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Computable Markov-perfect industry
dynamics
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and

Mark Satterthwaite∗∗

We provide a general model of dynamic competition in an oligopolistic industry with investment,
entry, and exit. To ensure that there exists a computationally tractable Markov-perfect equilibrium,
we introduce firm heterogeneity in the form of randomly drawn, privately known scrap values
and setup costs into the model. Our game of incomplete information always has an equilibrium
in cutoff entry/exit strategies. In contrast, the existence of an equilibrium in the Ericson and
Pakes’ model of industry dynamics requires admissibility of mixed entry/exit strategies, contrary
to the assertion in their article, that existing algorithms cannot cope with. In addition, we provide
a condition on the model’s primitives that ensures that the equilibrium is in pure investment
strategies. Building on this basic existence result, we first show that a symmetric equilibrium
exists under appropriate assumptions on the model’s primitives. Second, we show that, as the
distribution of the random scrap values/setup costs becomes degenerate, equilibria in cutoff
entry/exit strategies converge to equilibria in mixed entry/exit strategies of the game of complete
information.

1. Introduction

� Building on the seminal work of Maskin and Tirole (1987, 1988a, 1988b), the industrial
organization literature has made considerable progress over the past few years in analyzing
industry dynamics. In an important article, Ericson and Pakes (1995) provide a computable
model of dynamic competition in an oligopolistic industry with investment, entry, and exit.
Their framework is a valuable addition to economists’ toolkits. Its applications to date have
yielded numerous novel insights and it provides a starting point for ongoing research in industrial
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organization and other fields (see Doraszelski and Pakes, 2007 for a survey). More recently,
Aguirregabiria and Mira (2007), Bajari, Benkard, and Levin (2007), Pakes, Ostrovsky, and Berry
(2007), and Pesendorfer and Schmidt-Dengler (2008) have developed estimation procedures that
allow the researcher to recover the primitives that underlie the dynamic industry equilibrium.
Consequently, it is now possible to take these models to the data with the goal of conducting
counterfactual experiments and policy analyses (e.g., Gowrisankaran and Town, 1997; Jofre-
Bonet and Pesendorfer, 2003; Benkard, 2004; Beresteanu and Ellickson, 2006; Collard-Wexler,
2006; Ryan, 2006).

To achieve this goal, the researcher has to be able to compute the stationary Markov-perfect
equilibrium using the estimated primitives. This, in turn, requires that an equilibrium exists.
Unfortunately, existence cannot be guaranteed under the conditions in Ericson and Pakes (1995).
Moreover, existence by itself is not enough for two reasons. First, contrary to the assertion in
their article, the existence of an equilibrium in the Ericson and Pakes’ (1995) model of industry
dynamics requires admissibility of mixed strategies over discrete actions such as entry and exit.
But computing mixed strategies poses a formidable challenge (even in the context of finite
games; see McKelvey and McLennan, 1996 for a survey). Second, the state space of the model
explodes in the number of firms and quickly overwhelms current computational capabilities. An
important means of mitigating this “curse of dimensionality” is to impose symmetry restrictions.
For these reasons, computational tractability requires existence of a symmetric equilibrium in
pure strategies.

Our goal in this article is to modify the Ericson and Pakes’ (1995) model just enough to
ensure that there exists for it a stationary Markov-perfect equilibrium that is computable in both
theory and practice.1 In doing so, we have to resolve three difficulties that we now discuss in
detail.

� Cutoff entry/exit strategies. In the Ericson and Pakes’ (1995) model, incumbent firms
decide in each period whether to remain in the industry and potential entrants decide whether to
enter the industry. But the existence of an equilibrium cannot be ensured without allowing firms to
randomize, in one way or another, over these discrete actions. Because Ericson and Pakes (1995)
do not provide for such mixing, a simple example suffices to show that their claim of existence
cannot possibly be correct (see Section 3).2

To eliminate the need for mixed entry/exit strategies without jeopardizing existence, we
extend Harsanyi’s (1973) technique for purifying mixed-strategy Nash equilibria of static games
to Markov-perfect equilibria of dynamic stochastic games, and assume that at the beginning of
each period each potential entrant is assigned a random setup cost payable upon entry and each
incumbent firm is assigned a random scrap value received upon exit. Setup costs/scrap values are
privately known, that is, whereas a firm learns its own setup cost/scrap value prior to making its
decisions, its rivals’ setup costs/scrap values remain unknown to it. Adding firm heterogeneity in
the form of these randomly drawn, privately known setup costs/scrap values leads to a game of
incomplete information. This game always has an equilibrium in cutoff entry/exit strategies that
existing algorithms—notably Pakes and McGuire (1994, 2001)—can handle after minor changes.
Although a firm formally follows a pure strategy in making its entry/exit decision, the dependence
of its entry/exit decision on its randomly drawn, privately known setup cost/scrap value implies
that its rivals perceive the firm as though it were following a mixed strategy. Note that random

1 Given that an equilibrium exists, an important question is whether or not it is unique. In the online appendix to this
article, we show that multiplicity may be an issue in Ericson and Pakes’ (1995) framework even if symmetry restrictions
are imposed by providing three examples of multiple symmetric equilibria.

2 The game-theoretic literature has, of course, recognized the importance of randomization, but relies on
computationally intractable mixed strategies (see Mertens, 2002 for a survey). Strictly speaking, the existence theorems
in the extant literature are not even applicable because they cover dynamic stochastic games with either discrete (e.g.,
Fink, 1964; Sobel, 1971; Maskin and Tirole, 2001) or continuous actions (e.g., Federgruen, 1978; Whitt, 1980), whereas
Ericson and Pakes’ (1995) model combines discrete entry/exit decisions with continuous investment decisions.

C© RAND 2010.



DORASZELSKI AND SATTERTHWAITE / 217

setup costs/scrap values can substitute for mixed entry/exit strategies only if they are privately
known. If they were publicly observed, then its rivals could infer with certainty whether or not
the firm will enter/exit the industry. In this manner, Harsanyi’s (1973) insight that a perturbed
game of incomplete information can purify the mixed-strategy equilibria of an underlying game
of complete information enables us to settle the first and perhaps central difficulty in devising a
computationally tractable model.3

Over the years, the idea of using random setup costs/scrap values instead of mixed entry/exit
strategies has become part of the folklore in the literature following Ericson and Pakes (1995).
Pakes and McGuire (1994) suggest treating a potential entrant’s setup cost as a random variable
to overcome convergence problems in their algorithm. Gowrisankaran (1999a) has an informal
but very clear discussion of how randomization can resolve existence issues whenever entry, exit,
or mergers are allowed. Nevertheless, neither that article nor Gowrisankaran (1995) provide a
precise, rigorous, and reasonably general statement of how randomization can be inserted into
the Ericson and Pakes’ (1995) model so as to guarantee existence.

More recently, in independent work, Aguirregabiria and Mira (2007) and Pesendorfer and
Schmidt-Dengler (2008) use randomly drawn, privately known shocks to establish the existence
of a Markov-perfect equilibrium in general dynamic stochastic games with finite state and action
spaces.4 The primary difference between their discrete-choice frameworks and our model is that
we allow for continuous as well as discrete actions. Because discretizing continuous actions
tends to complicate both the estimation and computation of the model, most applied work
treats actions such as advertising (e.g., Doraszelski and Markovich, 2007), investment (e.g.,
Besanko and Doraszelski, 2004; Beresteanu and Ellickson, 2006; Ryan, 2006), and price (e.g.,
Besanko, Doraszelski, Kryukov, and Satterthwaite, 2010) as continuous variables. The arguments
we develop here can be used to guarantee existence in all these cases.

The existing literature also leaves open the important question of whether the “trick” of
using random setup costs/scrap values changes the nature of strategic interactions among firms.
We show that, as the distribution of the random scrap values/setup costs becomes degenerate,
an equilibrium in cutoff entry/exit strategies of the incomplete-information game converges to
an equilibrium in mixed entry/exit strategies of the complete-information game (see Section 7).
Hence, the addition of random scrap values/setup costs does not change the nature of strategic
interactions among firms. An immediate consequence of our convergence result is that there exists
an equilibrium in the Ericson and Pakes’ (1995) model, provided that mixed entry/exit strategies
are admissible.

� Pure investment strategies. In addition to deciding whether to remain in the industry,
incumbent firms also decide how much to invest in each period in the Ericson and Pakes’ (1995)
model. Because mixed strategies over continuous actions are impractical to compute, the second
difficulty is to ensure pure investment strategies. One way to forestall the possibility of mixing is
to make sure that a firm’s optimal investment level is always unique. To achieve this, we define a
class of transition functions—functions which specify how firms’ investment decisions affect the
industry’s state-to-state transitions—that we call unique investment choice (UIC) admissible and
prove that if the transition function is UIC admissible, then a firm’s investment choice is indeed
uniquely determined (see Section 5). UIC admissibility is an easily verifiable condition on the
model’s primitives and is not overly limiting. Indeed, although the transition functions used in the
vast majority of applications of Ericson and Pakes’ (1995) framework are UIC admissible, they
all restrict a firm to transit to immediately adjacent states. Our condition establishes that this is
unnecessary, and we show how to specify more general UIC admissible transition functions.

3 There is an interesting parallel between our article, which puts “noise” in the payoffs, and papers that put “noise”
in the state-to-state transitions in order to overcome existence problems in dynamic stochastic games with continuous
state spaces; see the excellent summary of this literature in Chakrabarti (1999).

4 The working paper versions of all three articles were initially circulated between May 2003 and September 2004;
see Pesendorfer and Schmidt-Dengler (2003), Doraszelski and Satterthwaite (2003), and Aguirregabiria and Mira (2004).
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In subsequent work, Escobar (2008) establishes the existence of a Markov-perfect equi-
librium in pure strategies in a general dynamic stochastic game with a countable state space
and a continuum of actions. He follows an approach similar to ours by first proving existence
under the assumption that a player’s best reply is convex for any value of continued play and
then characterizing the class of per-period payoffs and transition functions that ensure that this is
indeed the case. Because a unique best reply is a special case of a convex best reply, his condition
is more general than ours and may be applied to games with continuous actions other than the
investment decisions in the Ericson and Pakes’ (1995) model.5

� Symmetry. The third and final difficulty in devising a computationally tractable model is
to ensure that the equilibrium is not only in pure strategies but is also symmetric. We show
that this is the case under appropriate assumptions on the model’s primitives (see Section 6).
Symmetry is important because it eases the computational burden considerably. Instead of having
to compute value and policy functions for all firms, under symmetry it suffices to compute value
and policy functions for one firm. In addition, symmetry reduces the size of the state space on
which these functions are defined. Besides its computational advantages, a symmetric equilibrium
is an especially convincing solution concept in models of dynamic competition with entry and
exit because there is often no reason why a particular entrant should be different from any other
entrant. Rather, firm heterogeneity arises endogenously from the idiosyncratic outcomes that the
ex ante identical firms realize from their investments.

Resolving these difficulties allows us to fulfill our goal of establishing that there always
exists a stationary Markov-perfect equilibrium that is symmetric and in pure strategies. A further
goal of this article is to provide a step-by-step guide to formulating models of dynamic industry
equilibrium that is detailed enough to allow the reader to easily adapt its techniques to models
that are tailored to specific industries. We hope that such a guide enables others to construct their
models with the confidence that if their algorithm fails to converge, it is a computational problem,
not a poorly specified model for which no equilibrium exists.

The plan of the article is as follows. We develop the model in Section 2. In Section 3, we
provide simple examples to illustrate the key themes of the subsequent analysis. We turn to the
analysis of the full model in Sections 4–7. Section 8 concludes.

2. Model

� We study the evolution of an industry with heterogeneous firms. The model is dynamic,
time is discrete, and the horizon is infinite. There are two groups of firms, incumbent firms and
potential entrants. An incumbent firm has to decide each period whether to remain in the industry
and, if so, how much to invest. A potential entrant has to decide whether to enter the industry
and, if so, how much to invest. Once these decisions are made, product market competition takes
place.

Our model accounts for firm heterogeneity in two ways. First, we encode all characteristics
that are relevant to a firm’s profit from product market competition (e.g., production capacity,
cost structure, or product quality) in its “state.” A firm is able to change its state over time
through investment. Although a higher investment today is no guarantee for a more favorable
state tomorrow, it does ensure a more favorable distribution over future states. By acknowledging
that a firm’s transition from one state to another is subject to an idiosyncratic shock, our model
allows for variability in the fortunes of firms even if they carry out identical strategies. Second,

5 Other work on existence in pure strategies includes Dutta and Sundaram (1992) (resource extraction games),
Amir (1996) (capital accumulation games), Curtat (1996) and Nowak (2007) (supermodular games), and Horst (2005)
(games with weak interactions among players). Chakrabarti (2003) studies games with a continuum of players in which
the per-period payoffs and the transition density function depend only on the average response of the players.
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to account for differences in opportunity costs across firms, we assume that incumbents have
random scrap values (received upon exit) and that entrants have random setup costs (payable
upon entry). Because a firm’s particular circumstances change over time, we model scrap values
and setup costs as being drawn anew each period.

� States and firms. Let N denote the number of firms. Firm n is described by its state ωn ∈ �,
where � = {1, . . . , M, M + 1} is its set of possible states. States 1, . . . , M describe an active
firm whereas state M + 1 identifies the firm as being inactive.6 At any point in time the industry
is completely characterized by the list of firms’ states ω = (ω1, . . . , ωN ) ∈ S, where S = �N is
the state space.7 We refer to ωn as the state of firm n and to ω as the state of the industry.

If N ∗ is the number of incumbent firms (i.e., active firms), then there are N − N ∗ potential
entrants (i.e., inactive firms). Thus, once an incumbent firm exits the industry, a potential entrant
automatically takes its “slot” and has to decide whether or not to enter the industry.8 Potential
entrants are drawn from a large pool. They are short lived and base their entry decisions on the net
present value of entering today; potential entrants do not take the option value of delaying entry
into account. In contrast, incumbent firms are long lived and solve intertemporal maximization
problems to reach their exit decisions. They discount future payoffs using a discount factor of β.

� Timing. In each period the sequence of events is as follows:

(i) Incumbent firms learn their scrap value and decide on exit and investment. Potential
entrants learn their setup cost and decide on entry and investment.

(ii) Incumbent firms compete in the product market.
(iii) Exit and entry decisions are implemented.
(iv) The investment decisions of the remaining incumbents and new entrants are carried out

and their uncertain outcomes are realized.

Throughout, we use ω to denote the state of the industry at the beginning of the period and ω′

to denote its state at the end of the period after the state-to-state transitions are realized. Firms
observe the state at the beginning of the period as well as the outcomes of the entry, exit, and
investment decisions during the period.

Whereas the entry, exit, and investment decisions are made simultaneously, we assume that
an incumbent’s investment decision is carried out only if it remains in the industry. Similarly, we
assume that an entrant’s investment decision is carried out only if it enters the industry. It follows
that an optimizing incumbent firm will choose its investment at the beginning of each period
under the presumption that it does not exit this period, and an optimizing potential entrant will
do so under the presumption that it enters the industry.

� Incumbent firms. Suppose ωn �= M + 1 and consider incumbent firm n. We assume that
at the beginning of each period each incumbent firm draws a random scrap value φn from a
distribution F(·) with expectation E(φn) = φ.9 Scrap values are independently and identically
distributed across firms and periods. Incumbent firm n learns its scrap value φn prior to making
its exit and investment decisions, but the scrap values of its rivals remain unknown to it. Let

6 This formulation allows firms to differ from each other in more than one dimension. Suppose that a firm is
characterized by its capacity and its marginal cost of production. If there are M1 levels of capacity and M2 levels of cost,
then each of the M = M1 M2 possible combinations of capacity and cost defines a state.

7 Time-varying characteristics of the competitive environment are easily added to the description of the industry.
Besanko and Doraszelski (2004), for example, add a demand state to the list of firms’ states in order to study the effects
of demand growth and demand cycles on capacity dynamics.

8 Limiting the number of potential entrants to N − N ∗ is not innocuous. Increasing N − N ∗ by increasing N
exacerbates the coordination problem that potential entrants face.

9 It is straightforward to allow firm n’s scrap value φn to vary systematically with its state ωn by replacing F(·) by
Fωn (·).
C© RAND 2010.
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χn(ω, φn) = 1 indicate that the decision of incumbent firm n, who has drawn scrap value φn , is
to remain in the industry in state ω and let χn(ω, φn) = 0 indicate that its decision is to exit the
industry, collect the scrap value φn , and perish. Because this decision is conditioned on its private
φn , it is a random variable from the perspective of other firms. We use ξn(ω) = ∫

χn(ω, φn)d F(φn)
to denote the probability that incumbent firm n remains in the industry in state ω.

This is the first place where our model diverges from Ericson and Pakes’ (1995), who assume
that scrap values are constant across firms and periods. As we show in Section 3, deterministic
scrap values raise serious existence issues. In the limit, however, as the distribution of φn becomes
degenerate, our model collapses to theirs.

If an incumbent remains in the industry, it competes in the product market. Let πn(ω) denote
the current profit of incumbent firm n from product market competition in state ω. We stipulate
that πn(·) is a reduced-form profit function that fully incorporates the nature of product market
competition in the industry. In addition to receiving a profit, the incumbent incurs the investment
xn(ω) ∈ [0, x̄] that it decided on at the beginning of the period and moves from state ωn to state
ω′

n �= M + 1 in accordance with the transition probabilities specified below.

� Potential entrants. Suppose that ωn = M + 1 and consider potential entrant n. We assume
that at the beginning of each period each potential entrant draws a random setup cost φe

n from a
distribution Fe(·) with expectation E(φe

n) = φe. Like scrap values, setup costs are independently
and identically distributed across firms and periods, and are private to each firm. If potential
entrant n enters the industry, it incurs the setup cost φe

n . If it stays out, it receives nothing and
perishes. We use χ e

n (ω, φe
n) = 1 to indicate that the decision of potential entrant n, who has drawn

setup cost φe
n , is to enter the industry in state ω and χ e

n (ω, φe
n) = 0 to indicate that its decision

is to stay out. From the point of view of other firms, ξ e
n (ω) = ∫

χ e
n (ω, φe

n)d Fe(φe
n) denotes the

probability that potential entrant n enters the industry in state ω.
Unlike an incumbent, the entrant does not compete in the product market. Instead, it

undergoes a setup period upon committing to entry. The entrant incurs its previously chosen
investment xe

n(ω) ∈ [0, x̄ e] and moves to state ω′
n �= M + 1. Hence, at the end of the setup period,

the entrant becomes an incumbent.
This is the second place where we generalize the Ericson and Pakes’ (1995) model. They

assume that, unlike exit decisions, entry decisions are made sequentially. We assume that entry
decisions are made simultaneously, thus allowing more than one firm per period to enter the
industry in an uncoordinated fashion. We also allow the potential entrant to make an initial
investment in order to improve the odds that it enters the industry in a more favorable state. This
contrasts with Ericson and Pakes (1995), where the entrant is randomly assigned to an arbitrary
position and thus has no control over its initial position within the industry.10

We make these two changes because industry evolution frequently takes the form of a
preemption race (e.g., Fudenberg, Gilbert, Stiglitz, and Tirole, 1983; Harris and Vickers, 1987;
Besanko and Doraszelski, 2004; Doraszelski and Markovich, 2007). During such a race, firms
invest heavily as long as they are neck and neck. But once one of the firms manages to pull ahead,
the lagging firms “give up,” thereby allowing the leading firm to attain a dominant position. In a
preemption race, an early entrant has a head start over a late entrant, so an imposed order of entry
may prove to be decisive for the structure of the industry. Moreover, denying an entrant control
over its initial position within the industry makes it all the harder to “catch up.” Our specification
of the entry process does not suffer from these drawbacks and makes the model more realistic
by endogenizing the intensity of entry activity. As an additional benefit, our parallel treatment of
entry and exit as well as incumbents’ and entrants’ investment decisions simplifies the model’s
exposition and eases the computational burden.

10 We may nest their formulation by setting x̄ e = 0.
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� Notation. In what follows, we identify the nth incumbent firm with firm n in states ωn �=
M + 1 and the nth potential entrant with firm n in state ωn = M + 1. That is, we define

χ e
n (ω1, . . . , ωn−1, ωn, ωn+1, . . . , ωN , φe) = χn(ω1, . . . , ωn−1, M + 1, ωn+1, . . . , ωN , φe),

ξ e
n (ω1, . . . , ωn−1, ωn, ωn+1, . . . , ωN ) = ξn(ω1, . . . , ωn−1, M + 1, ωn+1, . . . , ωN ),

xe
n(ω1, . . . , ωn−1, ωn, ωn+1, . . . , ωN ) = xn(ω1, . . . , ωn−1, M + 1, ωn+1, . . . , ωN ).

Because ωn indicates whether firm n is an incumbent firm or a potential entrant, we henceforth
omit the superscript e to distinguish entrants from incumbents.

� Transition probabilities. The probability that the industry transits from today’s state ω to
tomorrow’s state ω′ is determined jointly by the investment decisions of the incumbent firms that
remain in the industry and the potential entrants that enter the industry. Formally, the transition
probabilities are encoded in the transition function P : S2 × {0, 1}N × [0, max{x̄, x̄ e}]N → [0, 1].
Thus, P(ω′, ω, χ (ω, φ), x(ω)) is the probability that the industry moves from state ω to state ω′

given that firms’ exit and entry decisions are χ (ω, φ) = (χ1(ω, φ1), . . . , χN (ω, φN )) and their
investment decisions are x(ω) = (x1(ω), . . . , xN (ω)).11 Necessarily, P(ω′, ω, χ (ω, φ), x(ω)) ≥ 0
and

∑
ω′∈S P(ω′, ω, χ (ω, φ), x(ω)) = 1.

In the special case of independent transitions, the transition function P(·) can be factored as∏
n=1,...,N

Pn(ω′
n, ωn, χn (ω, φn) , xn(ω)),

where Pn(·) gives the probability that firm n transits from state ωn to state ω′
n conditional on its exit

or entry decision being χn(ω, φn) and its investment decision being xn(ω). In general, however,
transitions need not be independent across firms. Independence is violated, for example, in the
presence of demand or cost shocks that are common to firms or in the presence of externalities.

Because a firm’s scrap value or setup cost is private information, its exit or entry decision
is a random variable from the perspective of an outside observer. The outside observer thus has
to “integrate out” over all possible realizations of firms’ exit and entry decisions to obtain the
probability that the industry transits from state ω to state ω′:∫

. . .

∫
P(ω′, ω, χ (ω, φ), x(ω))

∏
n = 1, . . . , N ,

ωn �= M + 1

d F(φn)
∏

n = 1, . . . , N ,

ωn = M + 1

d Fe
(
φe

n

)

=
∑

ι∈{0,1}N

[
P(ω′, ω, ι, x(ω))

∏
n=1,...,N

ξn(ω)ιn (1 − ξn(ω))1−ιn

]
. (1)

To see this, recall that scrap values and setup costs are independently distributed across firms.
Because, from the point of view of other firms, the probability that incumbent firm n remains
in the industry in state ω is ξn(ω) = ∫

χn(ω, φn)d F(φn) and the probability that potential entrant
n enters the industry is ξn(ω) = ∫

χn(ω, φe
n)d Fe(φe

n), a particular realization ι = (ι1, . . . , ιN ) of
firms’ exit and entry decisions occurs with probability

∏
n=1,...,N ξn(ω)ιn (1 − ξn(ω))1−ιn . In this

manner, equation (1) results from conditioning on all possible realizations of firms’ exit and entry
decisions ι.

The crucial implication of equation (1) is that the probability of a transition from state ω to
state ω′ hinges on the exit and entry probabilities ξ (ω). Thus, when forming an expectation over
the industry’s future state, a firm does not need to know the entire exit and entry rules χ−n(ω, ·)
of its rivals; rather, it suffices to know their exit and entry probabilities ξ−n(ω).

11 Given our notational convention, if ωn = M + 1 so that firm n is a potential entrant, then we interpret χn(ω, φn)
as χ e

n (ω, φe
n), the decision of potential entrant n, who has drawn setup cost φe

n , to enter the industry in state ω, and we
similarly interpret xn(ω) as xe

n(ω).
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� An incumbent’s problem. Suppose that the industry is in state ω with ωn �= M + 1.
Incumbent firm n solves an intertemporal maximization problem to reach its exit and investment
decisions. Let Vn(ω, φn) denote the expected net present value of all future cash flows to incumbent
firm n, computed under the presumption that firms behave optimally, when the industry is in state
ω and the incumbent has drawn scrap value φn . Note that its scrap value is part of the payoff-
relevant characteristics of the incumbent firm. This is rather obvious: an incumbent that can sell
off its assets for one dollar may behave very differently from an otherwise identical incumbent
that can sell off its assets for one million dollars. Hence, once incumbent firm n has learned
its scrap value φn , its decisions and thus also the expected net present value of its future cash
flows, Vn(ω, φn), depend on it. Unlike deterministic scrap values, random scrap values are part
of the state space of the game. This is undesirable from a computational perspective because
the computational burden is increasing with the size of the state space. Fortunately, as we show
below, integrating out over the random scrap values eliminates their disadvantage but preserves
their advantage for ensuring the existence of an equilibrium.

Vn(ω, φn) is defined recursively by the solution to the following Bellman equation,

Vn(ω, φn) = sup
χ̃n (ω, φn ) ∈ {0, 1},

x̃n (ω) ∈ [0, x̄]

πn(ω) + (1 − χ̃n(ω, φn))φn + χ̃n(ω, φn)

×{−x̃n(ω) + βE {Vn(ω′)|ω,ω′
n �= M + 1, x̃n(ω), ξ−n(ω), x−n(ω)}}, (2)

where, with an overloading of notation, Vn(ω) = ∫
Vn(ω, φn)d F(φn) is the expected value

function. Note that whereas Vn(ω, φn) is the value function after the firm has drawn its scrap
value, Vn(ω) is the expected value function, that is, the value function before the firm has drawn
its scrap value. The right-hand side of the Bellman equation is composed of the incumbent’s profit
from product market competition πn(ω) and, depending on the exit decision χ̃n(ω, φn), either the
return to exiting, φn , or the return to remaining in the industry. The latter is given by the term
within brackets and is in turn composed of two parts: the investment x̃n(ω, φn) and the net present
value of the incumbent’s future cash flows, βE {Vn(ω′)|·}. Several remarks are in order. First,
because scrap values are independent across periods, the firm’s future returns are described by its
expected value function Vn(ω′). Second, recall that ω′ denotes the state at the end of the current
period after the state-to-state transitions have been realized. The expectation operator reflects
the fact that ω′ is unknown at the beginning of the current period when the decisions are made.
The incumbent conditions its expectations on the decisions of its rivals, ξ−n(ω) and x−n(ω). It
also conditions its expectations on its own investment choice and presumes that it remains in the
industry in state ω, that is, it conditions on ω′

n �= M + 1.
Because investment is chosen conditional on remaining in the industry, the problem of

incumbent firm n can be broken up into two parts. First, the incumbent chooses its investment.
The optimal investment choice is independent of the firm’s scrap value, and there is thus no need
to index xn(ω) by φn . This also justifies making the expectation operator conditional on x−n(ω)
(as opposed to scrap-value-specific investment decisions). Second, given its investment choice,
the incumbent decides whether or not to remain in the industry. The incumbent’s exit decision
clearly depends on its scrap value, just as its rivals’ exit and entry decisions depend on their scrap
values and setup costs. Nevertheless, it is enough to condition on ξ−n(ω) in light of equation (1).

The optimal exit decision of incumbent firm n who has drawn scrap value φn is a cutoff rule
characterized by

χn(ω, φn) =
{

1 if φn < φ̄n(ω),

0 if φn ≥ φ̄n(ω),

where

φ̄n(ω) = sup
x̃n (ω)∈[0,x̄]

−x̃n(ω) + βE {Vn(ω′)|ω,ω′
n �= M + 1, x̃n(ω), ξ−n(ω), x−n(ω)} (3)
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denotes the cutoff scrap value for which the incumbent is indifferent between remaining in the
industry and exiting. Hence, the solution to the incumbent’s decision problem has the reservation
property. Moreover, under appropriate assumptions on F(·) (see Section 4), incumbent firm n
has a unique optimal exit choice for all scrap values. Without loss of generality, we can therefore
restrict attention to decision rules of the form 1[φn < φ̄n(ω)], where 1[·] denotes the indicator
function. These decision rules can be represented in two ways:

(i) with the cutoff scrap value φ̄n(ω) itself; or
(ii) with the probability ξn(ω) of incumbent firm n remaining in the industry in state ω.

This is without loss of information because ξn(ω) = ∫
χn(ω, φn)d F(φn) = ∫

1[φn <

φ̄n(ω)]d F(φn) = F(φ̄n(ω)) is equivalent to F−1(ξn(ω)) = φ̄n(ω).12 The second representation
proves to be more useful, and we use it below almost exclusively.

Next we turn to payoffs. Imposing the reservation property and integrating over φn on both
sides of equation (2) yields

Vn(ω) = ∫
sup

ξ̃n (ω) ∈ [0, 1],
x̃n (ω) ∈ [0, x̄]

πn(ω) + (1 − 1[φn < F−1(ξ̃n(ω))])φn + 1[φn < F−1(ξ̃n(ω))]

×{−x̃n(ω) + βE {Vn(ω′)|ω,ω′
n �= M + 1, x̃n(ω), ξ−n(ω), x−n(ω)}}d F(φn)

= sup
ξ̃n (ω) ∈ [0, 1],
x̃n (ω) ∈ [0, x̄]

πn(ω) + (1 − ξ̃n(ω))φ + ∫
φn>F−1(ξ̃n (ω))

(φn − φ)d F(φn) + ξ̃n(ω)

×{−x̃n(ω) + βE {Vn(ω′)|ω,ω′
n �= M + 1, x̃n(ω), ξ−n(ω), x−n(ω)}}.

(4)

Two essential points should be noted. First, an optimizing incumbent cares about the expectation
of the scrap value conditional on collecting it, E{φn|φn > F−1(ξ̃n(ω))}, rather than its uncon-
ditional expectation, E(φn) = φ. The term

∫
φn>F−1(ξ̃n (ω))

(φn − φ)d F(φn) = (1 − ξ̃n(ω))(E{φn|φn >

F−1(ξ̃n(ω))} − φ) captures the difference between the conditional and the unconditional expecta-
tion. It reflects our assumption that scrap values are random and, consequently, it is not present in
a game of complete information such as Ericson and Pakes (1995) where scrap values are constant
across firms and periods. Second, the state space is effectively the same in the games of incomplete
and complete information, because the constituent parts of the Bellman equation (4) depend on
the state of the industry ω but not on the random scrap value φn . Hence, by integrating out over
the random scrap values, we have successfully eliminated their computational disadvantage.

� An entrant’s problem. Suppose that the industry is in state ω with ωn = M + 1. The
expected net present value of all future cash flows to potential entrant n when the industry is in
state ω and the firm has drawn setup cost φe

n is

Vn

(
ω, φe

n

) = sup
χ̃n (ω, φe

n ) ∈ {0, 1},
x̃n (ω) ∈ [0, x̄ e]

χ̃n

(
ω, φe

n

){ − φe
n − x̃n(ω)

+βE {Vn(ω′)|ω,ω′
n �= M + 1, x̃n(ω), ξ−n(ω), x−n(ω)}}. (5)

Because the entrant is short lived, it does not solve an intertemporal maximization problem to
reach its decisions.13 Depending on the entry decision χn(ω, φe), the right-hand side of the above
equation is either 0 or the expected return to entering the industry, which is in turn composed of
two parts. First, the entrant pays the setup cost and sinks its investment, yielding a current cash
flow of −φe

n − x̃n(ω). Second, the entrant takes the net present value of its future cash flows into

12 If the support of F(·) is bounded, we define F−1(0) to be its minimum and F−1(1) to be its maximum.
13 It is easy to allow for long-lived entrants by adding the term (1 − χ̃n(ω, φe

n))βE {Vn(ω′)|ω, ω′
n = M +

1, x̃n(ω, φe
n), ξ−n(ω), x−n(ω)} to equation (5).
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account. Because potential entrant n becomes incumbent firm n at the end of the setup period, this
is given by βE {Vn(ω′)|·}. The entrant conditions its expectations on the decisions of its rivals,
ξ−n(ω) and x−n(ω). It also conditions its expectations on its own investment choice and presumes
that it enters the industry in state ω, that is, it conditions on ω′

n �= M + 1.
Similar to the incumbent’s problem, the entrant’s problem can be broken up into two parts.

Because investment is chosen conditional on entering the industry, the optimal investment choice
xn(ω) is independent of the firm’s setup cost φe

n . Given its investment choice, the entrant then
decides whether or not to enter the industry. The optimal entry decision is characterized by

χn

(
ω, φe

n

) =
{

1 if φe
n ≤ φ̄e

n(ω),

0 if φe
n > φ̄e

n(ω),

where

φ̄e
n(ω) = sup

x̃n (ω)∈[0,x̄ e]
−x̃n(ω) + βE

{
Vn(ω′)|ω,ω′

n �= M + 1, x̃n(ω), ξ−n(ω), x−n(ω)
}

(6)

denotes the cutoff setup cost. As with incumbents, the solution to the entrant’s decision problem has
the reservation property and we can restrict attention to decision rules of the form 1[φe

n < φ̄e
n(ω)]

that can be alternatively represented by the probability ξn(ω) of potential entrant n entering the
industry in state ω. Imposing the reservation property and integrating over φe

n on both sides of
equation (5) yields

Vn(ω) = sup
ξ̃n (ω) ∈ [0, 1],
x̃n (ω) ∈ [0, x̄ e]

− ∫
φe

n<Fe−1(ξ̃n (ω))

(
φe

n − φe
)

d Fe
(
φe

n

) + ξ̃n(ω)

×{−φe − x̃n(ω) + βE {Vn(ω′)|ω,ω′
n �= M + 1, x̃n(ω), ξ−n(ω), x−n(ω)}}. (7)

The term − ∫
φe

n<Fe−1(ξ̃n (ω))
(φe

n − φe)d Fe(φe
n) is again not present in a setting with complete

information.

� Actions, strategies, and payoffs. An action or decision for firm n in state ω specifies either
the probability that the incumbent remains in the industry or the probability that the entrant enters
the industry along with an investment choice: un(ω) = (ξn(ω), xn(ω)) ∈ Un(ω), where

Un(ω) =
{

[0, 1] × [0, x̄] if ωn �= M + 1,

[0, 1] × [0, x̄ e] if ωn = M + 1
(8)

denotes firm n’s feasible actions in state ω.
We restrict attention to stationary Markovian strategies. A strategy or policy for firm n is a

single function from states into actions; it specifies an action un(ω) ∈ Un(ω) for each state ω. Such
a strategy is called Markovian because it is restricted to be a function of the current state rather
than the entire history of the game. It is called stationary because it does not directly depend on
calendar time, that is, the firm plays the same action un(ω) each time the industry is in state ω.14

Define Un = ×ω∈SUn(ω) to be the strategy space of firm n. Any element of the set Un is a
stationary Markovian strategy. Further define U = ×N

n=1Un to be the strategy space of the entire
industry. By construction in equation (8), the set of feasible actions Un(ω) is nonempty, convex,
and compact (as long as x̄ < ∞ and x̄ e < ∞). It follows that the strategy spaces Un and U are
also nonempty, convex, and compact.

Turning to payoffs, the Bellman equations (4) and (7) of incumbent firm n and potential
entrant n, respectively, can be more compactly stated as

Vn(ω) = sup
ũn∈Un (ω)

hn(ω, ũn(ω), u−n(ω), Vn), (9)

14 Nonstationary strategies are computationally infeasible in infinite-horizon models like ours because they require
computing a different function for each period. Stationarity is also a compelling modeling restriction whenever nothing
in the economic environment depends directly on calendar time.
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where

hn(ω, u(ω), Vn)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

πn(ω) + (1 − ξn(ω))φ + ∫
φn>F−1(ξn (ω))

(φn − φ)d F (φn)

+ ξn(ω)
{
− xn(ω)+βE

{
Vn(ω′)|ω,ω′

n �= M + 1, ξ−n(ω), x(ω)
}}

if ωn �= M + 1,

− ∫
φe

n<Fe−1(ξn (ω))

(
φe

n − φe
)
d Fe

(
φe

n

)
+ ξn(ω)

{
− φe−xn(ω) + βE

{
Vn(ω′)|ω,ω′

n �= M + 1, ξ−n(ω), x(ω)
}}

if ωn = M + 1.

(10)

The number hn(ω, u(ω), Vn) represents the return to firm n in state ω when the firms use actions
u(ω) and firm n’s future returns are described by the value function Vn . The function hn(·) is
called firm n’s return (Denardo, 1967) or local income function (Whitt, 1980).

Enumerate the state space as S = �N = {ω1, . . . , ω|S|} and define the |S| × N matrix V by

V = (V1, . . . , VN ) =

⎛
⎜⎜⎜⎝

V1(ω1) . . . VN (ω1)

...
...

V1(ω|S|) . . . VN (ω|S|)

⎞
⎟⎟⎟⎠

and the |S| × (N − 1) matrix V−n by V−n = (V1, . . . , Vn−1, Vn+1, . . . , VN ). Vn represents the value
function of firm n or, more precisely, the value function of incumbent firm n if ωn �= M + 1
and the value function of potential entrant n if ωn = M + 1. Define V (ω) = (V1(ω), . . . , VN (ω))
and V−n(ω) = (V1(ω), . . . , Vn−1(ω), Vn+1(ω), . . . , VN (ω)). Define the |S| × N matrices ξ and x
similarly. Finally, define the |S| × 2N matrix u by u = (ξ, x). In what follows, we use the terms
matrix and function interchangeably.

� Equilibrium. Our solution concept is that of stationary Markov-perfect equilibrium. An
equilibrium involves value and policy functions V and u such that (i) given u−n, Vn solves the
Bellman equation (9) for all n and (ii) given u−n(ω) and Vn, un(ω) solves the maximization problem
on the right-hand side of this equation for all ω and all n. A firm thus behaves optimally in every
state, irrespective of whether this state is on or off the equilibrium path. Moreover, because
the horizon is infinite and the influence of past play is captured in the current state, there is a
one-to-one correspondence between subgames and states. Hence, any stationary Markov-perfect
equilibrium is subgame perfect. Note that because a best reply to stationary Markovian strategies
u−n is a stationary Markovian strategy un , a stationary Markov-perfect equilibrium remains a
subgame-perfect equilibrium even if nonstationary strategies are considered. Of course, this does
not rule out that there may also exist nonstationary Markov-perfect equilibria.

3. Examples

� In this section, we provide two simple examples to illustrate the key themes of the subsequent
analysis. Our first example demonstrates that if scrap values/setup costs are constant across firms
and periods as in the Ericson and Pakes’ (1995) model, then a symmetric equilibrium in pure
entry/exit strategies may fail to exist, contrary to their assertion.15 Our second example shows how
to incorporate random scrap values/setup costs in order to ensure that a symmetric equilibrium
in cutoff entry/exit strategies exists.

� Example: deterministic scrap values/setup costs. We set N = 2 and M = 1. This implies
that the industry is either a monopoly (states (1,2) and (2,1)) or a duopoly (state (1,1)). Moreover,

15 We defer a formal definition of our symmetry notion to Section 6.

C© RAND 2010.



226 / THE RAND JOURNAL OF ECONOMICS

because there is just one “active” state, there is no incentive to invest, so we set xn(ω) = 0 for
all ω and all n in what follows. To simplify further, we assume that entry is prohibitively costly
and focus entirely on exit. Let π (ω1, ω2) denote firm 1’s current profit in state ω = (ω1, ω2). We
assume that the profit function is symmetric. This implies that firm 2’s current profit in state ω is
π (ω2, ω1). Pick the deterministic scrap value φ such that

βπ (1, 1)

1 − β
< φ <

βπ (1, 2)

1 − β
. (11)

Hence, whereas a monopoly is viable, a duopoly is not. This gives rise to a “war of attrition.”
The sole decision that a firm must make is whether or not to exit the industry. Consider firm

1. Given firm 2’s exit decision χ (1, 1) ∈ {0, 1}, the Bellman equation defines its value function:

V (1, 2) = sup
χ̃ (1,2)∈{0,1}

π (1, 2) + (1 − χ̃(1, 2))φ + χ̃(1, 2)βV (1, 2),

V (1, 1) = sup
χ̃ (1,1)∈{0,1}

π (1, 1) + (1 − χ̃(1, 1))φ + χ̃(1, 1)β{χ (1, 1)V (1, 1) + (1 − χ (1, 1))V (1, 2)}.

Recall that χ̃ (ω) = 1 indicates that firm 1 remains in the industry in state ω and χ̃ (ω) = 0
indicates that it exits. The optimal exit decisions χ̃ (1, 2) and χ̃(1, 1) of firm 1 satisfy

χ̃ (ω) =
{

1 if φ ≤ φ̄(ω),

0 if φ ≥ φ̄(ω),

where

φ̄(1, 2) = βV (1, 2), (12)

φ̄(1, 1) = β{χ (1, 1)V (1, 1) + (1 − χ (1, 1))V (1, 2)}. (13)

Moreover, in a symmetric equilibrium, we must have χ̃ (ω1, ω2) = χ (ω2, ω1).
To show that there is no symmetric equilibrium in pure exit strategies, we show that

(χ (1, 2), χ (1, 1)) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} leads to a contradiction. Working through these
cases, suppose first that χ (1, 2) = 0. Then V (1, 2) = π (1, 2) + φ, and the assumed optimality of
χ (1, 2) = 0 implies

φ ≥ φ̄(1, 2) = β(π (1, 2) + φ) ⇔ φ ≥ βπ (1, 2)

1 − β
.

This contradicts assumption (11); therefore no equilibrium with χ (1, 2) = 0 exists. Next consider
χ (1, 1) = 1. Then V (1, 1) = π (1,1)

1−β
, and the assumed optimality of χ (1, 1) = 1 implies

φ ≤ φ̄(1, 1) = βπ (1, 1)

1 − β
.

This contradicts assumption (11); therefore no equilibrium with χ (1, 1) = 1 exists. This leaves us
with one more possibility: χ (1, 2) = 1 and χ (1, 1) = 0. Here V (1, 2) = π (1,2)

1−β
, and the assumed

optimality of χ (1, 2) = 1 implies

φ ≥ φ̄(1, 1) = βπ (1, 2)

1 − β
,

which again contradicts assumption (11). Hence, there cannot be a symmetric equilibrium in pure
exit strategies.16

16 In this particular example, there exist two asymmetric equilibria in pure exit strategies. In each of them, within
state (1,1), one firm exits for sure and the other firm remains for sure.
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For future reference we note that, although there is no symmetric equilibrium in pure exit
strategies, there is one in mixed exit strategies, given by

V (1, 2) = π (1, 2)

1 − β
, V (1, 1) = π (1, 1) + φ,

ξ (1, 2) = 1, ξ (1, 1) = (1 − β)φ − βπ (1, 2)

β ((1 − β)(π (1, 1) + φ) − π (1, 2))
.

� Example: random scrap values/setup costs. Pakes and McGuire (1994) suggest the use
of random setup costs to overcome convergence problems in their algorithm. Convergence
problems may be indicative of nonexistence in pure entry/exit strategies. In the example above,
an algorithm that seeks a (nonexistent) symmetric equilibrium in pure strategies tends to cycle
between prescribing that neither firm should exit from a duopolistic industry and prescribing that
both firms should exit.

To restore existence, we assume that scrap values are independently and identically
distributed across firms and periods, and that its scrap value is private to itself. We write firm
1’s scrap value as φ + εθ , where ε > 0 is a constant scale factor that measures the importance
of incomplete information. Overloading notation, we assume that θ ∼ F(·) with E (θ ) = 0. The
Bellman equation of firm 1 is

V (1, 2) = sup
ξ̃ (1,2)∈[0,1]

π (1, 2) + (1 − ξ̃ (1, 2))φ + ε
∫

θ>F−1(ξ̃ (1,2))
θd F(θ ) + ξ̃ (1, 2)βV (1, 2),

V (1, 1) = sup
ξ̃ (1,1)∈[0,1]

π (1, 1) + (1 − ξ̃ (1, 1))φ + ε
∫

θ>F−1(ξ̃ (1,1))
θd F(θ )

+ ξ̃ (1, 1)β{ξ (1, 1)V (1, 1) + (1 − ξ (1, 1))V (1, 2)},
where ξ (1, 1) ∈ [0, 1] is firm 2’s exit decision. The optimal exit decisions of firm 1, ξ̃ (1, 2) and
ξ̃ (1, 1), are characterized by ξ̃ (ω) = F( φ̄(ω)−φ

ε
), where17

φ̄(1, 2) = βV (1, 2),

φ̄(1, 1) = β{ξ (1, 1)V (1, 1) + (1 − ξ (1, 1))V (1, 2)}.
Moreover, in a symmetric equilibrium, we must have ξ̃ (ω1, ω2) = ξ (ω2, ω1). This yields a system
of four equations in four unknowns: V (1, 2), V (1, 1), ξ (1, 2), and ξ (1, 1).

To facilitate the analysis, let θ be uniformly distributed on the interval [−1, 1].18 This implies

∫
θ>F−1(ξ (ω))

θd F(θ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if F−1(ξ (ω)) ≤ −1,

1 − F−1(ξ (ω))2

4
if −1 < F−1(ξ (ω)) < 1,

0 if F−1(ξ (ω)) ≥ 1,

where F−1(ξ (ω)) = 2ξ (ω) − 1. There are nine cases to be considered, depending on whether
ξ (1, 1) is equal to 0, between 0 and 1, or equal to 1 and on whether ξ (1, 2) is equal to 0, between
0 and 1, or equal to 1. Table 1 specifies parameter values.

A case-by-case analysis shows that, with random scrap values, there always exists a unique
symmetric equilibrium. If ε > 5, the equilibrium involves 0 < ξ (1, 2) < 1 and 0 < ξ (1, 1) < 1,
and if ε ≤ 5, it involves ξ (1, 2) = 1 and 0 < ξ (1, 1) < 1. Table 2 describes the equilibrium for

17 To see this, note that the first and second derivatives of the right-hand side of the Bellman equation are given by
d(.)

d ξ̃ (ω)
= −φ − εF−1(ξ̃ (ω)) + φ̄(ω) and d2(.)

d ξ̃ (ω)2 = −ε 1
F ′ (F−1(ξ̃ (ω)))

, respectively.
18 Besides the uniform distribution, many others yield a closed-form expression, including triangular and Beta

distributions.
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TABLE 1 Parameter Values

Parameter π (1, 1) π (1, 2) φ β

Value 0 1 15 20
21

TABLE 2 Equilibrium with Random Scrap Values

ε V (1, 2) V (1, 1) ξ (1, 2) ξ (1, 1)

10 23.817544 21.159671 0.884169 0.784836
5 21 18.044922 1 0.780375
2 21 16.392989 1 0.834562
1 21 15.730888 1 0.854920
0.1 21 15.076219 1 0.873034
0.01 21 15.007653 1 0.874804
0.001 21 15.000766 1 0.874980
10−6 21 15.000001 1 0.875000

various values of ε. Given the parameter values in Table 1, the symmetric equilibrium in mixed
strategies of the game of complete information is V (1, 2) = 21, V (1, 1) = 15, ξ (1, 2) = 1, and
ξ (1, 1) = 7

8
= 0.875. As Table 2 shows, the equilibrium with random scrap values converges

to the equilibrium in mixed strategies as ε approaches zero. In Sections 4 and 7, we show that
existence and convergence are general properties of the game of incomplete information.

4. Existence

� In this section, we show how incorporating firm heterogeneity in the form of random scrap
values/setup costs into the Ericson and Pakes’ (1995) model guarantees the existence of an
equilibrium. We specifically establish the existence of a possibly asymmetric equilibrium. The
proof extends Whitt (1980) to our setting. In fact, for the most part, it is a reassembly of his
argument and some general results on dynamic programming due to Denardo (1967). Both
articles use models that are sufficiently abstract to enable us to construct the bulk of the existence
proof by citing their intermediate results. In developing our argument, we assume that firm n’s
investment problem always has a unique solution in order to guarantee that the equilibrium is in
pure investment strategies. We state this assumption in terms of the local income function hn(·).
We then devote Section 5 to providing a sufficient condition in terms of the model’s primitives
for this assumption to hold.

We begin with a series of assumptions. The first one ensures that the model’s primitives are
bounded.

Assumption 1. (i) The state space is finite, that is, N < ∞ and M < ∞. (ii) Profits are bounded,
that is, there exists π̄ < ∞ such that −π̄ < πn(ω) < π̄ for all ω and all n. (iii) Investments
are bounded, that is, x̄ < ∞ and x̄ e < ∞. (iv) Scrap values and setup costs are drawn from
distributions F(·) and Fe(·) that have both positive densities over connected supports and their
expectations exist, that is, there exist φ̄ < ∞ and φ̄e < ∞ such that −φ̄ <

∫ |φn|d F(φn) < φ̄ and
−φ̄e <

∫ |φe
n|d Fe(φe

n) < φ̄e. (v) Firms discount future payoffs, that is, β ∈ [0, 1).

The assumption in part (iii) is without loss of generality because the upper bounds x̄ and
x̄ e can always be chosen large enough to never constrain firms’ optimal investment choices.
Specifically, the best possible net present value of the current and future cash flows that any firm,
be it an incumbent or an entrant, can realize is no greater than V̄ ∗ = φ̄e + π̄

1−β
+ φ̄, which is the

sum of a bound on its entry subsidy (i.e., negative setup cost), the capitalized value of remaining
in the best possible state forever, and a bound on its scrap value. Conversely, because a firm

C© RAND 2010.



DORASZELSKI AND SATTERTHWAITE / 229

always has the option of investing zero, it can guarantee that the net present value of its current
and future cash flows is no worse than −V̄ ∗. Because no firm is ever willing to invest more than
β(V̄ ∗ − (−V̄ ∗)) = 2β V̄ ∗ in order to reap the best instead of the worst possible net present value,
upper bounds on investment in excess of 2β V̄ ∗ never constrain firms’ optimal choices.

The assumption in part (iv) admits distributions F(·) and Fe(·) with either bounded or
unbounded support. From a theorist’s perspective, it is natural to assume bounded supports
because unbounded supports essentially stipulate that some agent is willing to pay an arbitrarily
large amount to acquire the assets of a firm that makes bounded profits from product market
competition. From an empiricist’s perspective, unbounded supports (as assumed by Aguirregabiria
and Mira, 2007 and Pesendorfer and Schmidt-Dengler, 2008) may be attractive because they
guarantee that in the data there cannot be an observation that has zero probability of occurring.

Next we assume continuity of the transition function P(·). Similar continuity assumptions
are commonplace in the literature on dynamic stochastic games (see Mertens, 2002).

Assumption 2. P(ω′, ω, χ (ω, φ), x(ω)) is a continuous function of x(ω) for all ω′, ω, and all
χ (ω, φ).

Observe from equation (10) that current profit is additively separable from investment.
The continuity of the transition function P(·) in x(ω) therefore ensures the continuity of the
local income function hn(·) in x(ω). In addition, hn(·) is continuous in ξ (ω) because, analogous
to equation (1), firm n integrates out over all possible realizations of its rivals’ exit and entry
decisions χ−n(ω, φ−n) to obtain the probability that the industry transits from state ω to state ω′.
Observe further that hn(·) is always continuous in Vn because Vn enters hn(·) in equation (10) via
the expected value of firm n’s future cash flows, E {Vn(ω′)|·}. We record these observations for
later use.

Proposition 1. Under Assumption 2, hn(ω, u(ω), Vn) is a continuous function of u(ω) and Vn for
all ω and all n.

Due to the random scrap values/setup costs, our model is formally a dynamic stochastic
game with a finite state space and a continuum of actions given by the probability that an
incumbent firm remains in the industry/a potential entrant enters the industry and the set of feasible
investment choices. Under Assumptions 1 and 2, standard arguments (e.g., Federgruen, 1978;
Whitt, 1980) yield the existence of an equilibrium in mixed strategies. However, mixed strategies
over continuous actions are infeasible to compute. To guarantee the existence of an equilibrium in
pure investment strategies, we make the additional assumption that firm n’s investment problem
always has a unique solution.

Assumption 3. A unique xn(ω) exists that attains the maximum of hn(ω, 1, xn(ω), u−n(ω), Vn) for
all u−n(ω), Vn, ω, and all n.19

In Section 5, we provide a sufficient condition for Assumption 3 to hold in terms of the
model’s primitives. Specifically, we define UIC admissibility of the transition function P(·) and
prove that this condition ensures uniqueness of investment choice. Therefore, Assumption 3
holds and an equilibrium that is amenable to computation exists. Constructing our argument
in this modular form makes it simple and transparent for other researchers to insert alternative
sufficient conditions for uniqueness of investment choice into our proof and immediately obtain
existence.

Recall that we assume entry and exit decisions are implemented before investment
decisions are carried out. Thus, firm n chooses xn(ω) to maximize hn(ω, 1, xn(ω), u−n(ω), Vn)
in accordance with equations (3) and (6), and the resulting investment choice also maximizes

19 Assumption 3 can be weakened to hold for all possible maximal return functions V ∗
n,u−n

∈ [−V̄ ∗, V̄ ∗]|S|.
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hn(ω, ξn(ω), xn(ω), u−n(ω), Vn) for all ξn(ω) > 0, u−n(ω), Vn, ω, and all n. Clearly any investment
would be optimal whenever an incumbent firm exits for sure or a potential entrant stays out for
sure. Consequently, we adopt the following convention: if ξn(ω) = 0, then we take xn(ω) to have
the value alluded to in Assumption 3. It follows that hn(ω, ξn(ω), xn(ω), u−n(ω), Vn) attains its
maximum for a unique value of xn(ω) independent of the value of ξn(ω). This is a natural conven-
tion because if there were even the slightest chance that firm n would remain in the industry even
though it sets ξn(ω) = 0, then the firm would want to choose this value of xn(ω) as its investment.

The above assumptions ensure existence of an equilibrium.

Proposition 2. Under Assumptions 1, 2, and 3, an equilibrium exists in cutoff entry/exit and pure
investment strategies.

The proof is based on the following idea.20 Fix strategies u−n and consider firm n’s problem.
Because its competitors’ strategies are fixed, firm n has to solve a decision problem (as opposed
to a game problem). We can thus employ dynamic programming techniques to analyze the firm’s
problem. In particular, a contraction mapping argument establishes that the firm’s best reply to
its competitors’ strategies is well defined. It remains to show that there exists a fixed point in the
firms’ best-reply correspondences.

Before stating the proof of Proposition 2, we introduce and discuss a number of constructs.
We start with the decision problem. Let Vn denote the space of bounded |S| × 1 vectors endowed
with the sup norm. Fix u−n ∈ U−n and define the maximal return operator H ∗

n,u−n
: Vn → Vn

pointwise by

(H ∗
n,u−n

Vn)(ω) = sup
ũn (ω)∈Un (ω)

hn(ω, ũn(ω), u−n(ω), Vn).

The number (H ∗
u−n

Vn)(ω) represents the return to firm n in state ω when firm n chooses its optimal
action while the other firms use actions u−n(ω) and firm n’s future returns are described by Vn .
Note that the right-hand side of the above equation coincides with the right-hand side of the
Bellman equation (9).

Because profits and investments are bounded and the expectations of scrap values and setup
costs exist by Assumption 1, H ∗

n,u−n
takes bounded vectors into bounded vectors. Application

of Blackwell’s sufficient conditions (Blackwell, 1965, Theorem 5; see also Stokey and Lucas,
1989, Theorem 3.3) shows that H ∗

n,u−n
is a contraction with modulus β. First, inspection of

equation (10) shows that Vn(ω) ≥ V̂n(ω) for all ω implies (H ∗
n,u−n Vn)(ω) ≥ (H ∗

n,u−n
V̂n)(ω) for all

ω (“monotonicity”). Second, given a constant c ≥ 0, (H ∗
n,u−n(Vn + c))(ω) ≤ (H ∗

n,u−n Vn)(ω) + βc
for all ω (“discounting”).

Because H ∗
n,u−n

is a contraction, the contraction mapping theorem (see Stokey and Lucas,
1989, Theorem 3.2) implies that there exists a unique V ∗

n,u−n
∈ Vn that satisfies V ∗

n,u−n
= H ∗

n,u−n
V ∗

n,u−n

or, equivalently,

V ∗
n,u−n

(ω) = sup
ũn (ω)∈Un (ω)

hn(ω, ũn(ω), u−n(ω), V ∗
n,u−n

) (14)

for all ω. The fixed point V ∗
n,u−n

of H ∗
n,u−n

is called the maximal return function given policies u−n;
it should be thought of as a mapping from U−n into Vn . Clearly, given u−n , the maximal return
function V ∗

n,u−n
solves the Bellman equation (9); it plays a major role in our existence proof.

Before proceeding to the existence proof, we introduce and discuss another operator. Fix
u ∈ U and define the return operator Hn,u : Vn → Vn pointwise by

(Hn,u Vn)(ω) = hn(ω, u(ω), Vn).

The number (Hu Vn)(ω) represents the return to firm n in state ω when the firms use actions
u(ω) and Vn describes firm n’s future returns. Like H ∗

n,u−n
, Hn,u is a contraction with modulus β

20 Given that standard arguments establish the existence of an equilibrium in mixed strategies, it actually suffices
to show that a firm is never willing to mix. The reason that we start from first principles is that we need the machinery
from the proof of Proposition 2 for the proofs of Propositions 3, 5, and 6.
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that takes bounded vectors into bounded vectors. Hence, a unique Vn,u ∈ Vn exists that satisfies
Vn,u = Hn,u Vn,u , that is,

Vn,u(ω) = hn(ω, u(ω), Vn,u) (15)

for all ω. The fixed point Vn,u of Hn,u is called the return function given policies u; it should be
thought of as a mapping from U into Vn .

The return function Vn,u and the maximal return function V ∗
n,u−n

are tightly connected.
Because the return operator Hn,u is monotonic (meaning that Vn(ω) ≥ V̂n(ω) for all ω implies
(Hn,u Vn)(ω) ≥ (Hn,u V̂n)(ω) for all ω), Denardo (1967) establishes that

V ∗
n,u−n

(ω) = sup
ũn∈Un

Vn,ũn ,u−n (ω) (16)

for all ω, where Vn,ũn ,u−n is the fixed point of the return operator given policy (ũn, u−n).
With this machinery in place, we turn to the game problem. Consider the mapping

ϒn : U−n → Un defined by

ϒn(u−n) =
{

ũn ∈ Un : ũn(ω) ∈ arg sup
ũn (ω)∈Un (ω)

hn(ω, ũn(ω), u−n(ω), V ∗
n,u−n

) for all ω

}
. (17)

ϒn(·) is the best-reply correspondence of firm n and ϒn(u−n) is the set of best replies of firm n
given rivals’ policies u−n . Consider further the mapping ϒ : U → U obtained by stacking these
best-reply correspondences. ϒ(u) = (ϒ1(u−1), . . . , ϒN (u−N )) is the set of best replies of firm 1
given rivals’ policies u−1, those of firm 2 given rivals’ policies u−2, etc. An equilibrium exists if
there is a u ∈ U such that u ∈ ϒ(u). To show that such a u exists, we show that ϒ(·) is, in fact, a
continuous function to which Brouwer’s fixed-point theorem applies.

Proof of Proposition 2. We begin by establishing that ϒ(·) is nonempty and upper hemicon-
tinuous. Given policies u−n , firm n’s maximal return function V ∗

n,u−n
is well defined due to

Assumption 1, as shown above. Fix ω. Proposition 1 states that firm n’s local income function
hn(ω, u(ω), Vn) is continuous in u(ω) and Vn. The maximand, hn(ω, un(ω), u−n(ω), V ∗

n,u−n
), in the

definition of ϒn(·) in equation (17) is therefore continuous in un(ω) and u−n if firm n’s maximal
return function V ∗

n,u−n
is continuous in u−n . That this is so is established through appeal to two

lemmas by Whitt (1980).
In Lemma 3.2 he states that if Hn,u Vn is continuous in u for all Vn , then the return function

Vn,u is continuous in u.21 This establishes that Vn,u is a continuous function of u. In Lemma 3.1
he states that if Un(ω), firm n’s set of feasible actions in state ω, is a compact metric space for
all ω, if the state space S is countable, and if the return function Vn,u is continuous in u, then
supũn∈Un

Vn,ũn ,u−n (ω) is continuous in u−n for all ω. These requirements are satisfied. Equation (16)
thus implies that V ∗

n,u−n
(ω) is continuous in u−n for all ω. This, of course, implies that firm n’s

maximal return function V ∗
n,u−n

is continuous in u−n .
Because hn(ω, un(ω), u−n(ω), V ∗

n,u−n
) is continuous in un(ω) and u−n and Un(ω) is compact

and independent of u−n , the theorem of the maximum (see Stokey and Lucas, 1989, Theorem 3.6)
implies that arg supũn (ω)∈Un (ω) hn(ω, ũn(ω), u−n(ω), V ∗

n,u−n
) is nonempty and upper hemicontinuous

in u−n . Because ω was arbitrary, this establishes that ϒn(·) is a nonempty and upper hemicontinuous
correspondence that maps U−n into Un . Hence, ϒ(·) is a nonempty and upper hemicontinuous
correspondence that maps U into U .

We next show that ϒ(·) is single valued. Recall that, given policies u−n , firm n’s maximal
return function V ∗

n,u−n
is well defined, and consider firm n’s best reply in state ω. Uniqueness

of the investment choice follows from Assumption 3 and our convention covering the special
case of ξn(ω) = 0. This, in turn, implies that equations (3) and (6) give unique exit and entry

21 It is immediate to verify that the return operator Hn,u satisfies the boundedness, monotonicity, and contraction
assumptions in Whitt (1980). Whitt (1980) denotes the return function Vn,u by vδ(·, i) and the maximal return function
V ∗

n,u−n
by fδ(·, i). We set Wn = Vn to obtain a special case of Lemma 3.2 in Whitt (1980).

C© RAND 2010.



232 / THE RAND JOURNAL OF ECONOMICS

cutoffs, φ̄n(ω) and φ̄e
n(ω). Given that these cutoffs are unique, the corresponding exit and entry

probabilities, ξn(ω) = F(φ̄n(ω)) (if ωn �= M + 1) and ξn(ω) = Fe(φ̄e
n(ω)) (if ωn = M + 1), must

be unique. Because ω was arbitrary, this establishes that ϒn(·) and hence ϒ(·) is single valued.
Because ϒ(·) is nonempty, single valued, and upper hemicontinuous, it is, in fact, a

continuous function that maps the nonempty, convex, and compact set U into itself. Brouwer’s
fixed-point theorem therefore applies: a u ∈ U exists such that u ∈ ϒ(u). Q.E.D.

5. A sufficient condition for pure investment strategies

� Assumption 3 requires that the local income function hn(ω, 1, xn(ω), u−n(ω), Vn) is maxi-
mized at a unique investment choice xn(ω) for all u−n(ω), Vn, ω, and all n. Fortunately, a judicious
choice of transition probabilities guarantees that the investment choice is indeed unique. In this
section, we first define UIC admissibility of the transition function P(·) and show in Proposition 3
that if this condition on the model’s primitives is satisfied, then Assumption 3 holds. We then
provide a series of examples of transition functions that are UIC admissible and provide a
reasonable amount of flexibility.

Condition 1. The transition function P(·) is unique investment choice (UIC) admissible if, for
all χ−n(ω, φ−n), x(ω), ω′, ω, and all n, the probability P(ω′, ω, 1, χ−n(ω, φ−n), x(ω)) that the
industry moves from state ω to state ω′ given that firm n remains in the industry (or enters the
industry if firm n is an entrant rather than an incumbent) can be written in a separable form as

Kn (ω′, ω, χ−n (ω, φ−n) , x−n(ω)) Qn(ω, xn(ω)) + Ln (ω′, ω, χ−n (ω, φ−n) , x−n(ω)) , (18)

where Qn(ω, x(ω)) is twice differentiable, strictly increasing, and strictly concave in xn(ω), that
is,

d

dxn(ω)
Qn(ω, xn(ω)) > 0,

d2

dxn(ω)2
Qn(ω, xn(ω)) < 0 (19)

for all xn(ω) ∈ [0, x̄] (or xn(ω) ∈ [0, x̄ e] if firm n is an entrant rather than an incumbent).22

UIC admissibility ensures that firm n’s local income function hn(. . . , 1, xn(ω), . . .) either is
strictly concave—and therefore has a unique maximizer—in the interval [0, x̄] (or in the interval
[0, x̄ e] if firm n is an entrant rather than an incumbent) or that the unique maximizer is a corner
solution. This establishes the following.

Proposition 3. If the transition function P(·) is UIC admissible (Condition 1), then Assumption 3
holds.

Proof. Because the proof for a potential entrant is the same with x̄ e replacing x̄ , we focus on
the investment problem of an incumbent firm in what follows. UIC admissibility ensures that the
expected value of firm n’s future cash flow, E {Vn(ω′)|ω,ω′

n �= M + 1, ξ−n(ω), x(ω)}, in its local
income function hn(. . . , 1, xn(ω), . . .) can be written in a separable form as

An(ω, u−n(ω), Vn)Qn(ω, xn(ω)) + Bn(ω, u−n(ω), Vn). (20)

To see this, recall from equation (1) that firm n has to integrate out over all possible realizations
of its rivals’ exit and entry decisions to obtain the probability that the industry moves from state
ω to state ω′. Hence,

22 Condition 1 can be generalized to allow for Q(·) to depend on x−n(ω).
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∑
ω′∈S

Vn(ω′)
∑

ι−n∈{0,1}N−1

P(ω′, ω, 1, ι−n, x(ω))
∏
k �=n

ξk(ω)ιk (1 − ξk(ω))1−ιk

=
∑
ω′∈S

Vn(ω′)
∑

ι−n∈{0,1}N−1

[Kn (ω′, ω, ι−n, x−n(ω)) Qn(ω, xn(ω)) + Ln (ω′, ω, ι−n, x−n(ω))]

×
∏
k �=n

ξk(ω)ιk (1 − ξk(ω))1−ιk

=
[∑

ω′∈S

Vn(ω′)
∑

ι−n∈{0,1}N−1

Kn (ω′, ω, ι−n, x−n(ω))
∏
k �=n

ξk(ω)ιk (1 − ξk(ω))1−ιk

]
︸ ︷︷ ︸

An (ω,u−n (ω),Vn )

Qn(ω, xn(ω))

+
[∑

ω′∈S

Vn(ω′)
∑

ι−n∈{0,1}N−1

Ln (ω′, ω, ι−n, x−n(ω))
∏
k �=n

ξk(ω)ιk (1 − ξk(ω))1−ιk

]
︸ ︷︷ ︸

Bn (ω,u−n (ω),Vn )

,

where the first equality uses the separability condition (18).
Next we differentiate hn(. . . , 1, xn(ω), . . .) with respect to xn(ω). By virtue of equation (20),

the first-order condition for an unconstrained solution to firm n’s investment problem is

−1 + β An(ω, u−n(ω), Vn)
d

dxn(ω)
Qn(ω, xn(ω)) = 0.

There are two cases to consider. First suppose that An(ω, u−n(ω), Vn) > 0. If there exists
a solution to the first-order condition in [0, x̄], say x̂n(ω), then it must be unique because the
objective function is strictly concave on [0, x̄] in light of the derivative condition (19). Hence,
xn(ω) = x̂n(ω) is the unique maximizer. If there does not exist a solution to the first-order condition
in [0, x̄], then the objective function is either strictly decreasing or strictly increasing on [0, x̄].
In the former case the unique maximizer is xn(ω) = 0, and in the latter case it is xn(ω) = x̄ .

Next suppose that An(ω, u−n(ω), Vn) ≤ 0. The objective function is strictly decreasing.
Hence, the unique maximizer is xn(ω) = 0. Q.E.D.

UIC admissibility allows for much more flexibility in the transition probabilities than the
simple schemes seen in the extant literature where each firm each period is restricted to move up
one state, stay the same, or drop down one state. We demonstrate this with a series of increasingly
complex examples all involving an industry with N = 2 firms, M ≥ 3 “active” states, and no
entry and exit.

� Example: independent transitions to immediately adjacent states. Consider a game of
capacity accumulation similar to that in Besanko and Doraszelski (2004). A firm’s state describes
its capacity. In each period, the firm decides how much to spend on an investment project in order
to add to its capacity. If firm n invests xn(ω) ≥ 0, then the probability that its investment project
succeeds is

pn = αxn(ω)

1 + αxn(ω)
,

where the parameter α > 0 measures the effectiveness of investment. Depreciation tends to offset
investment, and we assume that each firm is independently hit by a depreciation shock with
probability δ. The transition probabilities at an interior state ω ∈ {2, . . . , M − 1}2 are given in
Table 3.

Without loss of generality, consider firm 1. The probability of remaining in state ω can be
written as
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TABLE 3 Transition Probabilities for Independent Transitions to Immediately Adjacent States

ω′
2 = ω2 + 1 ω′

2 = ω2 ω′
2 = ω2 − 1

ω′
1 = ω1 + 1 (1 − δ)p1(1 − δ)p2 (1 − δ)p1[δ p2 + (1 − δ)(1 − p2)] (1 − δ)p1δ p2

ω′
1 = ω1 [δ p1 + (1 − δ)(1 − p1)]

× (1 − δ)p2

[δ p1 + (1 − δ)(1 − p1)]

× [δ p2 + (1 − δ)(1 − p2)]

[δ p1 + (1 − δ)(1 − p1)]

× δ p2

ω′
1 = ω1 − 1 δ(1 − p1)(1 − δ)p2 δ(1 − p1)[δ p2 + (1 − δ)(1 − p2)] δ(1 − p1)δ p2

TABLE 4 Transition Probabilities for Dependent Transitions to Immediately Adjacent States

ω′
2 = ω2 + 1 ω′

2 = ω2 ω′
2 = ω2 − 1

ω′
1 = ω1 + 1 (1 − δ)p1 p2 (1 − δ)p1(1 − p2) 0

ω′
1 = ω1 (1 − δ)(1 − p1)p2 (1 − δ)(1 − p1)(1 − p2) + δ p1 p2 δ p1(1 − p2)

ω′
1 = ω1 − 1 0 δ(1 − p1)p2 δ(1 − p1)(1 − p2)

[δ p1 + (1 − δ)(1 − p1)][δ p2 + (1 − δ)(1 − p2)]

= [2δ − 1][δ p2 + (1 − δ)(1 − p2)]︸ ︷︷ ︸
K1(ω,ω,x2(ω))

p1︸︷︷︸
Q1(ω,x1(ω))

+ [1 − δ][δ p2 + (1 − δ)(1 − p2)]︸ ︷︷ ︸
L1(ω,ω,x2(ω))

.

This expression satisfies the separability condition (18), as do the corresponding expressions for
the probabilities of moving to some other state ω′ �= ω. In addition, the derivative condition (19)
is satisfied because

d

dx1(ω)
Q1(ω, x1(ω)) = α

(1 + αx1(ω))2
> 0,

d2

dx1(ω)2
Q1(ω, x1(ω)) = − 2α2

(1 + αx1(ω))3
< 0.

� Example: dependent transitions to immediately adjacent states. Next we introduce
correlation into firms’ transitions by replacing the firm-specific depreciation shocks of the above
example by an industry-wide depreciation shock (e.g., Pakes and McGuire, 1994). Decompose, for
purposes of exposition, the transition of each firm into two stages. In the first stage, the probability
that firm n’s state increases by one is again given by pn . In the second stage, a depreciation shock
reduces the states of all firms by one with probability δ. The transition probabilities at an interior
state ω ∈ {2, . . . , M − 1}2 are given in Table 4.

For the sake of brevity, we just spell out the probability of remaining in state ω,

(1 − δ)(1 − p1)(1 − p2) + δ p1 p2 = [δ − 1 + p2]︸ ︷︷ ︸
K1(ω,ω,x2(ω))

p1︸︷︷︸
Q1(ω,x1(ω))

+ [(1 − δ)(1 − p2)]︸ ︷︷ ︸
L1(ω,ω,x2(ω))

,

and note that conditions (18) and (19) are again both satisfied.

� Example: dependent transitions to arbitrary states. Using the above two-stage decom-
position, much more flexible transitions can be constructed. In the first stage, firm n’s investment
xn(ω) determines a set of transition probabilities to all possible “active” states. For example, the
probability that firm n moves from its initial state ωn to the intermediate state ω̂n ∈ {1, . . . , M}
may be
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζn,ωn ,1 + ηn,ωn ,1 pn if ω̂n = 1,

...
...

...

ζn,ωn ,ωn−1 + ηn,ωn ,ωn−1 pn if ω̂n = ωn − 1,

ζn,ωn ,ωn + ηn,ωn ,ωn pn if ω̂n = ωn,

ζn,ωn ,ωn+1 + ηn,ωn ,ωn+1 pn if ω̂n = ωn + 1,

...
...

...

ζn,ωn ,M + ηn,ωn ,M pn if ω̂n = M,

where xn(ω) affects the probability of a transition from state ωn to state ω̂n either positively of
negatively depending on the sign of ηn,ωn ,ω̂n .23 In the second stage, the industry transits from
its intermediate state ω̂ to its final state ω′ according to some arbitrary, exogenously given
probabilities that may depend on ω̂.

Clearly, pn does not have to equal αxn (ω)
1+αxn (ω)

; it can be of any form that satisfies the derivative
condition (19). For example, let

pn = 1 − e−αxn (ω),

where α > 0. As another example, let

pn =
arctan

(
2α1xn(ω) + α2√

4 − α2
2

)
− arctan

(
α2√

4 − α2
2

)

π

2
− arctan

(
α2√

4 − α2
2

) ,

where α1 > 0 and 0 ≤ α2 < 2. Then pn is increasing in α1 (just as αxn (ω)
1+αxn (ω)

and 1 − eαxn (ω) are
increasing in α) and increasing (decreasing) in α2 to the left (right) of xn(ω) = 1

α1
. That is,

whereas increasing α1 makes investments of all sizes more effective, increasing α2 makes small
investments more and large ones less effective. In addition, xn(ω) = 1

α1
implies pn = 1

2
. Hence,

increasing α2 preserves the median but increases the spread of pn as measured, for example, by
the interquartile range.

UIC admissibility is a sufficient condition and, if it fails, uniqueness of investment choice
can often be achieved by other means. Purification is again a very valuable tool. In particular, a
part of the subsequent literature has assumed that the cost of investment is randomly drawn and
privately known. Ryan (2006) and Besanko, Doraszelski, Lu, and Satterthwaite (2010) extend our
handling of entry and exit to the case of discrete (or “lumpy”) investment. Their models remains
computationally tractable because the equilibrium is in cutoff investment strategies. Focusing
on the case of continuous investment, Jenkins, Liu, Matzkin, and McFadden (2004) restrict the
functional form of per-period payoffs to ensure that a firm’s optimal investment level is almost
always unique given a realization of the cost of investment. Again its rivals perceive the firm as
though it were following a mixed strategy, thereby facilitating the existence of an equilibrium,
although computing these perceptions—as one must in order to determine the rivals’ best replies
to them—becomes somewhat more involved.

6. Symmetry

� In Section 4, we established the existence of a possibly asymmetric equilibrium. We now
show that if the model’s primitives satisfy an additional symmetry assumption, then a symmetric
equilibrium exists.

23 The parameters ζn,ωn ,ω̂n and ηn,ωn ,ω̂n must be chosen to ensure that the probabilities stay in the unit interval for all
xn(ω) ∈ [0, x̄] and sum to one. In particular, this requires

∑M
ω̂n =1 ζn,ωn ,ω̂n = 1 and

∑M
ω̂n =1 ηn,ωn ,ω̂n = 0.
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Informally, the notion of symmetry in Ericson and Pakes (1995) is this: consider an industry
with five firms and suppose that when firm 2 is in state 3 and the other four firms are in states 1,
3, 3, and 6, it invests 50. Symmetry means that when firm 4 is in state 3 and the other four firms
are in states 1, 3, 3, and 6, it also invests 50. Thus, in a symmetric equilibrium, a firm’s policy is
a common function of its own state and the distribution of its rivals’ states.

To formalize this notion of symmetry, let κ = (κ1, . . . , κN ) be a permutation of (1, . . . , N ).
The policy functions u = (u1, . . . , uN ) are symmetric if

un(ωκ1 , . . . , ωκn−1 , ωκn , ωκn+1 , . . . , ωκN ) = uκn (ω1, . . . , ωn−1, ωn, ωn+1, . . . , ωN ) (21)

for all ω, n, and all κ . We say that an equilibrium is symmetric if its policy functions are symmetric.
Moreover, in a symmetric equilibrium, the value functions V = (V1, . . . , VN ) are symmetric and
satisfy the analog of equation (21).

This definition implies two key properties that capture the essence of symmetry:

(i) If the states of two firms are the same, then their actions must be the same. For
example, if ω = (2, 3, 3), then set κ = (2, 3, 1) in equation (21) to obtain u2(3, 3, 2) =
u2(ω2, ω3, ω1) = u3(ω1, ω2, ω3) = u3(2, 3, 3).

(ii) A firm does not care about the identity of its rivals; hence, the firm’s action must be the
same after its rivals’ exchange states. For example, if ω = (2, 3, 4), then set κ = (3, 2, 1)
in equation (21) to obtain u2(4, 3, 2) = u2(ω3, ω2, ω1) = u3(ω1, ω2, ω3) = u2(2, 3, 4).

Inspection shows that these properties imply the notion of symmetry in Ericson and Pakes
(1995): a firm’s policy is a common function of its own state and the distribution of its rivals’
states.

One of the reasons symmetry is important is that it eases the computational burden
considerably. Instead of having to compute value and policy functions for all firms, under
symmetry it suffices to compute value and policy functions for one firm, say firm 1. To see
this, let κ = (n, 2, . . . , n − 1, 1, n + 1, . . . , N ) in equation (21) to obtain

un(ωn, ω2, . . . , ωn−1, ω1, ωn+1, . . . , ωN ) = u1(ω1, ω2, . . . , ωn−1, ωn, ωn+1, . . . , ωN ), (22)

and similarly for the value function. That is, the value and policy of firm n is the same as the
value and policy of firm 1 had their states been interchanged. In addition, symmetry reduces the
size of the state space on which the value and policy functions of firm 1 are defined because firm
1 does not care about the identity of its competitors. To see this, let n = 1 and κ = (1, 2, . . . , k −
1, l, k + 1, . . . , l − 1, k, l + 1, . . . , N ) with k ≥ 2 and l ≥ 2 in equation (21) to obtain

u1(ω1, ω2, . . . , ωl, . . . , ωk, . . . , ωN ) = u1(ω1, ω2, . . . , ωk, . . . , ωl, . . . , ωN ), (23)

and similarly for the value function. That is, only the firm’s own state and the distribution of rivals’
states matter. This latter property is commonly referred to as anonymity or exchangeability.24

We are now ready to state our symmetry assumption.

Assumption 4. The local income functions are symmetric, that is,

hn(ωκ1, . . . , ωκN , uκ1 (ω), . . . , uκN (ω), Vn) = hκn (ω1, . . . , ωN , u1(ω), . . . , uN (ω), Vκn ) (24)

for all u(ω), symmetric V , ω, n, and all κ .

Note that the value functions that enter the local income functions are themselves symmetric.
Some further explanation may be helpful. A permutation κ shuffles firms’ states, actions,

and value functions in a way that preserves the values of their local income functions according

24 Equations (22) and (23) are often together taken as the definition of symmetry (e.g., Doraszelski and Pakes,
2007). It is easy to see that they are equivalent to our notion of symmetry in equation (21). Working with equation (21)
instead of equations (22) and (23) simplifies the notation in the remainder of this section.
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to the principle that identical actions in identical situations yield identical payoffs. Let n = 2 and
κ = (2, 3, 1) in equation (24) to obtain

h2(ω2, ω3, ω1, u2(ω), u3(ω), u1(ω), V2) = h3(ω1, ω2, ω3, u1(ω), u2(ω), u3(ω), V3).

On the left-hand side, firm 2 is in state ω3 and takes action u3(ω) while it faces two rivals, one in
state ω1 and one in state ω2. On the right-hand side, firm 3 is in state ω3 and takes action u3(ω)
while it faces two rivals, one in state ω1 and one in state ω2. Because the state of firm 2 on the
left-hand side is that of firm 3 on the right-hand side and the distribution over states and actions of
firm 2’s rivals on the left-hand side is that of firm 3’s rivals on the right-hand side, their respective
situations are identical.

Although we have stated Assumption 4 in terms of the local income functions to facilitate
the adaptation of our existence proof to other models, it is readily tied to the model’s primitives.

Condition 2. The model’s primitives are symmetric if (i) the profit functions are symmetric, that
is,

πn(ωκ1 , . . . , ωκN ) = πκn (ω1, . . . , ωN )

for all ω, n, and all κ and (ii) the transition function is symmetric, that is,

P(ω′
κ1
, . . . , ω′

κN
, ωκ1 , . . . , ωκN , χκ1 (ω, φκ1 ), . . . , χκN (ω, φκN ), xκ1 (ω), . . . , xκN (ω))

= P(ω′
1, . . . , ω

′
N , ω1, . . . , ωN , χ1(ω, φ1), . . . , χN (ω, φN ), x1(ω), . . . , xN (ω))

for all χ (ω, φ), x(ω), ω′, ω, and all κ .

Proposition 4. If the model’s primitives are symmetric (Condition 2), then Assumption 4 holds.

The proof of Proposition 4 is straightforward but tedious and therefore omitted. Note
that in the special case of independent transitions, part (ii) of Condition 2 is satisfied
whenever the factors Pn(·) of the transition function P(·) are the same across firms, that is,
Pn(ω′

n, ωn, χn(ω, φn), xn(ω)) = P1(ω′
n, ωn, χn(ω, φn), xn(ω)) for all n.

Together with Assumptions 1, 2, and 3 in Section 4, Assumption 4 ensures existence of a
symmetric equilibrium.

Proposition 5. Under Assumptions 1, 2, 3, and 4, a symmetric equilibrium exists in cutoff
entry/exit and pure investment strategies.

The idea of the proof is as follows. Symmetry allows us to restrict attention to the best-reply
correspondence of firm 1. To enforce the anonymity that symmetry implies, we redefine the state
space employing Ericson and Pakes’ (1995) notion that symmetry means each firm’s investment
is a common function of its own state and the distribution of its rivals’ states. This reduced state
space makes it impossible for firm 1 to tailor its policy to the identity of its competitors. An
argument analogous to the proof of Proposition 2 shows that there exists a fixed point to the
best-reply correspondence of firm 1. We use this fixed point to construct a candidate equilibrium
by specifying symmetric policies for all firms. The associated value functions are also symmetric.
Finally, to complete the argument, we exploit the symmetry of the local income functions to show
that no firm has an incentive to deviate from the candidate equilibrium.

In preparation for proving Proposition 5, we introduce the necessary notation to construct the
candidate equilibrium. To understand our notation, it is helpful to keep in mind that the candidate
equilibrium will be symmetric. We begin with defining the reduced state space. Consider firm n and
state ω. Define σn = (σn,1, . . . , σn,M , σn,M+1), where σn,m denotes the number of competitors of firm

n that are in state m (excluding firm n), and � =
{
σn ∈ {0, 1, . . . , N − 1}|∑M+1

m=1 σn,m = N − 1
}

to be the set of values that σn can take on. Rewrite ω as (ωn, σn). Let S◦ = � × � denote the
reduced state space and S = �N the full state space. Define a function τn : S → S◦ such that
τn(ω) = (ωn, σn); it maps the full to the reduced state space. For example, if N = 4, M = 3,
and ω = (3, 2, 2, 4), then (ω1, σ1) = τ1(ω) = (3, 0, 2, 0, 1) and (ω3, σ3) = τ3(ω) = (2, 0, 1, 1, 1).
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Note that no information is lost in going from the full to the reduced state space, provided that the
equilibrium is symmetric. In particular, τ1(ω) contains all the information in ω that is required to
evaluate the value and policy functions of firm 1. Note also that in general the reduced state space
is considerably smaller than the full state space: it has just |S◦| = (M + 1)(M+N−1

N−1
) < (M + 1)N =

|S| states.25

Define the inverse function τ−1
n : S◦ → S such that ω = τ−1

n (ωn, σn) is a fixed selection
from the set {ω|(ωn, σn) = τn(ω)}. We adopt the convention that ω = τ−1

n (ωn, σn) satisfies ω1 ≤
ω2 ≤ · · · ≤ ωn−1 ≤ ωn+1 ≤ · · · ≤ ωN . Observe that, if ω̂ = τ−1

n (τn(ω)), then ω̂ is obtained from ω

by rearranging the elements of ω−n . For example, (3, 2, 2, 5) = τ−1
1 (τ1(3, 2, 5, 2)), (2, 2, 3, 5) =

τ−1
2 (τ2(3, 2, 5, 2)), and so forth. A state ω̌ is called canonical if and only if ω̌ = τ−1

1 (ω̌1, σ1) for
some (ω̌1, σ1). We use the symbol ˇ to distinguish canonical states in the remainder of this section.

Next we redefine actions, strategies, and payoffs on the reduced state space. We use the
symbol ◦ to distinguish objects defined on the reduced state space from the corresponding
objects defined on the full state space. For example, we write u◦

1(ω1, σ1) ∈ U ◦
1 (ω1, σ1) instead

of u1(ω) ∈ U1(ω), where U ◦
1 (ω1, σ1) = U1(τ

−1
1 (ω1, σ1)) because U1(ω) merely hinges on ω1 (see

equation (8)). By construction, a strategy u◦
1 = ×(ω1,σ1)∈S◦u◦

1(ω1, σ1) ∈ ×(ω1,σ1)∈S◦U ◦
1 (ω1, σ1) = U ◦

1

defined on the reduced state space satisfies anonymity. Consequently, in terms of the reduced
state space, a symmetric equilibrium is one in which all firms use the same strategy, that is,
u◦

n(ωn, σn) = u◦
1(ωn, σn) for all ωn and all σn . Turning to payoffs, we take the local income

function of firm 1 on the reduced state space to be

h◦
1

(
(ω1, σ1), u◦

1(ω1, σ1), u◦
2

(
τ2

(
τ−1

1 (ω1, σ1)
))

, . . . , u◦
N

(
τN

(
τ−1

1 (ω1, σ1)
))

, V ◦
1

)
= h1

(
τ−1

1 (ω1, σ1), u◦
1(ω1, σ1), u◦

2

(
τ2

(
τ−1

1 (ω1, σ1)
))

, . . . , u◦
N

(
τN

(
τ−1

1 (ω1, σ1)
))

,�1

(
V ◦

1

))
,

(25)

where �n maps firm 1’s value (or policy) function, V ◦
1 , defined on the reduced state space to

firm n’s value (or policy) function, Vn , defined on the full state space. That is, the mapping �n is
defined such that Vn = �n(V ◦

1 ) if and only if

Vn(ω) = V ◦
1 (τn(ω))

for all ω.
This notation permits us to define the best-reply correspondence for firm 1 and to construct

the candidate equilibrium. Define the maximal return operator H ◦∗
1,u◦

1
: V◦

1 → V◦
1 pointwise by(

H ◦∗
1,u◦

1
V ◦

1

)
(ω1, σ1) = sup

ũ◦
1(ω1,σ1)∈U◦

1 (ω1,σ1)

h◦
1

(
(ω1, σ1), ũ◦

1(ω1, σ1),

u◦
1

(
τ2

(
τ−1

1 (ω1, σ1)
))

, . . . , u◦
1

(
τN

(
τ−1

1 (ω1, σ1)
))

, V ◦
1

)
,

where, to enforce symmetry, we take all rivals of firm 1 to use the same strategy, namely u◦
1. The

maximal return function V ◦∗
1,u◦

1
satisfies V ◦∗

1,u◦
1
= H ◦∗

1,u◦
1
V ◦∗

1,u◦
1
. It is well defined and continuous in u◦

1

as in the proof of Proposition 2. Note that there is no circularity involved in the construction of
V ◦∗

1,u◦
1

because u◦
1 is taken as given. Define the best-reply correspondence ϒ ◦

1 : U ◦
1 → U ◦

1 by

ϒ ◦
1

(
u◦

1

) =
{

ũ◦
1 ∈ U ◦

1 : ũ◦
1(ω1, σ1) ∈ arg sup

ũ◦
1(ω1,σ1)∈U◦

1 (ω1,σ1)

h◦
1

(
(ω1, σ1), ũ◦

1(ω1, σ1),

u◦
1

(
τ2

(
τ−1

1 (ω1, σ1)
))

, . . . , u◦
1

(
τN

(
τ−1

1 (ω1, σ1)
))

, V ◦∗
1,u◦

1

)
for all (ω1, σ1)

}
. (26)

Under Assumptions 1, 2, and 3, a u◦
1 ∈ U ◦

1 exists such that u◦
1 ∈ ϒ ◦

1 (u◦
1). To see this note that, as

in the proof of Proposition 2, ϒ ◦
1 (·) is nonempty, single valued, and upper hemicontinuous and

thus a function to which Brouwer’s fixed-point theorem applies.

25 Gowrisankaran (1999b) develops an algorithm for the efficient representation of the reduced state space.
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Construct a candidate equilibrium by using u◦
1 to define firm n’s policy function on the full

state space to be

un = �n(u◦
1). (27)

Turning from the equilibrium policy functions to the corresponding value functions, similarly
define firm n’s value function on the full state space to be

V ∗
n,u−n

= �n

(
V ◦∗

1,u◦
1

)
. (28)

By construction, the above value and policy functions are symmetric.
It remains to show that no firm has an incentive to deviate from the candidate equilibrium

that, by construction, is symmetric. Specifically, we show that even if we allowed a firm to tailor
its policy to the identity of its competitors (as it is always free to do in the original state space and
perhaps also in reality), the firm has no incentive to do so.26 This justifies the common practice
of computing equilibria directly on the reduced state space.

Proof of Proposition 5. The proof has three steps. The first step is to show that the problem of
firm n in state ω is identical to the problem of firm 1 in state ω̂ that is obtained by switching the
first with the nth element of ω. Equation (8) implies Un(ω) = U1(ω̂) so that the set of feasible
actions of firm n in state ω is the same as that of firm 1 in state ω̂. Moreover, for an arbitrary
action ũn(ω) ∈ Un(ω), we have

hn

(
ω, u1(ω), u2(ω), . . . , un−1(ω), ũn(ω), un+1(ω), . . . , uN (ω), V ∗

n,u−n

)
= h1

(
ω̂, ũn(ω), u2(ω), . . . , un−1(ω), u1(ω), un+1(ω), . . . , uN (ω), V ∗

1,u−1

)
= h1

(
ω̂, ũn(ω), u2(ω̂), . . . , un−1(ω̂), un(ω̂), un+1(ω̂), . . . , uN (ω̂), V ∗

1,u−1

)
,

where the first equality follows from the symmetry of the value and local income functions and
the second from the symmetry of the policy functions. Hence, the local income function of firm
n in state ω is the same as that of firm 1 in state ω̂.

The second step is to show that the problem of firm 1 in the (possibly) noncanonical state ω̂

is identical to the problem of firm 1 in the canonical state ω̌ that is obtained from ω̂ by rearranging
the elements of ω̂−1. Formally, ω̌1 = ω̂1 and ω̌n = ω̂κn for some permutation κ−1 = (κ2, . . . , κN )
of (2, . . . , N ). We have U1(ω̂) = U1(ω̌) for the set of feasible actions and, for an arbitrary action
ũ1(ω̂) ∈ U1(ω̂),

h1

(
ω̂, ũ1(ω̂), u2(ω̂), . . . , uN (ω̂), V ∗

1,u−1

)
= h1

(
ω̌, ũ1(ω̂), uκ2 (ω̂), . . . , uκN (ω̂), V ∗

1,u−1

)
= h1

(
ω̌, ũ1(ω̂), u2(ω̌), . . . , uN (ω̌), V ∗

1,u−1

)
,

where the first equality follows from the symmetry of the value and local income functions and
the second from the symmetry of the policy functions.

The third and final step is to show that firm 1 in the canonical state ω̌ has no incentive to
deviate from the candidate equilibrium. For an arbitrary action ũ1(ω̌) ∈ U1(ω̌), we have

h1

(
ω̌, ũ1(ω̌), u2(ω̌), . . . , uN (ω̌), V ∗

1,u−1

)
= h1

(
ω̌, ũ1(ω̌), u◦

1(τ2(ω̌)), . . . , u◦
1(τN (ω̌)),�1

(
V ◦∗

1,u◦
1

))
= h1

(
τ−1

1 (ω̌1, σ1), ũ1(ω̌), u◦
1

(
τ2

(
τ−1

1 (ω̌1, σ1)
))

, . . . , u◦
1

(
τN

(
τ−1

1 (ω̌1, σ1)
))

,�1

(
V ◦∗

1,u◦
1

))
= h◦

1

(
(ω̌1, σ1), ũ1(ω̌), u◦

1

(
τ2

(
τ−1

1 (ω̌1, σ1)
))

, . . . , u◦
1

(
τN

(
τ−1

1 (ω̌1, σ1)
))

, V ◦∗
1,u◦

1

)
, (29)

26 This final step is absent from Pesendorfer and Schmidt-Dengler’s (2008) proof of their Corollary 1 asserting that
a symmetric equilibrium exists if the primitives are symmetric.
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where the first equality follows from equations (27) and (28), the second from the fact that
ω̌ = τ−1(ω̌1, σ1) for some (ω̌1, σ1) because ω̌ is canonical, and the last from equation (29).
Moreover, we have U1(ω̌) = U1(τ−1

1 (ω̌1, σ1)) = U ◦
1 (ω̌1, σ1) for the set of feasible actions. Because

the last line of equation (29) is the maximand of firm 1 in the best-reply correspondence in
equation (26), firm 1 has no incentive to deviate. Moreover, because the problem of firm n in state
ω is identical to the problem of firm 1 in state ω̌ by the first two steps of the proof, no firm has an
incentive to deviate from the candidate equilibrium. Q.E.D.

Combining Propositions 3, 4, and 5, we are ready to state our main result establishing that a
computationally tractable equilibrium exists in our model.

Theorem 1. Suppose Assumptions 1 and 2 hold. If the transition function P(·) is UIC admissible
(Condition 1) and the model’s primitives are symmetric (Condition 2), then a symmetric
equilibrium exists in cutoff entry/exit and pure investment strategies.

7. Convergence to equilibria in mixed strategies

� In this section, we relate our game with random scrap values/setup costs to the game of
complete information. To do so, we write firm n’s scrap value as φ + εθn if ωn �= M + 1 and
its setup cost as φe + εθ e

n if ωn = M + 1, where ε > 0 is a constant scale factor that measures
the importance of incomplete information. Overloading notation, we assume that θn ∼ F(·) and
θ e

n ∼ Fe(·) with E (θn) = E (θ e
n ) = 0. Substituting into equation (10), firm n’s return or local

income function hε
n(·) becomes

hε

n(ω, un(ω), Vn)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

πn(ω) + (1 −ξn(ω))φ + ε
∫

θn>F−1(ξn (ω))
θnd F(θn)

+ ξn(ω)
{

−xn(ω) + βE {Vn(ω′)|ω,ω′
n �= M + 1, ξ−n(ω), x(ω)}

}
if ωn �= M + 1,

− ε
∫

θe
n <Fe−1(ξn (ω))

θ e
n d Fe

(
θ e

n

)
+ ξn(ω)

{
−φe − xn(ω) + βE {Vn(ω′)|ω,ω′

n �= M + 1, ξ−n(ω), x(ω)}
}

if ωn = M + 1,

where ξn(ω) = ∫
χn(ω, θn)d F(θn) = ∫

1(φ + εθn < φ̄n(ω))d F(θn) = F( φ̄n (ω)−φ

ε
), and so forth.

Proposition 2 in Section 4 guarantees the existence of an equilibrium in cutoff entry/exit and
pure investment strategies for any fixed ε > 0. Note that h0

n(·) is the local income function that
obtains in a game of complete information. As our example in Section 3 has shown, there is a need
to allow for mixed entry/exit strategies in a game with deterministic scrap values/setup costs such
as in Ericson and Pakes (1995). We thus ask whether the equilibrium of the game of incomplete
information converges to the equilibrium in mixed entry/exit strategies as ε approaches zero. The
following proposition gives an affirmative answer.

Proposition 6. Suppose Assumptions 1, 2, and 3 hold, and consider a sequence {εl} such that
liml→∞ εl = 0. Let {ul} be a corresponding sequence of equilibria in cutoff entry/exit strategies
such that liml→∞ ul = u. Then u is an equilibrium in mixed entry/exit strategies.

Proof. Let {V εl

ul } be the corresponding sequence of return functions where V εl

n,ul satisfies V εl

n,ul =
H εl

n,ul V εl

n,ul . Repeating the argument that led to equation (15) in Section 4 shows that each element
of {V εl

ul } is well defined due to Assumption 1. Moreover, because H ε
n,u Vn is continuous in ε and

u for all Vn , Whitt (1980) implies that the return function V ε
n,u is continuous in ε and u. Let

Vn,u = liml→∞ V εl

n,ul for all n.
The proof proceeds in two steps. In the first step, we verify that the limiting strategy un

is optimal given the return function Vn,u for all n. In the second step, we verify that the return
function Vn,u coincides with the maximal return function for all n.

C© RAND 2010.



DORASZELSKI AND SATTERTHWAITE / 241

Suppose un(ω) �∈ arg supũn (ω)∈Un (ω) h0
n(ω, ũn(ω), u−n(ω), Vn,u) for some ω and some n. Then

there exists ũn(ω) ∈ Un(ω) such that

h0
n(ω, ũn(ω), u−n(ω), Vn,u) > h0

n(ω, un(ω), u−n(ω), Vn,u).

Because hε
n(ω, u(ω), Vn,u) is a continuous function of ε, u(ω), and Vn,u , there exists L large enough

such that

hεl

n

(
ω, ũn(ω), ul

−n(ω), V εl

n,ul

)
> hεl

n

(
ω, ul

n(ω), ul
−n(ω), V εl

n,ul

)
for all l ≥ L . Hence, ul

n(ω) �∈ arg supũn (ω)∈Un (ω) hεl

n (ω, ũn(ω), ul
−n(ω), V εl

n,ul ) and we obtain a contra-
diction.

It remains to verify that the return function Vn,u coincides with the maximal return function
for all n. By construction, V εl

n,ul satisfies V εl

n,ul (ω) = hεl

n (ω, ul(ω), V εl

n,ul ) for all ω. Taking limits on
both sides shows that Vn,u satisfies Vn,u(ω) = h0

n(ω, u(ω), Vn,u) for all ω. Using the first step of
the proof, we have

Vn,u(ω) = h0
n(ω, u(ω), Vn,u) = sup

ũn (ω)∈Un (ω)
h0

n(ω, ũn(ω), u−n(ω), Vn,u)

for all ω. Because Vn,u is a fixed point of the maximal return operator of the game of complete
information, it is the maximal return function. Q.E.D.

Convergence results for static games date back at least to Harsanyi (1973) but, to the best
of our knowledge, ours is the first such result for dynamic stochastic games.27 The proof of
Proposition 6 relies on the continuity of the return function V ε

n,u . The fact that continuity obtains
further illustrates the power of the dynamic programming approach.

Note that Proposition 6 does not imply that liml→∞ ul exists. On the other hand, because U
is compact, every sequence {ul} has a convergent subsequence, and Proposition 6 applies to the
subsequential limit. This establishes the following.

Corollary 1. Under Assumptions 1, 2, and 3, an equilibrium exists in mixed entry/exit and pure
investment strategies in the Ericson and Pakes’ (1995) model.

8. Conclusions

� This article provides a general model of dynamic competition in an oligopolistic industry
with investment, entry, and exit and ensures that there exists a computationally tractable
equilibrium for it. Our starting point is the observation that existence of an equilibrium in
the Ericson and Pakes’ (1995) game of complete information requires mixed entry/exit strategies.
This is problematic from a computational point of view because the existing algorithms—notably
Pakes and McGuire (1994, 2001)—cannot cope with mixed strategies. We therefore introduce
firm heterogeneity in the form of randomly drawn, privately known scrap values and setup
costs into the model. We show that the resulting game of incomplete information always has an
equilibrium in cutoff entry/exit strategies that is no more demanding to compute than a (possibly
nonexistent) equilibrium in pure entry/exit strategies of the original game of complete information.
We further ensure that the equilibrium is in pure investment strategies by first assuming that a
firm’s investment choice always is uniquely determined. We then show that this assumption is
satisfied provided the transition function is UIC admissible. This, in fact, is a key contribution
because UIC admissibility is defined with respect to the model’s primitives and is easily checked.

We build on our basic existence result in three ways. First, we show that a symmetric
equilibrium exists under the appropriate assumptions on the model’s primitives. Requiring the

27 In subsequent work, Doraszelski and Escobar (2010) provide a convergence result for general dynamic stochastic
games with finite state and action spaces. They also show that the approachability part of Harsanyi’s (1973) purification
theorem carries over from static games to dynamic stochastic games. That is, all equilibria of the original game are
approached by some equilibrium of the perturbed game as the perturbation vanishes.
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equilibrium to be symmetric is important because it reduces the computational burden and forces
heterogeneity to arise endogenously among ex ante identical firms. Second, we show that, as
the distribution of the random scrap values/setup costs becomes degenerate, equilibria in cutoff
entry/exit strategies converge to equilibria in mixed entry/exit strategies of the game of complete
information. Third, as a byproduct, this last result implies that there exists an equilibrium in
the Ericson and Pakes’ (1995) model, provided that mixed entry/exit strategies are admissible.
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