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Introduction. A computable field is one whose elements may be

placed in one-one correspondence with the natural numbers in such

a way that the number theoretic functions corresponding to the field

operations are recursive. In the same vein a field is called arithmeti-

cally definable (AD for short) if its elements may be placed in one-one

correspondence with the natural numbers in such a way that the

number theoretic functions corresponding to the field operations are

arithmetical. These notions clearly extend in an obvious way to

ordered fields and indeed to algebraic structures in general.

The term computable structure (group, ring, etc.) was probably

introduced for the first time by M. 0. Rabin [4], however, a similar

notion was discussed a few years earlier by Frohlich and Shepherdson

[l]. Each of these references contains a number of interesting the-

orems on computable structures. Some results concerning AD struc-

tures appear in [2].

The main purpose of the present paper is to show that the fields of

real algebraic numbers, constructible numbers, and solvable numbers,

which were shown to be AD in [2], are in fact computable. This

answers a question raised in footnote (2) of [2].

1. Computable fields. With the aid of classical algebra—in par-

ticular Galois theory—it was shown in [2 ] that the three fields men-

tioned above are AD. In this section we show that these fields are in

fact computable by using the decidability of the elementary theory

of real numbers [5].

Let a be an algebraic number; a notation for a is any triple (/, p, ra)

where/ is a polynomial in one variable with integer coefficients, p is

a complex rational, and w is a natural number such that £=a is the

unique solution of

/(*) = 0 A I S - P I   < 1/n.

We suppose that some canonical indexing { Tj} of all such triples has

been given such that given any j we can effectively write down the

unique triple Tj whose index it is, and vice-versa. Given any triple
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(/, p, n) we can effectively decide whether or not it is a notation for

some a, because the proposition

(3!?)[/(D =0A U-p|  <l/n]

is easily reduced to a sentence in the elementary theory of real num-

bers. Let £=x+iy, p = (a+ib)/c where x, y are real and a, b, c are

integers with c>0. From/ we can find polynomials p(x, y), q(x, y)

with integer coefficients such that/(x, y)=p(x, y)+iq(x, y). The

proposition can now be written:

(l\x)(V.y)[p(x, y) = 0 A q(x, y) = 0 A n2{(x - a)2 + (y - b)2} < c2].

Using the decision method of Tarski mentioned above, this last

sentence can be effectively decided. Define (x) to be the algebraic

number for which Tx is a notation if there is one, and to be 0 other-

wise. It is easy to see that the relations (x)= (y), (x) is real, (x) = 0,

(x) = l, (x)+(y)= (z), (x)(y)=(z) are all recursive, because an in-

stance of any of these relations can easily be transformed into an ele-

mentary sentence about the real numbers in the manner demon-

strated above.

Call a set 3 of algebraic numbers strongly r.e. (s.r.e.) if {x| (x)£S}

is r.e. It is immediately clear that the real algebraic numbers are s.r.e.

The constructible numbers are just those algebraic numbers which

can be obtained from 1 in a finite number of steps by rational opera-

tions (i.e., addition, subtraction, multiplication, and division) and

extraction of square roots. The solvable numbers are similarly defined

except that extraction of wth roots is permitted for any «>0. If we

effectively generate the graphs of all the relations listed above, then

for any (x) which is constructible it will be apparent that (x) is con-

structible at some finite stage of the generating process. Thus the set

of constructible numbers is s.r.e.; similarly for the solvable numbers.

The same is true for the real constructible numbers and the real solv-

able numbers.

Observe that if an s.r.e. set of algebraic numbers forms a field then

that field is computable. (The converse is also true but not required

here.) For suppose S is such a field, then since {x| (x)£H| is r.e. and

since (x) = (y) is recursive, we can effectively generate xo, xi, • • •

such that (xy)= (xk) only if j — k and such that S= {(#y)|.7^0}. We

obtain a canonical indexing $ of a by letting <!?(£) be the unique j

such that £ = (x). We have shown in particular that the fields of con-

structible and solvable numbers are computable. The reader will

readily observe that the computability extends to the order in each

case since (x) < (y) is clearly a recursive relation. In summary we have:
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Theorem 1.1. The fields of real algebraic numbers, constructible num-

bers, and solvable numbers are all computable ordered fields.

2. The fields of computable and arithmetical real numbers. We

begin this section with some definitions. Let p be a fixed effective

mapping from the natural numbers onto the rationals where by

'effective' we mean that there are recursive functions/, g, h such that

P(x) = (-iyv(g(x)/h(x)).

It will be clear that everything we say below is independent of what

effective p is chosen.

A real number a is said to be computable (arithmetical) just if the

set jx|p(x)<0!} is recursive (arithmetical). The computable (arith-

metical) real numbers form a subfield of the real numbers denoted
(Rc ((RD).

Theorem 2.1. If X is a computable (AD) ordered subfield of the field

(R of real numbers then X is a proper subfield of (Rc (<RD).

Proof. Suppose X is computable. Let \p be an admissible indexing

for X, i.e., ^ is a function from X onto a recursive set P of natural

numbers such that for any x, y, z in P the relations

(i)   *-*(*) + rl(y) = ^(«), *-K*)*-l<y) = ^(z). rKx) < VKy)

are effectively decidable. We shall suppose for convenience that P is

the set of all natural numbers. We can effectively find i^(0) since 0 is

the only solution in X of x+x = x, andi^(l) since 1 is the only solution

in X of x2 = x and x>0. Similarly, for an arbitrary rational m/n

supposed given by the ordered pair (m, ra) with ny*0, we can effec-

tively find Tf/(m/n). Now for a fixed member k of X we have k<m/n

if and only if ^i~lip{k)<ip~lip(m/n). Thus each such k determines a

recursive cut of the rationals and hence is a recursive real number.

This shows that XQ<RC.

Now suppose rationals r, s are given such that r<s. By an effective

search we can find rationals r0, s0 such that r^r0<s0^s and ip_1(0)

C [ro, So]; we have only to test all possible pairs (r0, s0) which satisfy

r^ro<s0^s until we find one such that ^_1(0) <ilr~hp(r0) or ^_1^(s0)

<i/'_1(0). Iterating the process we can generate a recursive decreasing

sequence [r0, s0], [ri, Si], • ■ • of nonempty rational intervals such

that for all/, ^_10')C Dv> SA- The intersection D™=o [>7> Sj] clearly con-

tains a recursive real number which is not in X. This completes the

proof when X is computable.
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When X is arithmetical the relations (1) are arithmetical rather

than recursive; we can choose a fixed arithmetical set A in which each

of the relations (1) is recursive. We then proceed as above with 'recur-

sive in A' replacing 'recursive'. Since any set recursive in an arith-

metical set is again arithmetical, the theorem is proved.

Corollary 2.2. (Rc (<RD) is not a computable (AD) field.

Proof. Suppose (Rc were a computable field with an admissible

indexing \j/ mapping onto the natural numbers. Since <AC is closed

under the operation of square root applied to positive real numbers

(this is proved in [3, p. 48]) we have

t-\x) < rliy) «=> MlrK*) + W^W-tf^M) = r'OO).

Thus the relation on the left is r.e., and hence recursive because it is a

linear ordering of all the natural numbers. Hence (Ra would be a

computable ordered field in contradiction to the theorem. Similarly

for 6iD mutatis mutandis.

Corollary 2.3. Let Xbea subfield of (R which is not a proper subfield

of 6ic(6iD). No ordered field containing X whose order extends that of X

is computable (AD).

Proof. Let £ be a computable (AD) ordered extension of X whose

order extends that of X. From the first half of the proof of the theorem

with \p now an admissible indexing of £ any cuts of the rationals

realized in £ are recursive (AD). Thus since X is a subfield of 01 but

not a proper subfield of (Rc ((RD) we have X = (Rc (6lD). By the second

half of the proof of the theorem we may construct a recursive cut of

the rationals which is not realized in £. This contradicts XC£ and

so the corollary is proved.

In contrast to the above notice that (JtD and thus (5tc also can be

extended to a computable field. This is because the algebraic closure

of (RD contains (RD and is characterized among all algebraically closed

fields of characteristic zero by the fact that it has transcendence

degree Xo over Q the field of rationals. Thus we need only exhibit a

computable field X of characteristic zero whose transcendence degree

over Q is No. because the algebraic closure of 3C will be isomorphic to

that of <RD and computable by Theorem 7, [4, p. 354]. For 3C we can

take the field of fractions of the ring formed by the polynomials in

indeterminates x0, Xi, x2, • • •   with coefficients in Q.

Theorem 2.4. (Rc is an AD ordered field.
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Proof. Let p be the effective enumeration of the rationals defined

above and suppose for convenience that p is one-one. Let {/,-} be an

effective enumeration of the unary partial recursive functions. Let

J'= {i\fiP~1 is the characteristic function of some left

section of the rationals &( Vj)y<t- [/,• ̂ /"y]}.

Let i(0), j(l), • ■ ■ be an enumeration of / in order of magnitude.

For each a in fltc define \p(a)=n just if /j(»)P-1 is the characteristic

function of the set of rationals <a. Then \p maps &c one-one onto

the natural numbers and using the classical definitions of sum, prod-

uct, and order of Dedekind cuts it is easily verified that \p is an

admissible indexing of (Rc for arithmetic definability.
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