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We present a measure of entanglement that can be computed effectively for any mixed state of an arbitrary

bipartite system. We show that it does not increase under local manipulations of the system, and use it to obtain

a bound on the teleportation capacity and on the distillable entanglement of mixed states.
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I. INTRODUCTION

In recent years it has been realized that quantum mechan-

ics offers unexpected possibilities in information transmis-

sion and processing, and that quantum entanglement of com-

posite systems plays a major role in many of them. Since

then, a remarkable theoretical effort has been devoted both to

classifying and quantifying entanglement.

Pure-state entanglement of a bipartite system is presently

well understood, in that the relevant parameters for its opti-

mal manipulation under local operations and classical

communication ~LOCC! have been identified, in some

asymptotic sense @1# as well as for the single-copy case @2#.

Given an arbitrary bipartite pure state ucAB&, the entropy of

entanglement E(cAB) @1#, namely, the von-Neumann en-

tropy of the reduced density matrix rA[TrBucAB&^cABu,
tells us exhaustively about the possibilities of transforming,

using LOCC, ucAB& into other pure states, in an asymptotic

sense. When manipulating a single copy of ucAB& , this infor-

mation is provided by the n entanglement monotones E l

5( i5l
n l i (l51, . . . ,n) @2#, where l i are the eigenvalues of

rA in decreasing order.
Many efforts have also been devoted to the study of the

mixed-state entanglement. In this case several measures have
been proposed. The entanglement of formation EF(r) @3#
—or, more precisely, its renormalized version, the entangle-
ment cost EC(r) @4#— and the distillable entanglement
ED(r) @3# quantify, respectively, the asymptotic pure-state
entanglement required to create r , and that which can be
extracted from r , by means of LOCC. The relative entropy
of entanglement @5# appears as a third, related measure @6#
that interpolates between EC and ED @7#.

However, in practice, it is not known how to effectively
compute these measures, nor any other, for a generic mixed
state, because they involve variational expressions. To our
knowledge, the only exceptions are Wootter’s closed expres-
sion for the entanglement of formation EF(r) @and concur-

rence C(r)# of two-qubit states @8#, and its single-copy ana-
log E2(r) also for two qubits @9#.

Multipartite pure-state entanglement represents the next
order of complexity in the study of entanglement, and is of
interest, because one hopes to gain a better understanding of
the correlations between different registers of a quantum

computer. Consider a tripartite state ucABC&. Some of its en-
tanglement properties depend on those of the two-party re-
duced density matrices, which are in a mixed state. For in-
stance, the relative entropy of rAB[ tr CucABC&^cABCu has
been used to prove that bipartite and tripartite pure-state en-
tanglements are asymptotically inequivalent @10#. Thus, the
lack of an entanglement measure that can be easily computed
for bipartite mixed states is not only a serious drawback in
the study of mixed-state entanglement, but also a limitation
for understanding multipartite pure-state entanglement.

The aim of this paper is to introduce a computable mea-
sure of entanglement @11#, and thereby fill an important gap
in the study of entanglement. It is based on the trace norm of
the partial transpose rTA of the bipartite mixed state r , a
quantity whose evaluation is completely straightforward us-
ing standard linear algebra packages. It essentially measures
the degree to which rTA fails to be positive, and therefore it
can be regarded as a quantitative version of Peres’ criterion
for separability @12#. From the trace norm of rTA, denoted by
uurTAuu1, we will actually construct two useful quantities. The
first one is the negativity

N~r ![
irTAi121

2
, ~1!

which corresponds to the absolute value of the sum of nega-
tive eigenvalues of rTA @13#, and which vanishes for unen-
tangled states. As we will prove here, N(r) does not increase
under LOCC, i.e., it is an entanglement monotone @14#, and
as such it can be used to quantify the degree of the entangle-
ment in composite systems. We will also consider the loga-

rithmic negativity

EN ~r ![log2uurTAuu1 , ~2!

which again exhibits some form of monotonicity under
LOCC ~it does not increase during deterministic distillation
protocols! and is, remarkably, an additive quantity.

The importance of N and EN is boosted, however, be-
yond their practical computability by two results that link
these measures with relevant parameters characterizing en-
tangled mixed states. The negativity will be shown to bound
the extent to which a single copy of the state r can be used,
together with LOCC, to perform quantum teleportation @15#.
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In turn, the logarithmic negativity bounds the distillable en-

tanglement ED
e contained in r , that is, the amount of ‘‘almost

pure’’-state entanglement that can be asymptotically distilled
from r ^ N, where ‘‘almost’’ means that some small degree e
of imperfection is allowed in the output of the distillation
process.

Remarkably, this last result has already found an applica-
tion in the context of asymptotic transformations of bipartite
entanglement @16#, as a means to prove that @positive partial
transposition ~PPT!# bound entangled states @17# cannot be
distilled into entangled pure states even if loaned ~i.e., sub-
sequently recovered for replacement! pure-state entangle-
ment is used to assist the distillation process. In this way, the
bound on distillability implied by EN has contributed to
prove that, in a bipartite setting, asymptotic local manipula-
tion of the mixed-state entanglement is sometimes, in con-
trast to its pure-state counterpart, an inherently irreversible
process.

We have divided this paper into seven sections. In Sec. II
some properties of the negativity N, such as its monotonicity
under LOCC, and of the logarithmic negativity EN are
proved. We also discuss a more general construction leading
to several other ~nonincreasing under LOCC! negativities. In
Secs. III and IV we derive, respectively, the bounds on tele-
portation capacity and on asymptotic distillability. Then in
Sec. V we calculate the explicit expression of N and EN for
pure states and for some highly symmetric mixed states, also
for Gaussian states of light field. In Sec. VI extensions of
these quantities to multipartite systems are briefly consid-
ered, and Sec. VII contains some discussion and conclusions.

II. MONOTONICITY OF N„r… UNDER LOCC

In this section we show that the negativity N(r) is an
entanglement monotone. We first give a rather detailed proof
of this result. Then we sketch an argument extending this
observation to several other similarly constructed
negativities—e.g., the robustness of entanglement @18#.

A. Definition and basic properties

From now on we will denote by r a generic state of a
bipartite system with finite-dimensional Hilbert space HA

^ HB[C
dA ^C

dB shared by two parties, Alice and Bob. rTA

denotes the partial transpose of r with respect to Alice’s
subsystem, that is the Hermitian, trace-normalized operator
defined to have matrix elements

^iA , jBurTAukA ,lB&[^kuA , jBruiA ,lB& ~3!

for a fixed but otherwise arbitrary orthonormal product basis
uiA , jB&[ui&A ^ u j&BPHA ^ HB . The trace norm of any Her-

mitian operator A is iAi1[trAA†A ~ @19# Sec.VI 6!, which is
equal to the sum of the absolute values of the eigenvalues
of A, when A is Hermitian @20#. For density matrices, all
eigenvalues are positive and thus iri15trr51. The partial
transpose rTA also satisfies tr@rTA#51, but since it may have
negative eigenvalues m i,0, its trace norm reads in general

irTAi15112U(
i

m iU[112N~r !. ~4!

Therefore, the negativity N(r)—the sum u( im iu of the nega-
tive eigenvalues m i of rTA—measures by how much rTA fails
to be positive definite. Notice that for any separable or un-
entangled state rs @21#,

rs5(
k

pkuek , f k&^ek , f ku; pk>0,(
k

pk51, ~5!

its partial transposition is also a separable state @12#

r
s

TA
5(

k
pkuek

* , f k&^ek
* , f ku>0, ~6!

and therefore ir
s

TAi151 and N(rs)50.

The practical computation of N(r) is straightforward, us-
ing standard linear algebra packages for eigenvalue compu-
tation of Hermitian matrices. On the other hand, this repre-
sentation is not necessarily the best for proving estimates and
general properties of N(r). To begin with a simple example,
consider the property that N(r) does not increase under mix-
ing

Proposition 1. N is a convex function, i.e.,

N S (
i

p ir iD<(
i

p iN~r i!, ~7!

whenever the r i are Hermitian, and p i>0 with ( ip i51.
There is nothing to prove here, when we write N(r)

5(irTAi121)/2, and observe that i•i1, as any norm, satis-
fies the triangle inequality and is homogeneous of degree 1
for positive factors, hence convex.

However, the fact that iri1 is indeed a norm is not so
obvious, when it is defined in terms of the eigenvalues. This
is shown best by rewriting it as a variational expression. Our
reason for recalling this standard observation from the theory
of the trace norm is that the same variational expression will
be crucial for showing monotonicity under LOCC opera-
tions. The variational expression is simply the representation
of a general Hermitian matrix A as a difference of positive
operators: Since we are in finite dimension we can always
write

A5a1r1
2a2r2, ~8!

where r6>0 are density matrices (tr @r6#51) and a6>0
are positive numbers. Note that by taking the trace of this
equation we simply have tr@A#5a12a2 .

Lemma 2. For any Hermitian matrix A there is a decom-
position of the form ~8! for which a11a2 is minimal. For
this decomposition, iAi15a11a2 , and a2 is the absolute
sum of the negative eigenvalues of A.

Proof. Let P2 be the projector onto the negative eigen-
valued subspace of A, and N52tr @AP2# the absolute sum
of the negative eigenvalues. We can reverse the decomposi-
tion ~8! to obtain that A1a2r2 is positive semidefinite. This
implies that
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0<tr @~A1a2r2!P2#52N1a2tr @r2P2# . ~9!

But tr@r2P2#<1, that is a2>N. This bound can be satu-
rated with the choice a2r2[2P2AP2 ~corresponding to
the Jordan decomposition of A, where r2 and r1 have dis-
joint support!, which ends the proof. h

For the negativity we, therefore, get the formula

N~A !5inf$a2uATA5a1r1
2a2r2%, ~10!

where the infimum is over all density matrices r6 and a6

>0.
Another remarkable property of N(r) is the easy way in

which N(r1 ^ r2) relates to the negativity of r1 and that of
r2. This relationship is an important, but notoriously difficult
issue for discussing asymptotic properties of entanglement
measures ~see, e.g., @22# for a discussion and a counterexam-
ple to the conjectured additivity of the relative entropy of
entanglement!.

For the entanglement measure proposed in this paper we
get additivity for free. We start from the identity ir1 ^ r2i1

5ir1i1ir2i1, which is best shown by using the definition of
the trace norm via eigenvalues, and we observe that partial
transposition commutes with taking tensor products. After
taking logarithms, we find for the logarithmic negativity

EN ~r1 ^ r2!5EN ~r1!1EN ~r2!. ~11!

It might seem from this that EN is a candidate for the much
sought for canonical measure of entanglement. However, it
has other drawbacks. For instance, it is not convex, as is
already suggested by the combination of a convex functional
~the trace norm! with the concave log function, which im-
plies that it increases under some LOCC. And although it has
an interesting, monotonic behavior during asymptotic distil-
lation ~as shown in Sec. IV!, it does not correspond to the
entropy of entanglement for pure states ~see Sec. V!.

B. Negativity as a mixed-state entanglement monotone

By definition, a LOCC operation ~possibly for many par-
ties! consists of a sequence of steps, in each of which one of
the parties performs a local measurement and broadcasts the
result to all other parties. In each round the local measure-
ment chosen is allowed to depend on the results of all prior
measurements. If at the end of a LOCC operation with initial
state r the classical information available is ‘‘i ,’’ which oc-
curs with probability p i , and final state conditional on this

occurrence is r i8 , we require of an entanglement monotone

@14# E that

E~r !>(
i

p iE~r i8!. ~12!

It is clear by iteration that this may be proved by looking at
just one round of a LOCC protocol, consisting of a single
local operation. In the present case, since N makes no dis-
tinction between Alice and Bob, it suffices to consider just
one local measurement by Bob.

Now the most general local measurement is described by
a family Mi of completely positive linear maps such that, in

the notation used in the previous paragraph, Mi(r)5p ir i8 .

These maps satisfy the normalization condition
( itr @Mi(r)#5tr(r). This can be further simplified @14#
when some Mi can be decomposed further into completely

positive maps, e.g., Mi5Mi81Mi9 . Then we may simply

consider the finer decomposition as a finer measurement,
with the result i replaced by two others, i8 and i9. Using the
convexity already established it is clear that it suffices to
prove Eq. ~12! for the finer measurement. That is, we can
assume that there are no proper decompositions of the Mi ,
or that Mi is ‘‘pure.’’ This is equivalent to Mi taking pure
states to pure states, or to the property @23# that it can be
written with a single Kraus summand. Taking into account
that this describes a local measurement by Bob, we can write

Mi~r !5~IA ^ M i!r~IA ^ M i
†!, ~13!

where the Kraus operators M i must satisfy the normalization

condition ( iM i
†M i<IB . For computing the right-hand side

of Eq. ~12! we need that

Mi~r !TA5Mi~rTA!, ~14!

which immediately follows from Eq. ~13! by expanding r as
a sum of ~not necessarily positive! tensor products. A similar
formula holds for Alice’s local operations, but with a modi-
fied operation Mi on the ~rhs! right-hand side, in which the
Kraus operators have been replaced by their complex conju-
gates. Consider the decomposition

rTA5~11N !r1
2Nr2 ~15!

with density operators r6 and N5N(r). Then we can also
decompose the partially transposed output states

p i~r i8!TA5Mi~r !TA5Mi~rTA!

5~11N !Mi~r1!2NMi~r2!.

~16!

Dividing by p i we get a decomposition of precisely the sort,

Eq. ~10!, defining N(r i8). The coefficient a25N/p i must be

larger than the infimum, i.e., N(r i8)<N/p i . Multiplying by

p i and summing, we find the following inequality.
Proposition 3.

(
i

p iN~r i8!<N~r !, ~17!

i.e., N(r) is indeed an entanglement monotone.

C. Other negativities

Both the proofs, of convexity and of monotonicity, are
based on the variational representation of the trace norm in
lemma 2. The abstract version of this lemma is the definition
of the so-called base norm i•iS associated with a compact
set S in a real vector space @24#. The negativity introduced
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above then corresponds to a special choice of S, and we can
easily find the property of S required for proving LOCC
monotonicity in the abstract setting. Other choices of S then
lead to other entanglement monotones, some of which have
been proposed in the literature.

For our purposes, we can take S as an arbitrary compact
convex subset of the Hermitian operators with unit trace,
whose real linear hull equals all Hermitian operators. Then,
in analogy to lemma 2, we define the associated base norm
and ‘‘S negativity’’ as

iAiS5inf$a11a2uA5a1r1
2a2r2,a6>0, r6

PS%,

~18!

NS~A !5inf$a2uA5a1r1
2a2r2,a6>0,r6

PS%.
~19!

Note that once again, if A has trace 1 we have that iAiS

5112NS(A). Then norm and convexity properties of NS

and i•iS follow exactly as before.
Taking S as the set of all density matrices, we get iAiS

5iAi1, for all Hermitian A, and a totally uninteresting en-
tanglement quantity, as NS(r) vanishes for all density matri-
ces. The negativity of the preceding section corresponds to
the choice of S equal to the set of all matrices A such that
A5A†, trA51, and ATA>0 @additionally, we have replaced
ATA with A in the lhs of Eq. ~10! A, so that we can write
N(r) instead of N(rTA)#.

We could have also taken S as the subset of density ma-
trices with positive partial transpose, r6>0 and r6TA>0. In
this case S corresponds to all states such that its partial trans-
pose is also a state. The resulting quantity we will denote by
NPPT . Even more restrictively, if we take for S the set of
separable density operators, i.e., we take r6 ~and therefore
also r6TA) in Eqs. ~18! and ~19! to be separable, the corre-
sponding quantity NSS amounts to the robustness of the en-

tanglement, originally introduced in @18# ~see also @25#! as
the minimal amount of separable noise needed to destroy the
entanglement of r . From the inclusions between the respec-
tive sets S we immediately get the inequalities

NSS~r !>NPPT~r !>N~r !>0. ~20!

In general, all these inequalities are strict. For example,
NSS(r) vanishes only on separable states ~SS!, whereas
NPPT(r) and N(r) vanish for all PPT states.

We claim that also NSS and NPPT are entanglement mono-
tones. The proof is quite simple. An analysis of the argu-
ments given in the preceding section shows that we really
used only one property of S, namely, for all operations Mi

appearing in a LOCC protocol, we have Mi(r)PS~, when-
ever rPS~, where S~ notes the cone generated by S

~equivalently the set of lr with l>0,rPS). But this is ob-
vious for both separable states and PPT states.

III. UPPER BOUND TO TELEPORTATION CAPACITY

Sections III and IV are devoted to discuss applications of
the previous results. More specifically, we derive bounds to
some properties characterizing the entanglement both of a

single copy of a mixed state r ~this section! and of asymp-
totically many copies of it ~following section!.

For a single copy of a bipartite state r acting on C
d1

^C
d2, where we set d15d2[m for simplicity, an important

question in quantum-information theory is to what extent this
state can be used to implement some given tasks requiring
entanglement, such as teleportation. The best approximation
Popt(r) to a maximally entangled state

uF1&[
1

Am
(
a51

m

uaA ^ aB& ~21!

that can be obtained from r by means of LOCC is then
interesting, because it determines, for instance, how useful
the state r is to approximately teleport log2m qubits of infor-
mation. In this section we will show that the negativity N(r)
provides us with an explicit lower bound on how close r can
be taken, by means of LOCC, to the state F1. From here a
lower bound on the teleportation distance ~i.e., an upper
bound on how good teleportation results from r) will also
follow.

A. Singlet distance

In order to characterize the optimal state Popt(r) achiev-
able from r by means of LOCC, we need to quantify its
closeness to the maximally entangled state P1[uF1&^F1u.
Let r1 and r2 be two density matrices. The trace norm of
r12r2, ~or absolute distance @26#!, is a measure of the de-
gree of distinguishability of r1 and r2, and it is, therefore,
reasonable to use it to measure how much P(r)—the state
resulting from applying a local protocol P to state
r—resembles P1 . In what follows we will prove that the
negativity is a lower bound to the singlet distance of r ,

D~P1 ,r ![infPuuP12P~r !uu1 , ~22!

where the infimum is taken over local protocols P.
We start by recalling that the absolute distance

D(r1 ,r2)[uur12r2uu1 is a convex function @26#

(
i

p iD~s ,r i!>DS s ,(
i

p ir iD , ~23!

which confirms, as already assumed, that the optimal ap-
proximation P(r) to P1 can always be chosen to be a single
state—as opposed to a distribution of states $p i ,r i% corre-
sponding to the output of a probabilistic transformation.
Therefore, in Eq. ~22! we need only consider deterministic

protocols P based on LOCC.
A second feature of the absolute distance that we need is

that

D~Wr1W†,Wr2W†!5D~r1 ,r2!, ~24!

for any unitary transformation W. Properties ~23! and ~24!
together imply that the best approximation to the maximally
entangled state P1 can always be ‘‘twirled’’ without losing
optimality. Consider the state
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E dU U ^ U*Popt~r !U†
^ U†*, ~25!

which the parties can locally obtain from Popt(r) by Alice
applying an arbitrary unitary U, by Bob applying U*, and
then by deleting the classical information concerning which
unitary has been applied. It follows from the invariance of
P1 under U ^ U* and from property ~24! that D„U
^ U*Popt(r)U†

^ U†*,P1…5D„Popt(r),P1… for any U.
Then property ~23! implies that the mixture in Eq. ~25! is not
further away from P1 than Popt(r). But Popt(r) was al-
ready minimizing Eq. ~22!, and therefore state ~25! must also
be optimal.

We can then assume that Popt(r) has already undergone a
twirling operation. This means that it is a noisy singlet @27#

rp5pP11~12p !
I ^ I

m2
, ~26!

from which the absolute distance to P1 can be easily com-
puted, D(P1 ,rp)52(12p)(m2

21)/m2. Similarly, the

trace norm of r
p

TA reads uur
p

TAuu15mp1(12p)/m , and there-

fore

D~P1 ,rp!52S 12

uur
p

TAuu1

m
D . ~27!

The lower bound to the singlet distance ~22! follows now
straightforwardly from the monotonicity of uurTAuu1 @or
N(r)# under LOCC, that is, uurTAuu1>uuPopt(r)TAuu1, and
reads

D~P1 ,r !>2S 12

uurTAuu1

m
D . ~28!

Therefore, we have proved the following bound for the sin-
glet distance.

Proposition 4.

D~P1 ,r !>2S 12

112N~r !

m
D . ~29!

B. Teleportation distance

A quantum state r shared by Alice and Bob can be used
as a teleportation channel L @15#. That is, given the shared
state r and a classical channel between the parties, Alice can
transmit an arbitrary ~unknown! state fPC m to Bob with
some degree of approximation. Let LT ,r(f) be the state that
Bob obtains when Alice sends f using r and some protocol
T involving LOCC only. The teleportation distance

d~L ![E df D„f ,L~f !…, ~30!

where D„f ,L(f)…[uuuf&^fu2L(f)uu1, can be used to
quantify the degree of performance of the channel. The mea-
sure df is consistent with the Haar measure dU in SU(m),
and thus d(L) is invariant under the twirling of the channel,

that is the application of an arbitrary unitary U to f previous
to the teleportation, followed by the application of U† after
the teleportation scheme. Indeed,

d~L !5E dW D„WP0W†,L~WP0W†!…, ~31!

for some reference state P0[uf0&^f0u, and using property
~24! of the trace norm, Eq. ~31! is also equal to

E dW d„WP0W†,U†L~UWP0W†U†!U…. ~32!

We can now average over U to obtain

d~L !5E dU E dfD„f ,U†L~Uf !U…, ~33!

where the right side of the equation corresponds to the tele-
portation distance of the twirled channel.

We next adapt a reasoning of the Horodecki @27# to our
present situation. It uses an isomorphism between states rL

and channels L due to Jamiołkowski @28# and first exploited
by Bennett et al. @3#. Let us ascribe the channel L to the state
rL5(I ^ L)P1 . The state rL can be produced by sending
Bob’s part of the bipartite system in state P1 down the chan-
nel L . Conversely, the standard teleportation protocol @15#
~or a slight and obvious modification of it! applied to state
rL reproduces the channel L with probability 1/m2. How-
ever, if the state rL is a noisy singlet rp , then the corre-
sponding channel is the depolarizing channel

Lp
dep~̺ !5p̺1~12p !

I

m
, ~34!

which the standard teleportation scheme reproduces with

certainty using state rp . For this case d(Lp
dep)52(1

2p)(m21)/m . Therefore, there is a complete physical
equivalence between noisy singlets and depolarizing telepor-
tation channels. In addition,

d~Lp
dep!5

m

m11
D~P1 ,rp!. ~35!

Now, since both quantities d and D are invariant under twirl-
ing, and any channel ~state! can be taken into the depolariz-
ing ~noisy singlet! form, this equality holds for any channel
L and state rL .

Lemma 5. ~adapted from @27#!. The minimal distance
dmin(r) that can be achieved when using the bipartite state r
to construct an arbitrary teleportation channel is given by

dmin~r !5

m

m11
D~P1 ,r !. ~36!

Proof. dmin(r)<mD(P1 ,r)/(m11), because a possible
way to use r as a teleportation channel is by using a twirled
version of an optimal state P(r) and the standard teleporta-
tion scheme, which produces a depolarizing teleportation
channel with d5mD„P1 ,P(r)…/(m11) @recall Eq. ~35!#.
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On the other hand dmin(r) is at least mD(P1 ,r)/(m11).
Indeed, we take an optimal teleportation scheme employing
the state r and LOCC only. It will produce some optimal
teleportation channel L , that we can turn into a depolarizing

channel without increasing d(Lp
dep)5dmin(r). Then we can

send half of P1 through the channel to obtain a noisy singlet
rp that satisfies Eq. ~35!. The desired inequality follows then
from the fact that D(P1 ,rp)>D„P1 ,Popt(r)….

Therefore, using Eq. ~28! we can announce the following
upper bound to the optimal teleportation distance dmin(r)
achievable with state r and LOCC

Proposition 6.

dmin~r !>
2

m11
@m2112N~r !# . ~37!

The two results of this section can also be derived in terms of
fidelities ~the so-called singlet and channel fidelities, see, for
instance, @27#!. The upper bounds one obtains read

Fopt[max
P

^F1uP~r !uF1&<
112N~r !

m
; ~38!

f opt~r ![max
Lr

E df^fuL~ uf&^fu!uf&<
2d~N~r !11 !

m11
.

~39!

IV. UPPER BOUND TO DISTILLATION RATES

We now move to consider a second application of the
previous measures, namely, a bound on the asymptotic dis-
tillability of a mixed state r in terms of EN (r).

The distillation rate of a bipartite state r is the best rate at
which we can extract near-perfect singlet states from mul-
tiple copies of the state by means of LOCC. The asymptotic
~in the number of copies! distillation rate is the so-called
entanglement of distillation ED(r) @3#, one of the fundamen-
tal measures of the entanglement. In this section we will
show that the logarithmic negativity EN is always at least as

great as the entanglement of distillation ED
e (r), where e de-

notes the degree of imperfection allowed in the distilled sin-
glets.

Let Y denote a maximally entangled state of two qubits,
and consider, for some number na of copies of r , the best
approximation to ma copies of Y that can be obtained from
r ^ na by means of LOCC. As in the preceding section, we
define

D~Y ^ ma,r ^ na![infPiY ^ ma2P~r ^ na!i1 , ~40!

where P runs over all deterministic protocols built from
LOCC. We say that c is an achievable distillation rate for r ,
if for any sequences na ,ma→` of integers such that
limsupa(na /ma)<c we have

lim
a

D~Y ^ na,r ^ ma!50. ~41!

The distillable entanglement ED(r) corresponds then to the
supremum of all achievable distillation rates. Several vari-

ants of this definition are available in the literature, which are
however, equivalent to the one given here. In particular, we
may replace ‘‘D→0’’ by ‘‘fidelity →1,’’ and we may con-
sider selective protocols, in which operations produce vari-
able numbers of output systems on the same input, and the
expected rate is optimized. Of course, restricting the amount
of classical communication between Alice and Bob will in
general change the rate.

The above definition requires that the errors go to zero,
but in many applications one can live with a small but finite

error level. Therefore, we introduce ED
e (r), the distillable

entanglement at error level e , which is defined exactly as
above, but Eq. ~41! is replaced by

lim sup
a

D~Y ^ na,r ^ ma!<e . ~42!

Of course, ED
0 (r)5ED(r), and e°ED

e (r) is a nondecreas-

ing function. The main result of this section is the following
bound.

Proposition 7.

ED
e ~r !<EN ~r !, ~43!

for all 0<e,1.
Proof. The only property of LOCC operations used in the

proof is that for any such operation P, there is another, P8

such that P(r)TA5P8(rTA). We denote by Yd the maximally
entangled state on a pair of d-dimensional spaces. Then, as

shown below, we have iY
d

TAi15d . In some sense this is the

worst case: for general Hermitian operators we have
iATAi1<diAi1.

Now suppose that P is the transformation for which the
infimum ~40! for D(Yd ,r) is attained. Then

irTAi1>iP8~rTA!i15iP~r !TAi1 , ~44!

where the first estimate holds, because P8, as a bona fide
LOCC operation, does not increase the trace norm @recall the
monotonicity of N(r)#. On the other hand,

iP~r !TAi1>iY
d

TAi12i@Yd2P~r !#TAi1>d2dD~Yd ,r !.

~45!

Taking the logarithm, we find

EN ~r !>log2~d !1log2@12D~Yd ,r !# . ~46!

Now let na ,ma be diverging integer sequences as in the
definition of achievable rate c. Then, using the additivity of
EN , and the last inequality with d52na, we find

EN~r !5

1

ma
EN ~r ^ ma!

>
1

ma
$na1log2@12D~Y ^ na,r ^ ma!#%.
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We now go to the limit superior with respect to a , observing
that the error D is uniformly bounded away from 1, and
ma→` . Hence EN(r)>c for every achievable rate c, which
concludes the proof.

V. EXPLICIT EXAMPLES

In this section, we display explicit expressions for the
negativity for some particular classes of bipartite states,
namely, for arbitrary pure states, for mixed states with a high
degree of symmetry, and finally also for Gaussian states of a
light field.

A. Pure states

All entanglement measures based on asymptotic distilla-
tion and dilution of pure-state entanglement, in particular, the
entanglement of formation EF and the distillable entangle-
ment ED @3#, but also the relative entropy of entanglement
@5# agree on pure states, where they give the von Neumann
entropy of the restricted states. Negativity gives a larger
value: Let r5uF&^Fu be a pure state, and write the wave

vector in its Schmidt decomposition F5(acaea8 ^ ea9 ,

where ca.0 are the Schmidt coefficients of F , and the ea
(i)

are suitable orthonormal basis. Then we get the following
result.

Proposition 8.

N~r !5

1

2 F S (
a

caD 2

21G . ~47!

This is precisely NSS/2, i.e., half of the robustness of the
entanglement, as computed in @18#.

Proof. Introducing the operators ‘‘flip’’ Fea8 ^ eb95eb8

^ ea9 , and C85(acauea8 &^ea8 u, and a similar C9 for the sec-

ond tensor factor, we find

~ uF&^Fu!TA5(
ab

cacbuea8 ^ eb9 &^eb8 ^ ea9 u5F~C8^ C9!.

~48!

From the trace norm iXi15trAX†X we may omit unitary
factors, such as F, so the trace norm is equal to the trace of
the positive operator (C8^ C9), namely, ((aca)2.

Since EN is an upper bound on the distillation rate, and
that rate is known to be E(r), the von Neumann entropy of
the restricted state, we know that EN (r)>E(r). But, of
course, we can get this more directly: using the concavity of
the logarithm, we get

E~r !52(
a

ca
2 log2S 1

ca
D<2 log2S (

a
caD 5EN ~r !.

~49!

This derivation also allows the characterization of the cases
of equality: Since the logarithm is strictly concave, we get
equality if and only if all nonzero ca are equal. Hence equal-
ity for pure states holds exactly for maximally entangled
states ~which may have been expanded by zeros to live on a
larger Hilbert space!.

B. States with symmetry

All entanglement measures can be computed more easily
for states that are invariant under some large group of local
unitary transformations @22,29#. The negativity is no excep-
tion. The main gain from local symmetries is that the partial
transpose lies in a low-dimensional algebra, and is hence
easily diagonalized. For this background we refer to Ref.
@22#. But often a direct computation is just as easy.

Consider, for example, the states r on C
d

^C
d, which

commute with all unitaries of the form U ^ U , where U is
real orthogonal. These can be written as

r5aduF1&^F1u1bF1cI, ~50!

where uF1&5((a51
d ua ^ a&)/Ad is again the standard maxi-

mally entangled vector, and a ,b ,c are suitable real coeffi-
cients. This family includes both the so-called Werner states
@21# with a50 and, with b50, the so-called isotropic states
@30# @or noisy singlets, compare Eq. ~26! above#. The three
operators in this expansion commute, so all operators of the
form ~50! can be diagonalized simultaneously, with spectral
projections

p05uF1&^F1u,

p15~I2F!/2,

p25~I1F!/22uF1&^F1u.

We parametrize the states of the form ~50! by the two expec-
tation values f 5dtr(ruF1&^F1u) and g5tr(rF), the third
parameter for determining a ,b ,c being given by the normal-
ization. Then the states correspond to the triangle 0< f <d ,
21<g<1, f <d(11g)/2.

Since partial transposition simply swaps the operators F

and duF1&^F1u, leaving I unchanged, we can apply the
same method to compute the trace norm of the partial trans-
pose, and hence N(r). Explicitly, we get

N~r !5

1

4
u12 f u1

1

4
u11 f 22g/du1

1

2
ug/du2

1

2
. ~51!

It turns out @22# that in this class of states the Peres-
Horodecki separability criterion holds ~in spite of the arbi-
trary dimension d), i.e., the set of PPT states is the same as
the set of separable states, and in the parametrization chosen
equal to the square f ,gP@0,1# . Hence NSS(r)5NPPT(r).
Evaluating a simple variational expression, we get

NSS~r !5

1

2
max$u2 f 21u21,u2g21u21,0%. ~52!

C. Gaussian states

Gaussian states frequently occur in applications in quan-
tum optics, where they describe the light field. Alice’s and
Bob’s systems are then described by a certain number of
canonical degrees of freedom, such as field quadratures of
suitable modes. However, the same formalism applies when
the canonical operators are positions and momenta of a cer-
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tain number of harmonic oscillators. Gaussian states are then
defined as those ~possibly mixed! states with Gaussian
Wigner function.

For simplicity we denote the full collection of canonical
operators by Ra ,a51, . . . ,2n , where Alice holds nA oscil-
lators and Bob holds nB , and n5nA1nB . These are either
position or momentum operators, whose commutation rela-
tions are of the form

@Ra ,Rb#5isabI, ~53!

with an antisymmetric scalar matrix s , called the symplectic
matrix, which has the block matrix decomposition

D5S sA 0

0 sB
D ~54!

with respect to a decomposition of the set of indices into
Alice’s and Bob’s. This form expresses the fact that all vari-
ables of Alice commute with all of Bob’s.

A Gaussian state is determined by its first two moments
ma5tr(rRa) and

gab5tr~rRaRb!2

i

2
sab , ~55!

where the subtraction is chosen as the antisymmetric part of
tr(rRaRb), which is fixed by the commutation relations, in-
dependently of the state. g is then a real symmetric matrix.
Since the mean ma can be made zero by a local unitary
transformation ~a translation in phase space!, it is irrelevant
for entanglement, and we choose it to be zero. The second
moment g is then the same as the covariance matrix of the
state. The uncertainty relation, the universal lower bound on
variances, is then expressed as the positive definiteness of
gab1(i/2)sab . It will be crucial for the later that for a
classical Gaussian it is only necessary that g itself is positive
definite. Hence we can have nonpositive operators, whose
Wigner function is an ordinary, if somewhat sharply peaked
Gaussian.

In order to compute the trace norm of such an operator or,
more generally, to compute the spectrum or other character-
istics not depending on the Alice-Bob partition of the system,
we can bring g into a standard form by a process known as
symplectic diagonalization or normal-mode decomposition.
This means choosing a suitable canonical linear transforma-
tion ~i.e., a transformation leaving the symplectic form s
invariant!, which can be implemented on the Hilbert space
level by unitary operators ~known as the metaplectic repre-
sentation!. Assuming s to be in standard form, i.e., block

diagonal with n 232 blocks of the form ( 10
021) this results in

a diagonal g , with equal eigenvalues for each block, i.e., g
5diag(c1 ,c1 ,c2 ,c2 , . . . ,cn ,cn). We call (c1 ,c2 , . . . ,cn)
the symplectic spectrum of g . The fast way to compute it is
via the eigenvalues of the matrix s21g , which are
6ic1 , . . . ,6icn . At the Hilbert space level the normal-
mode decomposition transforms the state into a tensor prod-
uct of independent harmonic oscillators, each of which is in
a thermal oscillator state, the temperature being a function of

the ca . The smallest value allowed by uncertainty is ca

51/2, which gives the oscillator ground state.
In this context transposition is best identified with time

reversal. Indeed, in the general scheme we can choose a basis
in which the transpose is computed, but all these choices are
equivalent via a local unitary transformation. In this case we
choose the position representation, in which transposition is
the same as reversing all momenta, keeping all positions, and
to lift this to products by observing that transposition re-
verses operator products. Partial transposition TA is com-
pletely analogous. Only in this case just Alice’s momenta are
reversed and Bob’s are left unchanged. On the level of
Wigner functions and covariance matrices of Gaussians, we
just have to apply the corresponding linear transformations
on phase space. That is, gTA, the covariance matrix of the
partial transpose of a Gaussian state with covariance matrix
g is constructed by multiplying by 21 all matrix elements,
which connect one of Alice’s momenta to either a position,
or a degree of freedom belonging to Bob, and leaving all
other matrix elements unchanged.

The point is, of course, that while this transformation pre-
serves the positive definiteness of g , and hence we get an-
other Gaussian Wigner function, it does not respect the un-
certainty relation, so the partially transposed operator may
fail to be positive. However, the whole formalism of the
normal-mode decomposition for g works exactly as before:
we get a representation of the partial transpose as a tensor
product of ~not necessarily positive! trace class operators.
The trace norm of this operator is just the product of the trace
norms, so we have completely reduced the computation of
the trace norm to the single-mode case. To summarize the
results so far, we proceed as follows.

Let r be a Gaussian density operator with covariance

matrix g , and let ( c̃1 , . . . , c̃n) be the symplectic spectrum of

gTA. Then

EN ~r !5 (
a51

n

F~ c̃a!, ~56!

where F(c)5log2irci1, and rc is the operator whose Wigner

function is a Gaussian with covariance diag (c ,c) .

Of course, the function F vanishes for c>(1/2). It is eas-
ily determined by looking at Gaussian states for oscillators as
the temperature states of the oscillator. With z5e2b, and un&
the nth eigenstate of the oscillator, a general Gaussian is of
the form

r5~12z ! (
n50

znun&^nu, ~57!

where z>0 corresponds to density operators, and 21,z

,0 to Gaussians whose Wigner functions have sub-
Heisenberg variance. Then we get

iri15~12z !~12uzu!21
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c5tr~rP2!5trFr 1

2
~P2

1Q2!G ~58!

5~12z !(
n

znS n1

1

2
D

5~12z !21
2

1

2
. ~59!

Solving Eq. ~59! for z and substituting into Eq. ~58! we find

F~c !5H 0 for 2c>1

2log2~2c ! for 2c,1.
~60!

Together with Eq. ~56! and the process of normal-mode de-
composition this is an efficient procedure for determining
EN(r).

In the simplest case of one oscillator each for Alice and
Bob we may go even further, by expressing the symplectic
spectrum of the partial transpose directly in terms of the
covariance matrix. Suppose that

g5S A C

CT B
D , ~61!

with 232 matrices A ,B ,C . Then, as shown in Ref. @31#, the
numbers det A ,det B ,det C , and detg are a complete set of
invariants for g with respect to local symplectic transforma-
tions. Moreover, when passing from g to gTA only det C

changes sign, and the others remain unchanged. Pure states
are characterized by the conditions det g51/16, and det A

1det B12det C51/2, and can be brought into the normal
form

g5S a 0 c 0

0 a 0 2c

c 0 a 0

0 2c 0 a

D , ~62!

where a2
5c2

11/4.
Coming back to the general case of Eq. ~61!, the charac-

teristic equation of s21gTA, whose solutions are the 6 c̃a ,
takes the form

j4
1~det A1det B22det C !j2

1det g50. ~63!

Together with Eq. ~56! this amounts to an explicit formula.
For the particular case of a pure state we find

EN~r !522log2~Aa21/22Aa11/2!, ~64!

which is readily seen to agree with Eq. ~47!.

VI. MULTIPARTITE SYSTEMS

As argued in the Introduction, a computable measure of
the entanglement for bipartite mixed states is also very con-
venient for the quantification of the multipartite entangle-
ment. In this section we describe a whole set of computable

parameters related to the negativity that can be associated to
a multipartite state to make quantitative statements about its
entanglement.

A. Multipartite negativities

Consider a quantum system consisting of, say, three parts,
associated to Alice, Bob, and Charlie. Let rABC be the ~either
pure or mixed! state of the system. A possible way to classify
the entanglement properties of such a state is by looking at
the different bipartite splittings @32# of the system.

First, we can join two of the three parts, say those of Alice
and Bob, and compute the sum of negative eigenvalues of

r
ABC

TC , N(AB)-C(rABC). This is automatically an entanglement

monotone @33#, which quantifies the strength of quantum
correlations between Charlie and the other two parties. Simi-
larly, the negativities N(AC)-B(rABC) and N(BC)-A(rABC) are
two other monotonic functions under LOCC with analogous
meaning.

We can also consider the entanglement properties of two-
party reduced density matrices. Suppose, for instance, that
Charlie decides not to cooperate with the two other parties in
the manipulation of the tripartite system according to LOCC.
Alice and Bob’s effective density matrix, sAB[TrC@rABC# ,
may still retain some of the original entanglement. The nega-
tivity of sAB , NA-B;C” (rABC), can be used to quantify this
residual entanglement. Analogous quantities can be used to
quantify the entanglement of sAC and sBC .

Thus, altogether we have obtained six computable func-
tions to quantify the entanglement of any state of a tripartite
system. In a four-partite setting the number of possible split-
tings is much greater ~see @32# for a more detailed descrip-
tion!, and thus, we obtain up to 26 inequivalent measures,
namely: ~i! NA-BCD(rABCD) and the corresponding permuta-
tions, i.e., four inequivalent measures; ~ii! NAB-CD(rABCD)
and permutations ~four measures!; ~iii! NA-BC;D” (rABCD) and
permutations ~12 measures!; ~iv! NA-B;C” D” (rABCD) and per-
mutations ~six measures!.

B. Hierarchy

Notice that although all these measures are independent
functions of the multipartite state, there is a strength hierar-
chy between them when corresponding to related bipartite
splittings with different number of parties. In the four-party
case we have that, for instance,

NA-BCD>NA-BC;D” >NA-B;C” D” , ~65!

which follows from the fact that to trace out a part of a local
system is an operation of the set LOCC, under which the
negativity can only decrease. Of course, the same inequali-
ties hold for the corresponding logarithmic negativities, and
thus also for the several bounds on distillability—of different
kinds of multipartite entanglement—implied by the later.

It should be noted, however, that in this way one can
quantify only some aspects of the multiparticle entangle-
ment: there are tripartite states that are separable with respect
to every splitting of the system, but are nevertheless not a
convex combination of triple tensor products of density op-
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erators @32,34#. States that have positive partial transpose
with respect to every subsystem satisfy a large class of Bell
inequalities @35#.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have presented a computable measure of
the entanglement for bipartite mixed states, the negativity
N(r), which we have proved not to increase under LOCC.
Although it lacks a direct physical interpretation, we have
shown that it bounds two relevant quantities characterizing
the entanglement of mixed states: the channel capacity and

the distillable entanglement ED
e .

Ideally, quantum correlations would be best quantified by
measures with a given physical meaning. Which measure are
to be used, would depend on which question we want to
answer. For instance, if we want to know how much pure-
state entanglement the parties can extract from ~infinitely!
many copies of the state r , then the proper measure to be
used is the entanglement of the distillation ED(r).

In practice, however, the value of these measures is not
known. Recent studies of entangled systems, such as those of
entangled chains, entanglement molecules, entangled rings,

entangled Heisenberg models, and cluster states @36#, which
are N-qubit systems in some global entangled state, are fo-
cused on the two-qubit quantum correlations associated to
the global state, as measured by the entanglement of forma-

tion ~or the related concurrence! @8#. This choice of measure
of the entanglement is somehow arbitrary—it is often forced
simply by the lack of an alternative measure that can also be
computed for two-qubit mixed states—, because it does not
reflect in anyway the entanglement cost of formation of the
N-qubit state. We envisage that in these and similar contexts
it will pay off to use a computable entanglement measure,
such as the negativity, whose evaluation is not restricted to
two-qubit mixed states. The negativity will allow, for in-
stance, to generalize the previous investigations to analogous
constructions with l-level systems (l.2) instead of qubits,
as also to analyze quantitatively the entanglement between
subsets of these l-level systems.

Finally, in a similar way as the negativity has recently
played a role in proving the irreversibility of asymptotic lo-
cal manipulation of bipartite mixed-state entanglement @16#,
we hope that this computable measure will also be a useful
tool to answer other fundamental questions of the entangle-
ment theory.
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