresponding to points 

near ±l can grow alarmingly as K increases in size due to the 

boundary layer effect. The above analysis shows that we can improve 

the applicability of error bounds, that is obtain strict error 

bounds for fewer collocation points, at the expense of larger error 

bounds on the second derivative near the points fl. Error bounds 

on the actual approximate solution values are not greatly increased 

since from (4.62) we have, in the space ~1' X2] 

(4.64) 
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If these procedures for producing error bounds for approximate 

solutions were part of a computer program for solving the differ-

ential equation it would be a simple matter to arrange that should 

large modulus row sums in W occur, then small intervals with small 
n 

weights (subject to (4.56) ) are introduced to improve the conditions 

of applicability. Also, since is,} ~ {til, this would suggest using 
~ 

smaller intervals for the piecewise polynomial approximation near 

-lor +1 or both if the inverse matrix W has large row sums in 
n 

these "positions". In view of (4.56) it would seem logical to 

distribute these intervals in inverse proportion to the modulus row 

sums of Wn ' Since m may be much smaller than n it is possible that 

one weight would apply to several rows of W
n

' 

The effect of Wn on the error bounds in the weighted norm is 

particularly interesting in view of the close relationship between 

_1 
Wn and (I-K) established in (3.34), which would again suggest that 

poorer error bounds on the second derivative might be expected in 

positions corresponding to large modulus row sums of W
n

' 
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CHAPTER 5 

Examples 

81 



§5.1 Introduction 

In this chapter we present a selection of numerical results 

illustrating both the motivation for the investigations in previous 

chapters and their consequences. All calculations were performed 

in double precision arithmetic on an IBM 360/370 computer. 

A brief description of the program, written in ALGOLW, is 

now given. The program basically sets up and solves the linear 

algebraic system for the piecewise polynomial collocation method, 

producing the approximate solution x and the residual r for any 
n n 

given p, q and y. This program represents a considerable fraction 

of the work involved in this thesis and was developed over an 

extended period. It consists of a sequence of procedures, or 

subroutines, each of which can perform one well defined operation. 

These are followed by the program proper which calls into action 

the procedures required to solve a particular problem. An assortment 

of short procedures generates various arrangements of points in 

the interval ~l,~, another procedure translates these to any given 

interval [a, bJ. These are the "collocation" points used in 

generating the approximate solution. Much of the computation involving 

the polynomial forms of the piecewise sections is performed in 

terms of Chebychev series for reasons of numerical stability. Two 

further procedures define the coefficients of the problem, p and 

q in (4.1), and the boundary conditions. 

The algebraic problem, corresponding to the approximation 

arising from the collocation projection .(§4.3), is expressed in 

terms of a block matrix. Each of the blocks of this matrix relates 

the point values of the second derivative of the approximation xn 

to the point values of the right hand side y. There are cross 

conditions coupling these blocks which represent the continuity 
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requirements of x and x'. Th n n ese extra equations could be 

eliminated by constructing basis polynomi als for x which 
n 

automatically satisfy the continuity requirements. 

Block matrix structure: 

B 
L 

Al 

C C 

A2 

C 

o 

c 

o 

-----------'~-----------
c c 

-----------4-----------~ 

A 
P 

B 
R 

The values in regions A represent the collocation conditions within 

each sub interval. The values in regions B represent the boundary 

conditions x (~l) = o. The values in regions C represent the 'cross 

conditions required to ensure continuity of x and x'. Since there 
n n 

are an equal number of collocation points within each sub interval 

= 

each block A is the same size. Regions.B and C have similar structures 

each expressing the values of x and x' at the end points of the 
n n 

sub intervals in terms of the values of x at the collocation points. 
n 

The vector corresponding to the right hand side y has zeros at the 

ends and zeros in between each sub interval to account for the 
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boundary and continuity conditions. 

NP entries (L=(P+2)·N). 

The vector ·of xl/ 
n 

values has 

The inverse point collocation matrix W which expresses xl' 
n 

in terms of y is a full matrix. 

W matrix structure 

= 

----------- ----------~----------~ 

y X" 
np np 

The maximum modulus row sums are computed for the rectangular sub-

matrix (shaded) for the sub intervals contained within a weighted 

interval [si_l, s i). The block matrix equation is represented in 

terms of a three dimensional array, one dimension each for the 

partitions, collocation points and coefficients of x. Much of the 
n 

setting up of these equations is achie~ed by generating simpler 

three dimensional arrays representing the coefficients and boundary 

conditions then performing a three dimensional matrix multiplication 

with another, fairly simple, array representing, in effect, the 

differential operators dr/(dt)r. The resulting block matrix is 
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then passed to a forward elimination procedure. This proced~re was 

carefully written to take full advantage of the block structure of 

the matrix. A back substitution procedure then finally yields the 

approximate solution for any given right hand side y. Repeated 

calls of this procedure are used to generate the inverse of the 

original block diagonal matrix. 

A small procedure at the end computes the residual, and "error" 

by comparison with a high order approximate solution. 

§5.2 The behaviour of I Iwl I 

The point inverse matrix W exhibits some remarkable properties. 

For any given (soluble) problem the matrix norm is largely 

unaffected by the particular form of the piecewise polynomial 

collocation scheme, provided this scheme satisfies the requirements 

of Theorem 4.8. Four second order problems are examined in detail 

to illustrate this behaviour. A comparison of unweighted infinity 

norms is made using equispaced polynomial sections in [-1, lJ . 

Chebychev points are usually used as the collocation points in each 

sub interval. Further results show the behaviour for one problem 

using other partitions and other sets of collocation points, in 

particular the breakdown of the conclusion of Theorem 4.8 when 

certain of its conditions are not satisfied. 

Problem 1 

" I 
X + X + X Y 

x (-1) x (1) 0 

Problem 2 

II 2 
x + 2 (l+t )x y 

x (-1) = x (1) = 0 
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Problem 3 

II 
X - 2 x y 

x (-1) x (1) 0 

Problem 4 

" 2 
I 

2x x + x 

(t+3) 2 
y 

t+3 

x (-1) = x (1) 0 

N represents the number of piecewise polynomial sections used for 

the approximation. 

P represents the number of collocation points in each section. 

In tables 1 - 4 we use Chevbchev collocation points 

Problem 1 Ilwll values 

TABLE 1 

N 

P 
1 5 10 15 20 25 

1 2.000 2.818 2.923 2.958 2.975 2.985 

2 2.688 2.963 2.995 3.006 3.011 3.014 

5 2.975 3.016 3.021 3.023 3.023 

10 3.013 3.023 3.025 

15 3.020 3.023 

25 3.024 

86 



problem 2 Ilwll values 

TABLE 2 

N 
1 5 10 15 20 25 

P 

1 singular 11.814 12.950 13.249 13.354 13.407 

2 4.000 12.329 13.208 13.368 13.427 13.452 

5 13.436 13.500 13.500 13.500 13.500 

10 13.468 13.500 13.500 

15 13.500 13.500 

25 13 .500 

These relatively large values for I Iwl I occur because problem 2 

is nearly singular : the equation 

). x" 
1 

+ (l+t )x = y 

x (-1) = x(l) = 0 

has an eigen value near A= 0.46. 

Problem 3 Ilwll values 

TABLE 3 

N 
1 5 10 15 20 25 

P 

1 0.500 1.113 1.306 1.382 1. 419 1. 444 

2 0.857 1. 308 1.428 1.459 1.480 1. 491 

5 1.035 1. 483 1. 520 1. 525 1. 530 

10 1.184 1. 512 1. 536 

15 1. 296 1. 518 

25 1. 389 
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Problem 4 Ilwll values 

TABLE 4 

N 
1 5 

P 
10 15 20 25 

1 0.900 1.694 1. 919 2.008 2.056 2.085 

2 1.607 2.037 2.180 2.150 2.166 2.175 

5 2.057 2.181 2.198 2.203 2.206 

10 2.173 2.206 2.210 

15 2.196 2.211 

25 2.208 

As further illustration consider Problem 1 using Legendre zeros 

as the collocation points in each of the equispaced sub intervals. 

TABLE 5 

N 
1 5 10 15 20 25 

P 

1 2.000 2.818 2.923 2.958 2.975 2.985 

2 2.474 2.934 2.982 2.997 3.004 3.009 

5 2.924 3.007 3.016 3.020 

10 3.000 3.021 3.023 

15 3.014 3.024 

25 3.021 

Also consider Problem 1 using Chebychev zeros for both the 

collocation points and defining the location of the sub intervals. 
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TABLE 6 

N 
1 5 

P 10 15 20 25 

1 2.000 3.004 3.022 3.024 3.025 3.025 

2 2.688 3.016 3.024 3.025 3.025 3.026 

5 2.975 3.024 3.026 3.026 3.026 

10 3.013 3.025 3.026 

15 3.020 3.026 

25 3.024 

As a further illustration consider again Problem 1 with 

equispaced sub intervals and with equispaced collocation points 

within each sub interval (end points not included). For greater 

than a few points in each sub interval this approximation scheme 

does not satisfy condition (i) in (4.13) and the conclusion of 

Theorem 4.8 does not apply. 

TABLE 7 

N 
1 5 

P 
10 15 20 25 

1 2.000 2.818 2.923 2.958 2.975 2.985 

2 2.336 2.916 2.973 2.991 3.000 3.006 

5 2.789 2.984 3.006 3.012 3.016 

10 3.130 6.100 5.177 

15 21.06 173.3 

25 562.6 

Now consider the case p=2 with ~l -0.8, ~2 =-0.7 for N=l to 30. 
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TABLE 8 

1 5 10 15 20 25 30 

71.06 34.08 32.64 32.21 32.00 31.88 31.79 

Also consider P=3 with Sl -0.1, S2 0.0, s3 0.1 

TABLE 9 

1 5 10 15 20 25 30 

27.29 118.28 126.78 129.35 130.58 131.30 131.77 

Although convergence to 3.026 is not observed in the last two 

examples, II W II does appear to be approaching some limiting 

value. No further studies of this phenomenon have been made. 

It is possible that the conclusion of Theorem 4.8 does 

hold for slightly weaker conditions than those given but these 

have not been determined. Theorem 4.8 is applicable to many of 

the commonly used approximation schemes. 

In order to study the behaviour of a "stiff" problem and 

the later application of the weighted norm we now introduce a 

parameter a into Problem 1 as follows. 

Problem lA 

x" + ax' + ax y 

x (-1) x (1) o 

We study the behaviour of the matrix W for an approximation 

consisting of 5 equispaced sub intervals in [-l,~ and a variable 

number P of Chebychev collocation points within each sub interval. 

The maximum modulus row sums are shown separately for each sub 

interval. 
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a = 10 TABLE 10 

P 1 2 5 10 15 

[-1,-.6 ] 29.440 67.873 60.342 64.468 65.268 

[-.6,-.2] 12.371 1. 717 2.800 3.007 3.052 

[-.2, .2] 4.267 1. 529 2.217 2.379 2.410 

[.2, 0.6] 2.026 1.362 2.089 2.253 2.285 

[0.6 1.0J 1.250 1.262 1. 978 2.141 2.173 

TABLE 11 

a = 100 

P 1 2 5 10 15 

[-1,-.6 ] 2.602 1.851 250.552 512.407 575.036 

[:-6,-.2J 2.851 1.172 14.827 6.273 2.016 

&2, .2 J 3.163 0.713 1. 769 2.029 2.000 

~ 2, .6 ] 3.483 0.515 1. 576 2.020 1.988 

~6, 1 ] 3.852 0.573 1. 563 2.015 1.981 

Note that as a increases the maximum modulus row sums take longer 

to settle down to a steady value. Also there is a marked tendency 

for the largest values to occur at one end - this is in contrast 

to the near eigenvalue Problem 2 where the value of 13.5 is main-

tained over the whole range. 

In order to make use of the weighted norm to reduce the effect 

of such large modulus row sums on the applicability of the bounds 

1 
we are forced to place more collocation points in the on (I-K) 

region of largest modulus row sums, accordingly we now consider 

the following partition of [-1, lJ ; TS = (-1, -0.95, -0.90, -0.3,0.3,1). 
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10 
TABLE 12 

a = 

P 1 2 5 10 15 

[ -1, -.95] 47.539 118.862 65.154 65.733 65.834 

[-.95, -.9] 30.029 75.718 41. 591 41.693 42.028 

[-.9, -.3] 6.544 27.078 23.104 26.119 26.616 

[ -.3, .3] 5.019 1.605 2.104 2.335 2.379 

[.3,1] 2.767 1.129 1.935 2.177 2.233 

a = 100 

p 

TABLE 13 

1 2 5 10 15 

[-1, -.95 J 16.619 1969.922 567.940 621. 682 632.284 

[-.95, -.9J 6.698 23.857 6.189 6.209 6.316 

[-.9, -.3] 0.300 0.401 1.320 2.219 1. 937 

[-.3, .3J 0.365 0.598 1. 525 2.229 2.039 

[.3, 11 0.406 0.700 1.471 2.261 2.057 

Note that once over the initial "hurdle" and the approx~mation is 

becoming reasonably good the modulus row sums n~"': appear to 

approach their limiting values more quickly. For a = 10 this 

partition is a bit severe and is beginning to fill up parts of W 

in an undesirable fashion. For a = 100, however, this partition 

is still not fine enough so that finally we study the behaviour 

of W using the following partitions : 

a = 10 T5 (-1, -0.9, -0.8, -0.6, 0, 1) 

a = 100: T5 (-1, -0.99, -0.96, -0.9, 0, 1) 

(See §5.4 for further discussion of these choices). 
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a = 10 
TABLE 14 

P 1 2 5 10 15 

[ -1, -.9 ] 43.046 72.133 64.474 65.551 65.753 

[-.9, -.8] 16.190 28.942 26.419 26.868 26.953 

[-.8, -.6J 4.809 10.536 11.018 11.410 11.485 

[-.6, oj 0.865 1.890 2.631 2.967 3.034 

[ 0, 1 ] 0.524 1.066 1.900 2.239 2.317 

ex = 100 
TABLE 15 

P 1 2 5 n 15 

[ -1, -. 99J 110.359 1454.910 626.147 637.031 639.179 

[-.99, -. 96J 21. 698 412.062 222.125 234.328 236.714 

[-.96, -.9J 2.360 7.427 12.112 13.473 13.750 

[-.9, 0] 0.093 0.288 1.083 2.238 2.290 

[0, 1 ] 0.133 0.410 1. 379 2.242 2.238 

There is not meant to be any implication that these choices of 

partitions for these problems will necessarily give a more 

accurate approximate solution. We only use such partitions in 

order to demonstrate the better applicability, using the weighted 

norm,of the bounds on (I-K) Further research may show that 

the modulus row sums of the inverse point matrix W provide an 

aid to the selection of an optimum partition, in terms of the 

accuracy of the approximate solution (see results in §5.6). 
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§5.3 Problem constants (see §4.7) 

TABLE 16 

IIKII IloK11 IIo2K211 lIo3K3 11 IIo4K4 II lIoSKS II II o6K611 

1 1 1 2 3 5 8 13 

2 1 4 12 40 136 560 2224 

3 1 2 2 4 4 8 8 

4 1.25 2.25 6.47 22.65 93.40 443.62 2384.43 

Some cancellation has been used in obtaining bounds on I IKI I, IloK11 

I lo2K21 I but not for the higher order bounds. Further algebraic 

manipulation would give smaller values. Note the relatively slow 

rate of increase of the bounds for problems 1 and 3 with increasing 

order - this is because p and q are simply constants (with zero 

derivatives). We also have the following numerical bounds on G and 

OG 

I I G II 2. o. 5 i I I OG II 2. 1. 0 

Note that since we shall work with the spaces X2 and Xl (which has 

a weighted norm) as described in §4.l0 we have the following bounds 

on G and OG in [Xl] 

II G II 2. . 5625 : II OG II 2. 1. 5 

The various bounds on orKr must also be computed in [xil. This is 

done in a similar manner to the procedure described in §4.7. For 

problem lA we have: 

TABLE 17 

1.7Slal 2.51al 

All of these constants for problems 1, lA, 2, 3, 4 were computed by 

a program based on the procedure described in §4.7. Since constants 
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of all orders up to 6 were required the program built up a table 

of these constants in an iterative fashion rather than computing 

each constant recursively which would have duplicated much of the 

work involved. There is great scope for improving these bounds 

using algebraic manipulation and numerical maximisation procedures. 

Better bounds could be developed for the weighted norm. 

The advantage of the bounds in §4.10 is that they are independent 

of the partition and weights, provided that these satisfy the 

conditions outlined in that section. 

§5.4 Applicability 

We are now in a position to compare the applicability of the 

_1 
bounds in Theorems 4.9 and 4.10 on the inverse operator (I-X) 

For applicability we must have ~ < 1. The number of equispaced 

sub intervals required using Chebychev collocation points is now 

compared for problems 2, lA for the "projection" and the "extended" 

approximation. 

Problem 2 Applicability (projection) 

TABLE 18 

d 
1 

P 
2 3 4 5 6 

1 58* 

2 80* 10 

5 104* 6 4 4 4 

10 94* 5 3 2 2 2 

15 87* 4 2 2 2 2 

25 75* 3* 2* 1 1 1 

NB *estimate based on constancy of I Iwi I 
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Problem 2 Applicabili ty (Extended) 

TABLE 19 

d 

P 
1 2 3 4 5 6 

1 58* 

2 57* 8 

5 50* 5 3 3 3 

10 40* 3 2 2 2 2 

15 33* 2 2 1 1 1 

25 25* 2* 1 1 1 1 

Note the slightly better applicability of the "extended" method 

here. This is because of the bound on IIKII being as small as 

LO. For most practical applications we would expect IIKII » 1 

and then the projection method would be superior. 

Problem lA ex = 10, Applicability (Projection) Estimate 

TABLE 20 

d 
1 2 3 4 5 6 

P 

1 6610 

2 9340 257 

5 12431 170 52 35 32 

10 11584 118 32 20 15 14 

15 10525 93 24 14 11 10 

25 9079 68 17 10 7 6 

96 



Problem lA a = 10, Applicability (Extended) Estimates 

TABLE 21 

d 
1 

P 
2 3 4 5 6 

1 66100 

2 66051 684 

5 59060 370 87 52 43 

10 46518 236 51 27 20 17 

15 38552 177 37 20 14 12 

25 29881 122 25 13 9 8 

It can now be seen that in order to produce strict bounds on 

1 
(I-K) we could be required to find bounds on the inverse of 

matrices far larger than that required to produce a "good" 

approximate solution. For this reason it is important to keep 

the bounds on the inverse approximate operator as small as 

possible. It would be particularly useful to find an extension 

from the subspace P X to X which does not involve t~t operator 
n 

K since the bound on II K II (10) and the large row SDr.:S of '.'l are 

the main cause of the poor applicability in problem lAo Note 

that it is particularly important to make use of higher derivative 

bounds when these are available. 

The effect of the large modulus row sums in problem lA 

(a » 1) can be reduced by using the weighted norm. We compare 

the result of using an unweighted equispaced partition and the 

non uniform partition P : (-1, -0.99, -0.96, -0.9, 0, 1) for a 100. 
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TABLE 22 

P min. w. w. width W w. 
~ ~ ~ 

-1, -0.99 .01 0.01 0.01 6.392 

-0.99, -0.96 .04 0.04 0.04 9.469 

-0.96, -0.9 ·1 O.l 0.06 1.375 

-0.9, 0 .1 1 0.9 2.290 

0, 1 1 1 1 2.238 

The column min w. indicates the minimum value we may take for w 
~ i 

in accordance with condition (i). We use the w. indicated in 
~ 

order not to make the bounds on OK, 02K2 in [Xl] excessive. 

TABLE 23 

Term Unwei9:hted Wei9:hted 

II (OK) 1111 100 250 

II (02K2) 11 II 20000 42500 

II ((I-Pnp)K) 1211 4.28 26.75 

II ((I-Pnp ) K2 h211 6.90 91.59 

Ilwll 575 9.47 

IIK2211 100 100 

_1 
II (1-P K) 21 II 427801 7047 

np 

t:.l 1. 83' 6 1. 89' 5 

t:.2 2.95'6 6.45'5 

for a=lO with P : (-1, -.9, -.8, -.6, 0, 1) and weights 0.1, 0.1, 

0.2, 1, 1 the reduction in t:. is not so apparent since the modulus 

row sum value near -1 is not as pronounced, however we obtain 

Term Unweighted Weighted 

t:.l 2082 1313 

335 450 
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The reduction in the value of ~ by using a non-uniform partition 

and a weighted norm in the first example is considerable. It is 

difficult to demonstrate actual applicability in these cases 

because K and I Iwi I are so large and a very finely divided partition 

would be required. We would have to compute the inverse of a very 

large matrix and decide how to distribute the partition. Using 

~2 for a=lOO demonstrates that should we further subdivide the 

partitions indicated the weighted norm would require inversion of 

a matrix something less than a half the size originally required. 

It would be useful to determine a procedure for making 

best use of the partition and weights for improving the applicability. 

The examples above are, perhaps, a little unfair in leaving the 

partition so coarse away from -1. 

In conclusion, it must be stated that although we can in 

1 

principle determine strict bounds on (I-K) from Theorems 4.9, 

4.10 these bounds will only be applicable with a reasonable amount 

of work when K and Ware not too large. We have achieved 

applicability for problems 1-4 with PxN < 100 but not for problem lA 

(a=lO, 100). It is most important, if we are to apply this theory 

to a useful range of problems, to determine better bounds on the 

"approximation" error II (I-Pnp)Kdll and on the inverse approximate 

1 _1 

operators II (I-PnpK) - II or II (I-K Pnp ) II· 

§5.5 Bounds on (I-K) 

We now examine the "bounds" on. (I-K) for problems 2 and 

lA as given by the "projection" and "extended" approximations. 

These "bounds" are really estimates since we have assumed ~ -+ 0 

as N -+ 00 in using Theorems 4.9 and 4.10. 
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_1 
Problem 2 Bounds on (I-K) (Projection) 

TABLE 24 

d 

P 
1 2 3 4 5 6 

1 14.5 

2 28 29 

5 60.8 61.8 62.8 63.8 64.8 

10 84.7 85.7 86.7 87.7 88.7 89.7 

15 101.4 102.4 103.4 104.4 105.4 106.4 

25 125.5 126.5 127.5 128.5 129.5 130.5 

Problem 2 Bounds on (I-K) (Extended) 

TABLE 25 

d 
1 2 3 4 5 6 

.P 

1 15.5 

2 21.1 22.1 

5 30.4 31.4 32.4 33.4 34.4 

10 35.6 36.6 37.6 38.6 39.6 40.6 

15 38.8 39.8 40.8 41.8 42.8 43.8 

25 43 44 45 46 47 48 

_1 

Problem lA a=10 Bounds on (I-K) (projection) 

TABLE 26 

d 
1 2 3 4 5 6 

p 

1 661 

2 1321 13211 

5 2925 29251 292511 2.93'6 2.93'7 

4.09'6 4.09'7 
, 

10 4093 40931 409311 
4.09 8 

15 4912 49121 491211 4.91'6 4.91'7 4.91'8 

25 6086 60861 608611 6.09'6 6.09'7 6.09'8 
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_1 
Problem 1A a=10 Bounds on (I-K) Extended 

TABLE 27 

d 
1 2 

P 
3 4 5 6 

1 6611 

2 9341 93411 

5 13901 139011 1. 39' 6 1. 39' 7 1. 39 ' 8 

10 16441 164411 1.64'6 1. 64'7 1. 64'8 1. 64'9 

15 18021 180211 1. 80'6 1. 80'7 1. 80'8 1. 80'9 

25 20051 200511 2.01'6 2.01'7 2.01'8 2.01'9 

It is an unfortunate fact that the bounds on I I (I_K)_1 1 I are largest 

under precisely the conditions we need for best applicability. 

Since we have not defined N in these tables we have assumed N ~ ~ 

and ~ ~ 0 and the bounds given above are bounds on the numerator 

in Theorem 4.9 and 4.10. To give a full description of the bounds 

and estimates for each N, P, d and problem with projection and 

extended methods would simply generate too much data. 

Theorem 4.8 gives the following estimates for II (I-K> _111 , 

based on the convergence observed in tables 1 - 4. 

TABLE 28 

_1 

Problem II (I-K) II 

1 3.03 

2 13.50 

3 1.5 

4 2.2 

Bounds on (I_K)_l using the weighted norm are obtained in a 

similar manner but it must be remembered that in order to recover 
_1 

. h d b d must multiply the bound on I I (I-K)211 I 
unwe~g te error oun s we 
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· by l/wi in each corresponding interval [Si_l' SJ. 

§5.6 Residual and Error 

Finally we compare the residual and "error" in the second 

derivative of the approximate solution x 
n (r and e in the 

n n 

terminology of §4.9). This "error" is obtained by comparison 

with a high order (75) global polynomial collocation solution 

using Chebychev zeros. For each problem we take the right hand 

side y = 1. For each combination of N (the number of equispaced 

intervals in [-1, 1]) and P (the number of Chebychev collocation 

points within each interval) the upper represents a bound on e , 
n 

the lower a bound on r. The numbers given are the maximum of 
n 

the values obtained by comparisons at 100 equispaced points in 

each interval and are not strict bounds. 

Problem 1 Error and residual 

TABLE 29 

N 
1 5 10 15 20 25 p 

0.168 1.46 '-2 4.44'-3 2.09'-3 1. 21 '-3 7.91'-4 

2 
0.164 1.47 '-2 4.32'-3 2.02'-3 1.17'-3 7.59'-4 

2.31'-4 2.46'-7 9.09'-9 1. 23 '-9 

5 

2.26'-4 2.47'-7 9.09'-9 1.23 '-9 

9.97'-10 
10 

9.87'-10 
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Problem 2 Error and residual 

TABLE 30 

N 

P 
1 5 10 15 20 25 

9.56 1.39 0.382 0.172 9.67'-2 6.19'-2 
2 

2.26 0.726 0.214 9.80'-2 5.56'-2 3.58'-2 

0.105 4.70'-4 1. 66 '-5 2.20'-6 5.29'-7 1. 74 '-7 
5 

0.121 4.63'-4 1. 66 '-5 2.19'-6 5.27'-7 1. 74 '-7 

2.10'-4 4.82'-11 

10 
2.10'-4 4.47'-11 

7.21'-9 

15 
7.18'-9 

Problem 3 Error and residual 

TABLE 31 

N 

P 
1 5 10 15 20 25 

0.273 1.49'-2 4.29'-3 2.00'-3 1.15'-3 7.50'-4 

2 
0.332 1. 60 '-2 4.43'-3 2.04'-3 1.17'-3 7.58'-4 

2.68'-4 5.99'-7 2.19'-8 3.04'-9 7.40'-10 

5 
2.75'-4 6.02'-7 2.20'-8 3.04'-9 7.41'-10 

8.35'-9 

10 
8.36'-9 
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Problem 4 Error and residual 

TABLE 32 

N 

P 
1 5 10 15 20 25 

0.296 5.40'-2 1.77'-2 8.63'-3 5.10'-3 3.36'-3 
2 

0.401 5.02'-2 1.61'-2 7.84'-3 4.62'-3 3.04'-3 

9.97'-3 2.67'-5 1. 22'-6 1.83'-7 4.65'-8 
5 

9.89'-3 2.68'-5 1.21'-6 1.83'-7 4.64'-8 

7.96'-6 2.89'-11 

10 
7.99'-6 2.88'-11 

3.19'-9 

15 
3.22'-9 

Smaller entries are omitted in order that the effect of 

rounding errors does not become apparent. Note the close relation-

ship between e and r (see §4.9). As further evidence of this 
n n 

property we consider problems 1 and 2 using Legendre zeros for the 

collocation points in each interval and problem 4 with a modified 

right hand side y= -1/(t+3). 

The accuracy with which I Ie I I follows llr I I +~r the Legendre 
n n 

zeros is in accordance with the theory in §4.9. The correspondence 

for Chebychev zeros is also quite good but not 3S striking. 
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Problem lL Error and residual 

TABLE 33 

N 
1 5 

P 10 15 20 25 

0.217 1.99'-2 5.72'-3 2.67'-3 1.53'-3 9.93'-4 
2 

0.241 1. 98'-2 5.72'-3 2.67'-3 1.53'-3 9.93'-4 

4.52'-4 4.30'-7 1. 58 '-8 
5 

4.47'-4 4.31'-7 1. 58'-8 

1.48'-9 
10 

1. 46'-9 

Problem 2L Error and residual 

TABLE 34 

N 
1 5 

P 
10 15 20 25 

7.57 1.08 0.288 0.129 6.42'-2 4.11'-2 

2 
7.65 1.08 0.288 0.129 6.42'-2 4.11'-2 

0.278 8.15'-4 2.90'-5 1. 91'-6 4.58'-7 1.51'-7 

5 
0.278 8.15'-4 2.90'-5 1. 91'-6 4.58'-7 1.51'-7 

3.10'-4 6.57'-11 

10 
3.10'-4 6.61'-11 

1.09 '-8 

15 
1.09'-8 
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Problem 4 y - -1/(t+3) Error and residual 

TABLE 35 

N 
1 

P 
5 10 15 20 25 

0.145 2.57'-2 8.37'-3 4.09'-3 2.41'-3 1.59'-3 
2 

0.193 2.39'-2 7.63'-3 3.71' -3 2.18'-3 1.44' -3 

4.65'-3 1.24'-5 5.66'-7 8.50'-8 2.16'-8 
5 

4.61'-3 1.24'-5 5.63'-7 8.47'-8 2.15'-8 

3.66'-6 1.33 '-11 

10 
3.70'-6 1.33'-11 

1.48 '-9 

15 
1.49 '-9 

In order to demonstrate how useful the matrix W might be in studying 

stiff problems we turn now to problem lA with a=lO, first we 

consider an equispaced partition E and Chebychev zero as for 

problems 1 - 4. 

Problem lA a=10 Error and residual 

TABLE 36 

N 

1 5 10 15 20 25 
P 

61.4 30.0 8.49 4.58 2.93 2.03 

2-
1. 54 

3.67 25.9 7.04 3.65 2.26 

22.9 0.134 8.75 '-3 1. 43 '-3 3.89 '-4 1. 39 '-4 

5 
7.6 0.131 8.46 '-3 1.41 '-3 3.83 '-4 1. 36 '-4 

0.124 2.15 '-6 4.70'-9 

10 
0.126 2.11 '-6 4.64 '-9 

3.01,-4 

15 
3.01'-4 

4.43'-11 

1S-
4.27'-11 

106 



Now consider the partition P:(-l, -0.9, -0.8, -0.6,0,1). We 

compare the solution error, second derivative error, residual using 

Chebychev,Legendre collocation points. 

Problem lA a=lO Errors and residual 

TABLE 37 

P 
2 5 10 15 Partition Points 

Error 0.328 2.97'-4 1.43 '-9 7.10'-14 Equispaced Chebychev 

in 2.86'-2 7.19'-5 2.44'-9 7.21 '-14 P Chebychev 

x 5.48'-3 2.50'-5 8.52'-10 7.35'-14 P Legendre 
n 

Error 30.0 0.134 2.15'-6 4.90'-12 Equispaced Chebychev 

in 5.06 1.48 '-2 1.67 '-6 3.86'-11 P Chebychev 

It 
1.40'-2 x 2.44 

n 
1.60'-6 3.02 '-11 P Legendre 

Residual 25.9 0.131 2.11 '-6 3.11 '-11 Equispaced Chebychev 

2.36 1. 44 '-2 1.63 '-6 3.56 '-11 P Chebychev 

2.56 1. 22 '-2 1.62 '-6 3.05 '-11 P Legendre 

The errors have been considerably reduced by using the non-uniform 

partition and the error in the actual approximate solution reduced 

still further by using Legendre zeros as the collocation points. 

These results suggest that the most efficient way of solving stiff 

problems by collocation would be to use Legendre zeros and a finely 

spaced non-uniform partition. 

These numerical investigations are by no means exhaustive 

and further studies might point the way towards more theoretical 

investigations. It is hoped that at least they are sufficient to 

illustrate the practical consequences of the theory in Chapters 

2 - 4. 
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CHAPTER 6 

Conclusions 
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§6.1 Theory 

An operator approximation theory has been developed in 

Chapter 2 which, using the concept of two spaces with different 

norms, has enabled an improvement to be made in the applicability 

of computable a-posteriori error bounds. Other work in this field 

has used similar theory in the more conventional setting of a 

single space X. We cannot allow these spaces to be different in 

a topological sense but there is sufficient latitude in the choice 

of metrics (norms) to permit us to take advantage of the form of 

certain operators especially for "stiff" problems which turn out 

to be most difficult to subject to error analysis. With further 

work it might be possible to produce bounds on the inverse operator 

_1 
(I-K) of a more suitable form. The major problem with the 

bounds produced in this thesis is that for many practical problems 

an inordinate amount of work is necessary to produce any strict 

bound at all. 

Approximations of the "projection" and "extended projection" 

type are related in a general manner. This leads to a generalisation 

which includes a very wide class of approximation methods. 

Chapter 3 continues to study the particular form of the inverse 

approximate operator for this generalised approximation and finally 

relates this operator directly to a matrix inverse in the finite 

dimensional case. So called "transfinite" methods are not 

considered here but perhaps the theory could be developed in this 

direction if desired. It is most diffi.cult to develop satisfactory 

bounds on the inverse approximate operator. The bounds developed 

here might not be suitable for all applications and it is in this 

area that perhaps the most profitable improvements could be made. 
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This chapter concludes 'th 
Wl. a convergence theorem of 

particular importance to the later disCUSsl.'on 
of error estimates. 

It is also of interest in its own right sl.'nce 
its conclusion is 

both simple and highly significant: I IWnl 14 I I (I_K)_ll I. 
Some 

of the conditions of this th ' 
eorem ral.se certain problems, namely 

in the selection of a I
n
* to satisfy (ii), (iii) and (v). 

These 

conditions might be better phrased or even eliminated in favour 

of some more simple crl.'terl.'a. P h th er aps e most important feature 

of this chapter is that the theory is applicable to a wide range 

of problems from initial value to partial differential equations 

and for approximations including collocation, quadrature methods, 

finite elements, etc. 

§6.2 Application 

Some simple boundary value problems in ordinary differential 

equations are used to illustrate an application of the theory. A 

piecewise polynomial approximation is used and a collocation 

projection generates the approximate equation. The conditions 

required by the theory in chapters 2 and 3 are expressed in simple 

algebraic terms which helps to throw some light on the effectiveness 

of different approximations. A slight modification is required in 

order to 

to J *. 
n 

apply Theorem 3.7, again concerning the conditions relating 

Computable bounds are derived on I' (I_K)_l" which can be 

used to bound the error in terms of the residual. In particular 

the advantage of using Legendre zeros for the piecewise polynomial 

collocation method is demonstrated. It would be most useful to 

determine criteria which govern the close relationship between the 

second derivative error and the residual. If this could be 

expressed in the general setting of the previous chapters we might 
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then have a widely applicable and highly effective error estimate. 

The conditions relating to the use of a "weighted" norm are 

described in simple terms and various quantities are computed which 

enable a straightforward use of the previous procedures. The 

weighted norm allows use to be made of the location of the partition 

points of the piecewise approximation in order to reduce the effect 

of large modulus row sums in the matrix W. These large rows in W 

_1 
can occur near + 1 due to the "stiff" behaviour of (I-K) for large 

K. The improvement in applicability is considerable but this is at 

the expense of poorer error bounds for the second derivative of 

the approximate solution in the vicinity of ~ 1. Error bounds for 

the approximate solution itself are not so much affected. 

Chapter 5 completes the discussion of this application with 

a selection of problems and a summary of the numerical properties 

of various piecewise polynomial approximations. A study of the 

relative effectiveness of these different schemes in terms of 

applicability of Theorems 4.9 and 4.10, the bounds given by them 

and the relation between the residual and second derivative error 
_1 

is given. The conclusions are that practical bounds on (I-K) 

may be computed provided that K is not too large and provided that 

the problem is not too near singular. 

Considerable improvements could be made in the numerical 

estimates of certain quantities such as I lorKrl I and it would be 

possible to arrange for the automatic selection of ;~tition and 

weights with the objective of minimising~. The most important 

conclusion of the examination of residuals and errors for these 

problems is that a very good estimate for I lenl I is given by Ilrnl I, 

I I I I I I I I for n sufficiently large by 
in fact we have en - rn « rn 

as the Collocation points in each sub interval. 
using Legendre zeros 
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Appendix 1 

Interpolation Constants 
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The interpolation error bounds in Table 38 are those derived 

from Jacksons theorem (see (4.40) ) with n=l. Entries in column 

d give bounds on the infinity norm of the interpolation error of a 

function f with Ilf(d) II ~ 1. Bounds on IIPlpl1 for interpolation 

at Chebychev zeros are given by Powell 37 
These numbers are 

all easily computed and are included for comparison with the 

interpolation error bounds given by Peano's Theorem (Davis 13 

p.70) : 

Let L(p) = 0 for all p £ P . 
n 

d+l r ] Then, for all f £ C La, b 

for d < n 

L(f) = 1 f
ldO

.) It) KIt) dt 

a 

1 
where K(t) - dT Lx 

and 
d 

(x-t) + 

d 
(x-t) + 

x > t 

x < t 

In our notation we have PIP (q) = 0 for all q £ P
p

-
l 

consequently 

we take f £ Cd [-1, lJ with d < p. The values in the tables were 

computed using exactintegration formulae and approximate maximisation 

and thus are not strict bounds but these could De determir.~d wit:. 

more effort. Each entry is computed from the expression 

1 

max I I (d-~)! 
x£ [-1,1]_1 

P (x-t) d+-l/ dt 
Ii' 

) c: -1 considered as a function of x. where PIP is applied to (x-t + 
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TABLE 38 

JACKSON CONSTANTS 

P 1 2 3 4 5 

1 3.140 - - - -
2 1.900 2.9800 - - -
3 1.400 1.1000 1.720000 - -
4 1.120 0.5860 0.460000 0.722000 -
5 0.939 0.3690 0.193000 0.152000 0.238000 
6 0.813 0.2550 0.100000 0.052500 0.041200 
7 0.719 0.1880 0.059100 0.023200 0.012200 
8 0.645 0.1450 0.037900 0.011900 0.004680 
9 0.587 0.1150 0.025900 0.006770 0.002130 

10 0.539 0.0940 0.018500 0.004140 0.001080 
11 0.498 0.0783 0.013700 0.002680 0.000602 
12 0.464 0.0663 0.010400 0.001820 0.000357 
13 0.434 0.0569 0.008120 0.001280 0.000223 
14 0.409 0.0494 0.006460 0.000923 0.000145 
15 0.386 0.0433 0.005230 0.000685 9.78'-05 

16 0.366 0.0383 0.004300 0.000520 6.80'-05 

17 0.348 0.0342 0.003580 0.000401 4.85'-05 

18 0.332 0.0307 0.003010 0.000315 3.54'-05 

19 0.317 0.0277 0.002560 0.000251 2.63'-05 

20 0.304 0.0251 0.002190 0.000203 1.99'-05 

21 0.292 0.0229 0.001890 0.000165 1. 53'-05 

22 0.281 0.0210 0.001650 0.000136 1.19'-05 

23 0.270 0.0193 0.001440 0.000113 9.38'-06 

24 0.261 0.0178 0.001270 9.52'-05 7.47'-06 

25 0.252 0.0165 0.001130 8.04'-05 6.02'-06 

26 0.244 0.0153 0.001000 6.85'-05 4.89'-06 

27 0.236 0.0143 0.000897 5.87'-05 4.01'-06 

28 0.229 0.0133 0.000805 5.06'-05 3.31'-06 

29 0.222 0.0125 0.000726 4.39'-05 2.76'-06 

30 0.216 0.0117 0.000657 3.82'-05 2.31'-06 
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...... 

...... 
U1 

P 

1 

2 

3 

4 

5 
6 
7 
8 

9 
10 
11 
12 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 

1 

1.000 

0.707 

0.547 

0.495 

0.425 
0.391 
0.351 

0.327 

0.301 
0.283 
0.264 

0.251 
0.237 
0.226 
0.214 
0.206 
0.197 
0.189 
0.182 
0.176 
0.169 
0.164 
0.158 
0.154 
0.149 
0.145 
0.141 
0.137 
0.133 
0.131 

-

2 3 

- -
0.25000 -
0.11300 0.083300 

0.07320 0.031900 

0.04900 0.015600 

0.03790 0.009700 

0.02900 0.006280 

0.02400 0.004540 

0.01950 0.003290 

0.01680 0.002560 

0.01420 0.001980 

0.01250 0.001610 

0.01090 0.001300 

0.00973 0.001080 

0.00862 0.000900 

0.00782 0.000770 

0.00704 0.000655 

0.00644 0.000569 

0.00586 0.000492 

0.00541 0.000434 
0.00495 0.000379 
0.00462 0.000339 
0.00427 0.000301 
0.00399 0.000271 
0.00371 0.000242 
0.00349 0.000220 
0.00327 0.000198 
0.00308 0.000181 
0.00288 0.000164 
0.00274 0.000151 
. 

TABLE 39 

CHEBYCHEV ZEROS (INTEGRAL I u I ) 

4 5 6 7 8 9 10 I 
- - - - - - -
- - - - - - -
- - - - - - -

0.031300 - - - - - - i 
I 

0.009800 0.012500 - - - - -
0.004470 

1 
0.0035201 0.005210 - - - -

0.002370 0.001390, 0.001300 0.002230 - - -
I 

0.001450 0.000691: 0.000482 0.000517 0.000977 - -
0.000923 0.000375! 0.000215 0.000174 0.000208 0.000434 -
0.000640 0.000228i 0.000111 7.35'-05 6.63'-05 8.71'-05 0.000195 

0.000448 0.000143 6.16'-05 3.49'-05 2.60'-05 2.58'-05 3.69'-05 

0.000332 9.60'-05 3.17'-05 1.85 '-05 1.18 '-05 9.66'-06 1.04' -05 

0.000242 6.55'-05 2.31'-05 1.04 '-05 5.84'-06 4.12'-06 3.67'-06 

0.000192 4.70'-05 1.52 '-05 6.21'-06 3.15'-06 1.96 '-06 1. 51 '-06 

0.000149 3.39'-05 1.02'-05 3.82'-06 1.77'-06 9.94'-07 6.77'-07 

0.000120 2.55'-05 7.12'-06 2.48'-06 1.06' -06 5.43'-07 3.33'-07 

9.56'-05 1.92 '-05 5.02'-06 1.64 '-06 6.47'-07 3.07'-07 1.72'-07 

7.87'-05 1.49'-05 3.68'-06 1.12'-06 4.15'-07 1.83'-07 9.47'-08 

6.45'-05 1.16' -05 2.70'-06 7.77'-07 2.70'-07 1.11' -07 5.37'-08 

5.41'-05 9.25'-06 2.04'-06 5.56'-07 1.82' -07 7.06'-08 3.19'-08 

4.51'-05 7.34'-06 1. 54 '-06 3.99'-07 1.24 '-07 4.53'-08 1.93 '-08 

3.86'-05 6.00' -06 1. 20'-06 2.96'-07 8.74'-08 3.03'-08 1.22'-08 

3.27'-05 4.87'-06 9.34'-07 2.20'-07 6.18'-08 2.04'-08 7.77'-09 

2.83'-05 4.04'-06 7.42'-07 1.67' -07 4.49'-08 1.41'-08 5.12'-09 

2.43'-05 3.34'-06 5.88'-07 1. 27 '-07 3.26'-08 9.82'-09 3.40'-09 

2.13 '-1)5 2.81'-06 4.76'-07 9.88'-08 2.44'-08 7.03'-09 2.33'-09 

1.85'-05 2.36'-06 3.84'-07 7.67'-08 1.82' -08 5.04'-09 1.60'-09 

1.63'-05 2.01'-06 3.16'-07 6.08'-08 1. 39 '-08 3.70'-09 1.13 '-09 

1.42 '-05 1.69'-06 2.58'-07 4.78'-08 1.05 '-08 2.70'-09 7.94'-10 

1.27 '-05 1.47 '-06 2.16'-07 3.87'-08 8.24'-09 2.04'-09 5.78'-10 



t-' 
t-' 
0"1 

p 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

II 

12 

13 

14 

15 

16 

1 

1.000 

0.845 

0.742 

0.668 

0.612 

0.568 

0.532 

0.502 

0.476 

0.454 

0.435 

0.418 

0.403 

0.389 

0.377 

0.366 

2 3 

- -
0.3330 -
0.1570 0.13300 

0.0991 0.04930 

0.0707 0.02580 

0.0540 0.01580 

0.0430 0.01060 

0.0354 0.00757 

0.0298 0.00564 

0.0256 0.00434 

0.0223 0.00343 

0.0196 0.00277 

0.0175 0.00227 

0.0157 0.00189 

0.0142 0.00160 

0.0129 0.00136 

TABLE 40 

LEGENDRE ZEROS ( INTEGRAL I u I ) 

4 5 6 7 8 9 10 

- - - - - - -
- - - - - - -
- - - - - - -

0.057100 - - - - - -
0.017800 0.025400 - - - - -
0.008010 0.006930 0.01l500 - - - -
0.004330 0.002790 0.002840 0.005330 - - -
0.002600 0.001360 0.001040 0.001200 0.002490 - -
0.001690 0.000749 0.000465 0.000405 0.000521 0.001l70 -
0.001l50 0.000447 0.000237 0.000169 0.000164 0.000230 0.000554 

0.000817 0.000283 0.000132 8.04'-05 6.40'-05 6.79'-05 0.000103 

0.000600 0.000188 7.82'-05 4.20'-05 2.87'-05 2.50'-05 2.88'-05 

0.000452 0.000129 4.88'-05 2.35'-05 1.42'-05 1.06'-05 1.01'-05 

0.000348 9.19'-05 3.18'-05 1.39'-05 7.52'-06 5.00'-06 4.07'-06 

0.000274 6.70'-05 2.14'-05 8.58'-06 4.23'-06 2.53'-06 1.83' -06 

0.000218 4.99'-05 1.48' -05 5.50' -06 2.50'-06 1. 36 '-06 8_.86' -07 I 
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