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Abstract

Let C be the convex hull of points {
(

1

x

)(

1

x

)T
| x ∈ F ⊂ ℜn}. Representing or ap-

proximating C is a fundamental problem for global optimization algorithms based on

convex relaxations of products of variables. If n ≤ 4 and F is a simplex then C has a

computable representation in terms of matrices X that are doubly nonnegative (posi-

tive semidefinite and componentwise nonnegative). If n = 2 and F is a box, then C has

a representation that combines semidefiniteness with constraints on product terms ob-

tained from the reformulation-linearization technique (RLT). The simplex result gener-

alizes known representations for the convex hull of {(x1, x2, x1x2) | x ∈ F} when F ⊂ ℜ2

is a triangle, while the result for box constraints generalizes the well-known fact that

in this case the RLT constraints generate the convex hull of {(x1, x2, x1x2) | x ∈ F}.

When n = 3 and F is a box, a representation for C can be obtained by utilizing the

simplex result for n = 4 in conjunction with a triangulation of the 3-cube.

Keywords: Reformulation-linearization technique, semidefinite programming, convex

envelope.

AMS subject classification: 90C26, 90C22
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1 Introduction

Let C be the convex hull of {
(

1

x

)(

1

x

)T
| x ∈ F ⊂ ℜn}. Representing or approximating C

is a fundamental problem for global optimization methods based on convex relaxations

of products of variables, for example the popular BARON algorithm [12]. Typically

the set F has a simple structure, often obtained via a partitioning of the underlying

feasible set. In this paper we consider the two most common choices for F , a simplex

and a box, and obtain computable representations for C in low dimensions.

For the case where F is a regular simplex and n ≤ 4, C has a representation involving

n × n matrices that are doubly nonnegative (positive semidefinite and componentwise

nonnegative). This result is a straightforward consequence of existing theory for com-

pletely positive matrices, but to our knowledge does not appear in the literature. A

known counterexample shows that the representation for C does not hold when n > 4.

As a corollary of the result for a simplex we obtain a representation for the case where

F is a triangle in ℜ2 or tetrahedron in ℜ3. The problem of representing the convex

hull of {(x1, x2, x1x2) | x ∈ F}, where F ⊂ ℜ2 is a triangle was considered in [9]. Our

result both generalizes and simplifies the analysis in [9], which itself extends the earlier

work of [14].

A well-known result in the global optimization literature is that when F ⊂ ℜ2 is

a box, the constraints on the product term x1x2 that arise from the reformulation–

linearization technique (RLT) give the convex hull of {(x1, x2, x1x2) | x ∈ F} (see for

example [13] or [9] and references therein). We extend this result by showing that when

F ⊂ ℜ2 is a box, C can be represented using a combination of the RLT constraints and

semidefiniteness. Our proof utilizes a recent paper [5] that gives a representation for

nonconvex quadratic programming problems involving completely positive matrices.

We also give an example to show that the given representation for C does not hold

when n > 2.

Finally we show that for n ≤ 3 a representation for C can be obtained when F

is any triangulated polytope. This result is primarily of interest in cases where F is

simple enough so that a triangulation of low cardinality can be easily computed. For

example, in the case where F ⊂ ℜ3 is a box we obtain a computable representation of

C by utilizing a triangulation of the 3-cube.
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Notation. We use e to denote a column vector of arbitrary dimension with each

component equal to one, and let E = eeT . We use PSD to denote the cone of m × m

symmetric positive semidefinite matrices. We sometimes write X � 0 in place of

X ∈ PSD. We use DNN to denote the cone of m × m doubly nonnegative matrices

(X ∈ DNN ⇐⇒ X � 0, X ≥ 0), and CP to denote the cone of m × m completely

positive matrices (X ∈ CP ⇐⇒ X =
∑k

i=1 xix
T
i , xi ∈ ℜm

+ , i = 1, . . . , k). In all

cases the dimension m is implicit. For conforming matrices A and X the matrix inner

product is denoted A •X = tr(AXT ) and for an m×m matrix A, diag(A) ∈ ℜm is the

vector whose ith component is aii. We use Conv{·} to denote the convex hull.

2 Simplex constraint

In this section we consider a feasible set of the form F = S = {x ≥ 0 | eTx = 1}. The

problem of minimizing a general quadratic xT Qx + cTx over x ∈ S is often referred

to as standard quadratic programming (QPS) [2, 3, 4]. The problem is known to be

NP-hard, since for example computing the maximum stable set in a graph can be

written in the form QPS [10]. In [4] a formulation for QPS problems is given in terms

of completely positive matrices. Note that if x ≥ 0, eT x = 1 and X = xxT , then

X ∈ CP and E • X = 1. Moreover one can assume without loss of generality that

c = 0 since for x ∈ S, cTx can be written as a quadratic form 1

2
xT (ceT + ecT )x. These

observations suggest writing QPS in the form

min Q • X, E • X = 1, X ∈ CP. (1)

The fact that (1) gives an exact formulation of QPS relies on the following result.

Proposition 1 [4, Lemma 4.5] The extreme points of the set {X ∈ CP |E • X = 1}

are exactly the rank-one matrices X = xxT , x ∈ S.

The fact that (1) is an exact formulation of QPS, and that QPS is itself NP-Hard,

implies that in general optimization over CP is difficult. However it is known that in

low dimensions matrices in CP have a tractable representation. It is clear that for any

n,

CP ⊂ DNN ⊂ DNN∗ ⊂ CP∗, (2)
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where CP∗ is the cone of copositive matrices, and DNN∗ is the cone of matrices that

can be written as the sum of a semidefinite matrix and a nonnegative matrix. In

general the inclusions in (2) are strict, but for n ≤ 4 the following result implies that

CP = DNN and CP∗ = DNN∗. Approximation results for QPS with n > 4 based on a

hierarchy of cones between DNN∗ and CP∗ are given in [3].

Proposition 2 [8] To any symmetric matrix X associate an undirected graph G(X)

with edge set {(i, j) | i 6= j, Xij 6= 0}, and call a loopless graph G completely positive if

any matrix X ∈ DNN with G(X) = G also has X ∈ CP. Then G is completely positive

if and only if G contains no odd cycle of length greater than 4.

Using Propositions 1 and 2 together we obtain a tractable representation of C for

n ≤ 4. Define

DS =

{(

1 eT X

Xe X

)

∣

∣

∣X ∈ DNN, E • X = 1

}

.

Theorem 3 Let C = Conv{
(

1

x

)(

1

x

)T
| x ∈ S}. Then C ⊂ DS, and C = DS for n ≤ 4.

Proof: It is obvious that if x ∈ S then
(

1

x

)(

1

x

)T
∈ DS, and since DS is convex we

immediately have C ⊂ DS. Next suppose that n ≤ 4, X ∈ DNN, E • X = 1 and

that X is an extreme point with respect to these constraints. Then X ∈ CP by

Proposition 2, and moreover X must be an extreme point of {X ∈ CP |E • X = 1}.

Then X = xxT , x ∈ S by Proposition 1, so

(

1 eT X

Xe X

)

=

(

1 xT

x xxT

)

∈ C.

Thus every extreme point of DS is in C, and since DS is compact it follows that DS ∈ C.

2

Another immediate consequence of Propositions 1 and 2 is that for n ≤ 4, a QPS

problem with c = 0 is equivalent to the problem

min Q • X, E • X = 1, X ∈ DNN.

In [3, Example 5.1] it is shown that this equivalence may not hold when n > 4, implying

that the inclusion C ⊂ DS can be strict when n > 4.

Let T denote the convex hull of n + 1 affinely independent points in ℜn (so T is

a triangle in ℜ2 or a tetrahedron in ℜ3). Since there is an invertible affine mapping
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from T ∈ ℜn to S ∈ ℜn+1, a version of Theorem 3 can be written for x ∈ T . This

representation is of some independent interest, and will be used in Section 4, so we give

it explicitly in the corollary below. Given n + 1 affinely independent points aj ∈ ℜn,

j = 1, . . . , n + 1 let A be the matrix whose jth column is aj , and let T = {y ∈ ℜn | y =

Ax, x ∈ S ⊂ ℜn+1}. Define

DT =

{(

1 eTXAT

AXe AXAT

)

∣

∣

∣X ∈ DNN, E • X = 1

}

.

Corollary 4 Let C = Conv{
(

1

x

)(

1

x

)T
| x ∈ T }. Then C ⊂ DT , and C = DT for n ≤ 3.

3 Box constraints

In this section we consider a feasible set of the form F = B = {x | 0 ≤ x ≤ e}. Min-

imization of a quadratic function over B is commonly referred to as box-constrained

quadratic programming (QPB). QPB has been heavily studied in the global optimiza-

tion literature; see for example [16] and references therein. For x ∈ B consider a matrix

Y of the form

Y =

(

1 xT

x X

)

. (3)

If X = xxT then certainly Y � 0, and multiplying together the upper and lower bound

inequalities on xi and xj produces the additional constraints

Xij ≤ xi, (4a)

Xij ≤ xj, (4b)

Xij ≥ 0, (4c)

Xij ≥ xi + xj − 1. (4d)

The constraints (4) arise when applying the reformulation-linearization technique [13]

to QPB. Consequently we will refer to (4) as the RLT constraints, and write Y ∈ RLT

to denote that a matrix of the form (3) satisfies the constraints (4). Note that for

i = j the upper bounds (4a) and (4b) are identical, and the lower bounds (4c) and

(4d) are dominated by the inequality Xii ≥ x2
i that is implied by Y � 0 (the use of

this convex, nonlinear inequality was suggested in [15]). It is also easy to see that the
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RLT constraints imply that 0 ≤ x ≤ e; this is a special case of a general result for RLT

[13, Proposition 8.1].

For a matrix Y as in (3), consider the matrices

T =









1 0

0 I

e −I









, Y + = TY T T =









1 xT sT

x X Z

s ZT S









, (5)

where s = e − x, Z = xeT − X and S = eeT − xeT − exT + X . It is then clear that

Y � 0 ⇔ Y + � 0. Moreover it is straightforward to show that the RLT upper bounds

(4a)–(4b) are equivalent to Z ≥ 0, while the lower bounds (4d) are equivalent to S ≥ 0.

Consequently Y ∈ PSD ∩ RLT if and only if Y + ∈ DNN, where Y + is given by (5).

A matrix of the form

Y + =









1 xT sT

x X Z

s ZT S









, (6)

also arises in the representation of C given in [5]. The methodology of [5] requires that

all constraints be written as equalities, so slacks must be explicitly added to inequality

constraints. Consequently let

C+ = Conv



























1

x

s

















1

x

s









T

∣

∣

∣x ≥ 0, s ≥ 0, x + s = e



















.

The main result of [5] gives a representation of C+ that imposes complete positivity,

the original linear equality constraints x + s = e and their squared counterparts. Note

that squaring the constraint xi + si = 1 results in a constraint Xii + 2Zii + Sii = 1 on

the components of Y +.

Proposition 5 [5] C+ = {Y + ∈ CP | x + s = e, diag(X + 2Z + S) = e}.

Using Propositions 2 and 5, we can obtain a computable representation of C for

n = 2. Define

DB =

{

Y =

(

1 xT

x X

)

∣

∣

∣Y ∈ PSD ∩ RLT

}

.

Theorem 6 Let C = Conv{
(

1

x

)(

1

x

)T
| x ∈ B}. Then C ⊂ DB , and C = DB for n = 2.
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Proof: It is obvious that if x ∈ B then
(

1

x

)(

1

x

)T
∈ DB, and since DB is convex we

immediately have C ⊂ DB . Next suppose that Y ∈ PSD ∩ RLT. Then Y + ∈ DNN,

where Y + is defined as in (5). For n = 2, Proposition 2 then implies that

(

X Z

ZT S

)

∈ CP,

and therefore there are xi ≥ 0, si ≥ 0, i = 1, . . .k so that

(

X Z

ZT S

)

=
k
∑

i=1

(

xi

si

)(

xi

si

)T

.

Note that since Z = xeT − X and S = eeT − xeT − exT − X we have x = 1

2
(Xe + Ze)

and s = 1

2
(Se + ZT e). Defining λi = 1

2
eT (xi + si), i = 1, . . . , k it follows that

Y + =









1

2
eT 1

2
eT

I 0

0 I









(

X Z

ZT S

)( 1

2
e I 0

1

2
e 0 I

)

=
k
∑

i=1









λi

xi

si

















λi

xi

si









T

∈ CP.

Moreover x + s = e by construction and diag(X + 2Z + S) = e from (5), so Y + ∈ C+

by Proposition 5. 2

In addition to the proof above based on Propositions 2 and 5, it is also possible to

prove Theorem 6 using the theory for extreme points of semidefinite programs from

[11]. We prefer the proof given since it is both simpler and more closely related to the

analysis for the case F = S given in the previous section.

In many cases of interest, the constraint x ∈ B = {x | 0 ≤ x ≤ e} is replaced by

the constraint that x lie in a hyper-rectangle; x ∈ R = {x | l ≤ x ≤ u}. Since there

is an invertible affine transformation between B and R it is easy to write a version of

Theorem 6 for x ∈ R. In fact it can be shown that for x ∈ R, Theorem 6 holds exactly

as stated if the condition Y ∈ RLT, where Y has the form (3), is taken to mean that

x and X satisfy the general RLT constraints

Xij − lixj − ujxi ≤ −liuj,

Xij − ljxi − uixj ≤ −ljui,

Xij − lixj − ljxi ≥ −lilj,

Xij − uixj − ujxi ≥ −uiuj ,

in place of (4). (An approximation result for the case R = {x | − e ≤ x ≤ e} that

uses Y � 0 and simple upper bounds on diag(X) is given in [17].) It is also possible to
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generalize Theorem 6 to the case where F is a parallelepiped, but since this case does

not commonly occur in practice we omit the details.

It follows from Theorem 6 that for n = 2 and a quadratic objective cTx + xT Qx,

the solution value of QPB is equal to

min Q̃ • Y, Y ∈ PSD ∩ RLT, (7)

where Y has the form (3) and

Q̃ =

(

0 1

2
cT

1

2
c Q

)

.

If Theorem 6 were true for n > 2, then (7) would continue to give the solution value

for QPB for any c and Q. We have determined that this is false. For example, for

n = 3 the QPB problem with

c =









18

−62

42









, Q =









−44 23 33

23 9 28

33 28 −90









(8)

has solution value -53 (obtained using the finite branch-and-bound algorithm of [6]),

while the problem (7) has a solution value of approximately -53.004. Although (7)

may not be equivalent to QPB for n > 2, we have found that for randomly generated

problems with n = 3 the exact solution value of QPB is almost always given by (7).

(In the next section we show that an exact representation for C when F = B ⊂ ℜ3 can

be obtained by applying Corollary 4 to a triangulation of B.) For larger n we have

found that the lower bound from (7) is often quite sharp. For example, in 15 problems

of size n = 30 from [16], the percentage gap between the exact solution value and the

value from (7) has a maximum of 3.06%, is 0.00% on 8 instances and averages 0.41%

[1].

4 Triangulated polytopes

In this section we consider the case where F ⊂ ℜn is a triangulated polytope. In

particular we assume that F = P = ∪k
i=1Ti, where each Ti is the convex hull of n + 1

affinely independent points. Letting the coordinates of these points be the columns of

an n × (n + 1) matrix Ai, we have Ti = {y ∈ ℜn | y = Aix, x ∈ S ⊂ ℜn+1} for each
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i. Since any polytope can be triangulated, the methodology described here is quite

general. However we are primarily interested in low-dimensional cases where F has a

simple enough structure so that a triangulation can be explicitly given. Define

DP =

{

k
∑

i=1

(

λi eTXiA
T
i

AiXie AiXiA
T
i

)

∣

∣

∣

k
∑

i=1

λi = 1, Xi ∈ DNN, E •Xi = λi, i = 1, . . . , k

}

.

Theorem 7 Let C = Conv{
(

1

x

)(

1

x

)T
| x ∈ P}. Then C ⊂ DP , and C = DP for n ≤ 3.

Proof: This follows from Corollary 4 and the fact that if x ∈ P then x ∈ Ti for some

i. 2

For an interesting application of Theorem 7 we consider P = B ⊂ ℜ3. As described

at the end of the previous section, the QPB problem with data (8) shows that the

inclusion C ⊂ DB is strict. However by triangulating the 3-cube we can obtain an

exact, computable representation C = DP . The simplest triangulation of B ⊂ ℜ3 uses

6 tetrahedra of the form Tijk = {x ∈ ℜ3 | 0 ≤ xi ≤ xj ≤ xk ≤ 1} (a triangulation using

5 tetrahedra is also known). The corresponding matrices Aijk have a very simple form,

for example

A123 =









1 0 0 0

1 1 0 0

1 1 1 0









.
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