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A cellular automaton model for tra
c �ow is analyzed. For this model, it is shown that under ergodic initial con�gurations, the
distribution of cars will converge in time to a mixture of free �ow and solid blocks. Furthermore, the nature of the free �ow and
solid block distributions is fully described, thus allowing for a speci�c computation of throughput in terms of the parameters. 	e
model is also shown to exhibit a hysteresis phenomenon, which is similar to what has been observed on actual highways.

1. Introduction and Description of the Model

1.1. Introduction. 	ere have been various cellular automaton
models introduced to model tra
c �ow [1–3]. Many of these
models gain computational advantage over older so-called
car-following, �uid dynamical, and kinetic (gas-type) models
by discretizing both space and time (see [4] for an overview
of various models). For these discrete models, simple rules
are developed to govern car movement. While, on a small
scale, the rules oversimplify tra
c behavior, the goal is
that large scale tra
c phenomena, such as the formation
and persistence of tra
c jams, present themselves in this
simpli�ed approach.

	emodel used in this paper is a discrete time probabilis-
tic cellular automatonmodel developed byGray andGrieath
in [2]. We will be concerned with macroscopic limiting
phenomena on an in�nitely long one-dimensional highway.
In this paper, we show the existence of a limiting throughput
(�ux) of cars and describe these regions explicitly. For tra
c
densities above a critical value, we are able to show that the
tra
c organizes itself into regions of free �ow and regions of
tra
c jam, both of which will be given precise mathematical
de�nitions in this context. We also observe the existence
of metastable states: conditions which allow certain ergodic
tra
c distributions to have higher throughput than others
with the same density of cars. 	e existence of metastable
states has been sought a�er [5] due to the fact that such states
have been shown to be exhibited in real-world tra
c �ow

[6]. 	ese metastable states exhibit a hysteresis phenomenon
in the sense that minor perturbations of the cars in these
states may eventually lead to a drastic change in the tra
c
throughput. As mentioned in [2], a property which may be
related to the hysteresis phenomenon encountered with the
metastable states is the so-called slow-to-start feature, which
may be the key element which gives realistic macroscopic
behavior to the cellular automaton model. Other slow-to-
start models can be found in [3, 7, 8].

1.2. Description of the Model. We now describe the model
of Gray and Grieath used in this paper, which they call
Slow-to-Start Tra
c Cellular Automaton with Computable
�roughput, which we will abbreviate SSTCACT. We divide
an in�nite one-lane “highway” into cells, or sites.	e highway
will be represented by a one-dimensional integer lattice. At
time � = 0 cars are placed on the lattice, with at most one car
per site. 	e process evolves in discrete time. Write ��(�) = 1
if there is a car at site � at time �, and write ��(�) = 0
otherwise. At each time step, a car can move either zero units
or one unit forward (positive direction), and the probabilities
associated with movement are determined by the occupancy
of the neighboring sites.

More formally, we de�ne {��}, � = 0, 1, 2, . . ., with initial
state �0, as follows. We write �� = {��(�)}�∈Z, which is the
con�guration at time �. LetF� be the �-�eld generated by the
collection {��}��=0. Let ��� denote the event that there is a car
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at site � at time � which moves to site � + 1 at time � + 1.
Probabilities for car movement are assigned as follows:

� (��� | F�)

=

{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{

� if �� (� − 1) = 1, �� (�) = 1, �� (� + 1) = 0,
�� (� + 2) = 0

� if �� (� − 1) = 1, �� (�) = 1, �� (� + 1) = 0,
�� (� + 2) = 1

1 if �� (� − 1) = 0, �� (�) = 1, �� (� + 1) = 0,
�� (� + 2) = 1

1 if �� (� − 1) = 0, �� (�) = 1, �� (� + 1) = 0,
�� (� + 2) = 0

0 otherwise.

(1)

	e parameters � and � are in the interval [0, 1], and the
events ��� , � ∈ Z, are to be conditionally independent
given F�. 	e car movement probabilities de�ne a time-
homogeneous Markov process {��}∞�=0. Gray and Grieath
explain that � refers to the probability of “accelerating” and
� refers to the probability of moving in “congestion.”

A simple way to think of the model is as follows. Each car
has two coins: one which comes up heads with probability
� and another which comes up heads with probability �. At
each time step, each car looks at the occupancy of the site
behind it and the two sites in front of it. If, according to (1),
the probability for movement is zero, the car does not move
at the next time step. If the probability for movement is one,
the car will move one unit forward at the next time step.
If the probability for movement is � or �, the car �ips the
appropriate coin to determine whether it moves at the next
time step. In this case, if the coin comes up heads, then the
car moves; if it comes up tails, the car does not move. All cars
which are to move at a given time step do so simultaneously.
Each coin �ip is independent of past �ips and independent
of the coin �ips of all other cars. 	is informal description
of the model not only gives an easy way to think about car
movement, it also allows us to identify cars from one time
to the next in an obvious manner. Again, this model is the
SSTCACT model of Gray and Grieath [2]. 	e main result
of this paper (	eorem 1) was stated in [2] but not proved.

2. Formal Statement of Results

Since one of the main goals in tra
c modeling is to demon-
strate the most e
cient way for tra
c to �ow under given
restrictions, one of the statistics of interest in analyzing any
tra
c model is the measure of throughput, or �ux through
a given location. We will consider only initial distributions
of cars which are ergodic in space; that is, {�0(�)}�∈Z is an
ergodic sequence. By the ergodic theorem, for each initial
distribution there is a well-de�ned spatial density � of cars,
given by

� := lim
�→∞

1
2� + 1

�
∑
�=−�

�0 (�) . (2)

Because cars can move at most one unit per time step,
the ergodicity of the con�gurations is preserved at all �nite

times (cf. [9, 	eorem 4.15]). 	at is, {��(�)}�∈Z is an ergodic
sequence for any time �. Since cars are neither created nor
destroyed, the spatial density � is preserved. For a �xed
initial distribution �, we will say that the tra
c model has
throughput � = �(�) given by

� = lim
�→∞

1
�
�−1
∑
�=0

1{	�(0)=1,	�+1(0)=0} (3)

if such a limit exists.
We introduce a critical value �∗ as
�∗ = sup {� : � (�) = � ∀ ergodic � with density �} . (4)

	is is called themaximal free owdensity, the highest density
of cars in which the throughput and the density are equal for
every ergodic initial con�guration. If the throughput equals
the density, we say the system has achieved permanent free
ow.

In this paper we calculate the throughput for � ∈ [0, 1]
and � ∈ [0, 1). 	e special case � = 1 is treated in 	eorem
1, part (b) of [2], and it turns out that the throughput obeys
the formula (5) of	eorem 1 given in this paper, although the
proof is dierent.

We state our �rst result.

�eorem 1. For the SSTCACT model de�ned above, with
parameters � ∈ [0, 1] and � ∈ [0, 1) and ergodic initial
distribution � with density �, the throughput almost surely
exists and is as follows:

(�) �� 0 ≤ � ≤ �∗, �ℎ�� � = �,
(��) �� 1

2 < � ≤ 1, �ℎ�� � = (1 − �) �
1 + � − � ,

(���) �� �∗ < � < 1
2 ,

�ℎ�� ���ℎ�� � = �  � � = (1 − �) �
1 + � − �

!"" �#��$ � %ℎ��ℎ��  � � � &��'!���� ���� �* %
�- !"ℎ��V�#.

(5)

�e maximal free ow density �∗ is given by

�∗ = �
2� + 1 − � . (6)

A pictorial representation of the function (5) is given in
Figure 1, which is the so-called fundamental diagram for this
model. 	is sketch has the typical “reverse lambda” shape
which appears in the simulation results of most tra
cmodels
and in real-world tra
c.

Before continuing, we state an example of how each
point on the fundamental diagram can be achieved. If we
begin with an initial distribution which puts weight 1/2 on
the con�guration that has cars at every even numbered site
(and no cars at odd numbered sites) and weight 1/2 on the
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Figure 1: 	e fundamental diagram which shows the throughput
as a multivalued function of the density, depending on the ergodic
initial con�guration. 	e parameters chosen for this sketch are � =
0.3 and � = 0.4.

con�guration with cars at odd numbered sites, then each
car will move deterministically, giving throughput of 1/2.
Doing a “thinning” of this initial distribution we can create
distributions for which � = � for any � ≤ 1/2.

In order to give an example of an initial distribution for
each point on the bottombranch of the fundamental diagram,
we turn to Bernoulli product measure. We will show the
following.

�eorem 2. If � is Bernoulli (�), then

� = {
{{
� �� 0 ≤ � ≤ �∗
(1 − �) �

1 + � − � �� �∗ < � ≤ 1, (7)

with �∗ as in (6).

	emultivalued function for � gives rise to metastability,
in the sense that rearranging the cars while preserving the
density and ergodic structure may result in an eventual
lowering of the throughput, which is known as a hysteresis
phenomenon.

Finally, we are able to fully describe the con�gurations
which arise in the time limit if there is no permanent free �ow.

�eorem 3. If there is no permanent free ow (i.e., � < �),
then the distribution of cars in SSTCACT converges to

!]� + (1 − !) ]1, (8)

where ]1 is the law which places cars at each site, ]� is the law
which places cars according to the renewal process described in
Section 3.3, and

! = (1 − �) 2� + 1 − �
� + 1 − � . (9)

	e bulk of this paper is dedicated to the proof of
	eorem 1. In Section 3, we give the ideas behind the proof of
	eorem 1, build some terminology, and examine how cars
exit tra
c jams. In Section 4 we prove all three theorems
simultaneously.

3. The Ideas behind the Proof of Theorem 1

Before even attempting to give a formal proof of 	eorem 1,
wemake some general comments to help the reader. To begin,
we observe right away that (i) in (5) is a trivial consequence
of the de�nition of �∗. If there is permanent free �ow, then
� must equal �, so half of (iii) in (5) is trivial. Since there
cannot be permanent free �ow when � > 1/2, the fact that
� must be less than � in this region (contained in statement
(ii)) is obvious. 	erefore, in order to prove 	eorem 1, we
must address what lack of permanent free �ow looks like and
under what conditions it is achieved.

3.1. Terminology. To proceed, we must �rst build some
terminology.A car at site� is said to be in free ow at a discrete
time � if it will be at site �+1 at time �+1with probability one.
Two cars are adjacent if they occupy consecutive sites on the
lattice. A block of cars is a maximal collection of consecutive
adjacent cars. 	e last (le�most) car in a block will be said
to be an LCB (last car in a block). 	ere is an obvious way to
identify a block at time �+1with a block at time � by declaring
the two blocks to be the same if the block at time �+1 contains
the LCB of the block at time �. A block is said to dissolve at
time � if there is a block of size two at time �−1 and the trailing
car is no longer adjacent to any car at time �. 	e word block
may be used, when no confusion will result, to refer either to
the sites that the cars occupy or to the cars themselves.

3.2. Flow in and out of Blocks. Consider what happens when
several cars occupy adjacent sites. Aside from the rightmost
car in a block, none of the cars have any possibility of
movement according to (1). Indeed, we think of these cars as
being stuck inside a tra
c jam. 	e rightmost car in a block
will move forward one site with a probability determined by
�ipping an appropriate coin which turns up heads with either
probability � or �, depending on the situation. In short, cars
peel out of a block one by one from the front, and no car can
move in a block until it reaches the front. 	us, there are two
main aspects which are key to the analysis of this model: how
do cars exit a block and how do cars enter a block?

	e latter question is easier to answer than the former.
Cars in free �ow enter a block by moving deterministically
until they are themselves part of the block.

	e more complicated aspect of the process evolution is
the manner in which cars leave a block. Imagine a block of
cars at a time �with no cars in front of it. At each time step, the
leading car in the block �ips a coin to determine whether it
will move forward. If the coin lands on heads, which happens
with probability �, the car moves. Otherwise, the car remains
at the same site. Once the �rst car moves, there is a gap of
size one between it and the second car, which is now at the
front of the block. Now the second car must �ip a � coin to
determine whether it will move forward at time �+2. If it does
move forward at time �+2, then the third car will �ip a � coin
to determine its movement. If the second car does not move
forward at time �+2, then it will �ip an � coin to determine its
movement at time �+3, because the �rst car willmove another
space ahead at time � + 2. In summary, the �rst car in a block
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�ips an � coin to determine when it moves. A�er that, the
car behind it will �ip a � coin to determine movement. Each
successive car will �ip � coins until the �rst tails is �ipped. As
soon as a car �ips tails, then the �rst car in the blockwill again
begin to �ip � coins.	is will allow the manner in which cars
exit blocks to determine the structure of the free �ow regions.

3.3. A Renewal Process. Let us make the last paragraph more
formal. It is natural to de�ne a renewal process associated
with the front of a block. For a �xed block of cars, let 5� be
the 6th time at which the rightmost car in the block does not
move forward. Let �(6) be the number of cars which were
emitted from the front of the block between times 5�−1 and5�. We will say that these cars are in the same regular pack.
	en the times 5� are the renewal times in a renewal reward
processes in which the 6th reward is �(6). 	e process ends
when the block dissolves. 	e probability that �(6) = � is

��−1(1 − �) for � ≥ 1, and �(�(6) = 0) = 1 − �. 	erefore,
the expected number of cars emitted in a regular pack is given
by

∞
∑
=1

���−1 (1 − �) = �
1 − � . (10)

A standard result from renewal reward theory states that
the average reward per unit time is given by the average
reward divided by the average time between renewals. In
our context, the average reward per unit time is the average
number of cars emitted from a block per unit time, which is
the density of cars emitted from the block. Since each of the
cars in the pack are separated by one space, with one extra
space at the le� end, the average distance between the �rst
car emitted in a pack and the �rst car in the next pack is

2 ( �
1 − �) + 1 = 2� + 1 − �

1 − � , (11)

which can be thought of as the length of the pack. 	erefore,
the density of cars distributed as packs is given by the average
number of cars in a pack divided by the length of the pack,
which gives

�� := �
2� + 1 − � . (12)

Notice this quantity �� is what we claim as �∗.
	e de�nition of the term “pack” must be clari�ed when

the emitted cars cause the block to dissolve. Suppose there
are only two cars le� in a block at time �. Once the �rst car
moves, the second car will follow with probability 1, rather
than �ipping a � coin. We say that the second car is emitted
from the block in the same pack as the �rst car. Since the
block is now dissolved, there can be no more cars emitted
as part of the same pack. Since this special type of car will
need to be addressed several places later, we call any carwhich
exits a block without �ipping heads on a coin (either � or
�) a tailgater. Such a car will continue to be referred to as a
tailgater until it enters another block. We will use the phrase
“regular pack” to refer to a pack without a tailgater.

Finally, we de�ne the sequence corresponding to the cars
emitted from a block a�er time t as follows. Suppose this block
occupies sites [;0, �0] at time �. If there were no cars in front
of this block, the cars emitted from this block would continue
in free �ow inde�nitely. Pretending this is the case, we de�ne
this sequence {?} so that ? = ��+�(�0 + - − �) for any - > �.
	at is, the sequence is de�ned usingwhatwould be the string
of cars emitted from a block if there were no cars in front of
it. We say the (random) sequence corresponding to the cars
in regular packs has a pack distribution.

3.4. Outline of Proof of �eorems. To prove 	eorem 1, we
must do the following. We must show that if � is less than
the pack density of (12), there will be permanent free �ow
(done in Section 4.3) and if � is greater than this density, there
will not be permanent free �ow for some initial distributions
(done by proving	eorem 2 in Sections 4.5 and 4.6).	iswill
establish the value of �∗. 	e idea is that if � < ��, there
cannot be a positive fraction of cars in blocks at all times
because thatwould cause the free �ow region to have a density
which is too high. And if � > �� and all of the cars �nd
themselves in blocks at some point, the free �ow region will
not have a high enough density to support an overall density
�, so there must be blocks in the system at all times.

Wemust also show that the limiting throughput exists (in
Section 3). If there is permanent free �ow, the existence of
throughput is trivial. If not, we show that the boundaries of
the blocks behave somewhat like a randomwalk, so that each
site witnesses a limiting �ux.

4. Proof of Theorems

We prove the three theorems simultaneously. 	e theorems
would be much easier to prove if not for the presence of
tailgaters. In the next subsection, we show that their presence
in some sense does not signi�cantly alter the makeup of the
free �ow regions.

4.1. Dealing with Tailgaters. 	e �rst lemmamakes use of the
fact that if one car enters permanent free �ow (never again
enters a block), then all cars must enter permanent free �ow.
	is fact is a direct consequence the translation invariance.
Furthermore, by the ergodicity of the con�guration at each
time, there is a zero-one law about entering permanent free
�ow; the probability of entering permanent free �ow (for any
car) is either zero or one.

To show that the throughput exists, we �rst state and
prove a lemma about the limiting density of LCBs (last cars
in a block).

Lemma 4. �e following are true.

(i) �e spatial density of LCBs decreases to zero.

(ii) If no car enters permanent free ow, the spatial density
of tailgaters goes to zero as time goes to in�nity.

Proof. For (i), we �rst observe that blocks cannot be created.
Because of this, the spatial density of LCB cars (last cars in
a block) does not increase in time and therefore converges
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to a limit. Suppose the limiting density of LCBs were @ > 0.
In order for LCBs to have density at least @, at least half of
the LCBs must be within distance 2/@ of nearest LCB to the
right, which means that these blocks have length no more
than 2/@. 	ere is a positive probability that any given one
of these blocks will dissolve in the next 2⌈2/@⌉ time steps
by emitting one large pack along with the event of no cars
entering the block. 	is would reduce the density of LCBs.
Since this argument can be iterated inde�nitely, the density of
LCBs cannot remain above @, which gives the contradiction.

For (ii), recall that when a tailgater reaches another block,
the car loses its tailgater status. Since we assume no car will
enter permanent free �ow, each tailgater will hit another
block and thus cease being a tailgater. Let %(�) be the density
of cars which become tailgaters at some point a�er time �,
and let C(�) be the density of LCBs at time �, which converges
to 0 from (i). Fix an D > 0 and time �0 large enough so that
C(�0) < D. Since each car which becomes a tailgater is an
LCB of a dissolving block, we get that the density of tailgaters
created a�er time �0 cannot be more than the density of LCBs
which will vanish a�er time �0. 	erefore, %(�0) < D.

Finally, let !(�) be the density of tailgaters at time �. For
any � > �0 we can decompose !(�) into those tailgaters
which have been tailgaters since time �0 and those which
were created a�er time �0. Since every car (in particular the
tailgaters) will enter a block in�nitely o�en, we can �nd a
time �1 ≥ �0 such that the density of cars which have been
tailgaters for the entire time interval [�0, �1] is less than D. Since
the tailgater cars which are created a�er time �0 have density
less than D, we get that !(�) < 2D for � > �1.
Lemma 5. Let {E} be the sequence corresponding to the cars
emitted from a block which dissolves at time �. SupposeE� = 1
represents the tailgater car so thatE�+1 = 0 represents the space
behind the tailgater car, and {E�+�}∞�=1 is the sequence of cars
behind the tailgater. �en there is a random � for which the
sequence

E1, E2, . . . , E�−1, E�+�, E�+�+1, . . . (13)

is distributed as a regular pack, as described in Section 3.3.
Furthermore, � remains bounded in expected value as � goes
to in�nity.

Before proving this lemma, we observe an immedi-
ate corollary. We call the �nite subsequence E�, E�+1, . . .,E�+�−1 from the lemma an exceptional subsequence.

Corollary 6. Upon removing the exceptional subsequences
from the free ow region, what remains has a pack distribution
as in the renewal process of Section 3.3.

	e corollary is obtained by observing that the free �ow
space can be divided into two parts: cars that have never
been in blocks and the part described by the lemma. 	e
exceptional subsequences mentioned in the corollary will be
used later to understand the free �ow regions. Denote by�0
an upper bound on their expected length.

Proof of Lemma 5. We break this proof into two cases. First,
we show the lemma under the additional assumption that

the car which eventually becomes the tailgater in the dissolv-
ing block has occupied the site adjacent to the car following
it at some time in the past; let - be the most recent such
time. Without loss of generality, suppose that at time -, the
dissolving block occupies sites;0, ;0+1, . . . , �0, the car which
will eventually become the tailgater is at site 0, and that there
are 6 cars between site 0 and site ;0. We will couple �� with
another SSTCACT process �̃ as follows. Set

�̃� (�) =
{{
{{{

1 � ≤ �0 − ;0 + 6 + 1
�� (�0 + 2) � = �0 − ;0 + 6 + 3
0 otherwise.

(14)

	en, we use the following coupling. We �rst assign each car

in �̃ a partner in �. 	e �th car to the right of site −1 at time -
in �̃ is partnered with the �th car to the right of site 0 at time -
in �, for � = 1, . . . , �0 −;0 +6+1. 	e �th car to the le� of site

0 at time - in �̃ is partnered with the �th car to the le� of site
0 at time - in �, for � = 1, 2, . . .. 	e only car in or behind the

dissolving block in � that is not partnered with a car in �̃ is the
car at site 0: the car which becomes the tailgater.	e coupling
is de�ned according to the following rule: the coins �ipped by

cars in the �̃ process as they leave the block will be tied to the
coins that their partners in the � process use when they leave
a block for the last time (if a car in � leaves multiple blocks,
we perform the coupling using the last block they le�).

	e cars in front of the tailgater in � will all be emitted
from the dissolving block. Due to the coupling, they are

emitted following the same sequence as their partners in �̃,
which follows a pack distribution. 	e car which is at site −1
in �̃ at time - will remain there until time �, at which time it
will �ip a � coin to determine its movement. By the coupling,
this coin �ip is tied to the coin �ip of the car at site −1 the
� process at the time it leaves the last block. In order for the
dissolving block to dissolve, the result of this coin �ipmust be
tails: both cars remain in position one time step and �ip an �
coin for the next time step. 	erefore, by setting� = 1 in the
statement of the lemma one can observe that the sequence of
cars generated in �, a�er having removed the tailgater, is the

same as the sequence in �̃, which has the pack distribution.
Now suppose that the car which eventually becomes the

tailgater in the dissolving block has never occupied the site
adjacent to the car following it at any point before time �.
In this case, set - to be the time when the tailgater car joins
the dissolving block. If we label the location of the dissolving
block as [;0, �0], the location of the front of the closest block
behind it which does not dissolve before time � as 0 and the
number of cars between these two blocks at 6, we can set up
a coupling process exactly as in (14). 	e coupling, however,
will be slightly dierent.

As before, we assign each car in �̃ a partner in �. 	e �th
to the right of site 6 at time - in �̃ is partnered with the �th car
to the right of site �0 at time - in �, for � = 1, . . . , �0 − ;0 − 1.
	e �th car to the le� of site 0 at time - in �̃ is partnered with
the �th car to the le� of site 0 at time - in �, for � = 0, 1, . . ..
Now many cars in the � process do not have a partner: all of
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the cars between the tailgater and the car which is at the front
of the previous block at time -.

We perform the coupling in the same way as in the

previous case: the coins �ipped in �̃ are tied to the partner
car’s �ips in � as they leave the last block. 	en it is clear that
the way in which the cars at sites [�0, ;0] at time - in � �ow
from the dissolving block is the same as the way in which cars

�ow from the front of the block in �̃, due to the coupling.
	is is also clear for cars which begin at sites less than or
equal to−1 in both processes at time �.	erefore, if we denote
E� = 1 to represent the tailgater car, E�+1 = 0 to represent
the space behind the tailgater car, E�+�−2 = 1 to denote the
car which is at site 0 at time - in �, and E�+�−1 to represent
the space behind this car, we can conclude that the sequence
E1, . . . , E�−1, E�+�, . . . is an example of the renewal reward
process. In order to complete the lemma, we must show that
G[�] remains bounded with time in this case.

By construction, � here is at most �0 + 1, the distance
between the tailgater and the car at site−1 at time - in �.	is is
the distance between the tailgater and the car which is behind
the car behind it, given that the tailgater and the car behind
it have never occupied adjacent sites. Since the car behind it
has then moved in free �ow since its initial movement, the
size of these gaps cannot increase in time, so G[�] remains
bounded.

4.2. Proof �at �roughput Exists. We now turn to proving
the existence of throughput from 	eorem 1. For conve-
nience, we de�ne

��� (�) = (�� (�)) (1 − �� (� − 1)) (1 − �� (� + 1)) ,
��� (�) = (�� (�)) (�� (� − 1)) (1 − �� (� + 1)) ,

��� (�) = (�� (�)) (1 − (1 − �� (� − 1)) (1 − �� (� + 1))) .
(15)

Under these de�nitions, ��� (�) is 1 if and only if there is a car at� at time �which is in free �ow, ���(�) is 1 if and only if there is a
car at � at time �which is the leading car in a block, and ��� (�)
is 1 if and only if there is a car at � at time �which is in a block.
Lemma 7. �e throughput � is almost surely given by the
limiting density of cars which are in free ow. �at is, if we set

����� to be the spatial density of free ow cars at time �, then
almost surely � = lim�→∞����� (H).
Proof. 	ere is no throughput within the blocks, aside from
the possible movement of the leading car in the block. 	e
law of large numbers gives

� = lim
�→∞

1
�
�−1
∑
�=0

(1{	�� (0)=1} + 1{	��(0)=1, 	��+1(0)=0})

= lim
�→∞

1
�
�−1
∑
�=0

(1{	�� (0)=1} + �1{	��(0)=1})
(16)

almost surely.

By Lemma 4, the observed density of cars at the front
of blocks goes to zero as time goes to in�nity; hence the
�1{	��(0)=1} term, due to dividing by �, does not contribute to
the throughput. 	erefore, the throughput is simply

� = lim
�→∞

1
�
�−1
∑
�=0

��� (0) (17)

if the limit exists. In order to show the lemma, we must show
that this time average is equal to the limiting spatial density
of cars that are in free �ow.

When all cars go into permanent free �ow, � = � trivially,
so � exists and is equal to the limiting density of cars that are
in free �ow. Now suppose that no cars enter permanent free
�ow.

Without loss of generality we may assume that site 0 is in
a block at time 0. We will denote by K � the amount of time
that site zero spends in the �th block it enters a�er time 0
and let L� be the amount of time it spends in the �th free �ow
region it enters a�er time 0. More precisely, we set K1 = '
if ��(0) = 1 for � = 0, 1, . . . , ' − 1 and ��(0) = 0; we set
L1 = � if ��(0)��(1) = 0 for � = K1, K1 + 1, . . . , K1 + � − 1
and ��1+(0)��1+(1) = 1. We set �1 = K1 + L1 and de�ne
inductively: K � = ' if ��(0) = 1 for � = ��−1, ��−1 + 1, . . . , ��−1 +' − 1 and ���−1+�(0) = 0; and set L� = � if ��(0)��(1) = 0
for � = ��−1 + K �, ��−1 + K � + 1, . . . , ��−1 + K � + � − 1 and
���−1+��+(0)���−1+��+(1) = 1, with

�� = ��−1 + K � + L�. (18)

	e sequence of times �� indicate the times in which the site
0 enters the �th block. Another way to write �� is

�� =
�
∑
�=1

(K� + L�) . (19)

We think about how the site 0 can “enter” a block, that is,
transition frombeing in a free �ow region at time � to being in
a block at time � + 1. 	is is possible only if site 1 is in a block
at time � and there is a car at site −1 at time �which enters the
block. 	us, we can think of the site 0 as entering the back of
a block. Site 0 will exit the block only a�er all of the cars in the
block in front of site 0 are emitted from the block as part of
regular packs. 	erefore, the expected amount of time it will
take for site 0 to exit a block a�er it enters is the average rate
at which cars exit from the front of the block times the length
of the block. A similar statement can be made about free �ow
regions dri�ing through the site 0.

	e blocks and the free �ow regions are changing in size
over time. However, once nearly all of the cars have been in
blocks, roughly speaking, the eect of the tailgaters becomes
negligible, so the input and outputmechanisms for the blocks
are free �ow cars which are emitted as regular packs. Since
the number of cars leaving a block and the number of cars
entering a block obey the same laws, the �uctuations in size
of the blocks (and free �ow regions) obey properties of an
unbiased random walk.

Formalizing this discussion, consider the block which
site 0 enters at time ��; call it M. Let {N�} be the sequence
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corresponding to the cars emitted from this block and let {O�}
be the sequence corresponding to the cars entering the block.
	e size of this block at time �� is the sum of the size of that
block at time 0 with the dierence between the sums of the
sequences {O�} and {N�} to time �0. By Lemma 5, the sequence
{O�} can be expressed as a sequence distributed as regular
packs with some exceptional subsequences inserted. Let ��
be the length of the �th such subsequence and let {Ô�} be the
sequence {O�} with the exceptional subsequences removed.
We have

(length of M at time ��)
= (length of M at time 0) +∑Ô� −∑N� +∑��,

(20)

where the sums are to be taken over all time indices less than
��. By Lemmas 4 and 5 and its corollary, for any positive D the
number of terms in∑�� is eventually less than D�� as �� → ∞,
and each of the�� is bounded by�0 < ∞ in expected value.
	e middle two terms on the right side are the dierence of
two sequences with the same law hence behave like a random
walk conditioned to stay positive until time ��. 	erefore, we
can �nd constants "1and "2 such that

"1√�� log log �� < K � < "2√�� log log �� + D�0�� (21)

for all times �� su
ciently large. By a similar reasoning, at the
expense of perhaps picking dierent constants, we can replace
K � in (21) with L�.

Returning to (17), we will �rst show that the fraction of
time site 0 �nds itself in a block tends to a limit. We have that

lim sup
�→∞

1
�
�−1
∑
�=0

��� (0) = lim→∞
1

�−1 + K

∑
�=1

K �,

lim inf
�→∞

1
�
�−1
∑
�=0

��� (0) = lim→∞
1
�

∑
�=1

K �;
(22)

we would like to show that these are the same.	e dierence
between the two can be written:

lim→∞
�−(3/4) ∑K �

�−1/�1/4 L + K/L�1/4
. (23)

Since ∑K � < �, we �nd that the numerator of this fraction
goes to zero. 	e �rst term in the denominator can be
expressed as

�−1
(�−1 + K + L)1/4L

. (24)

By (21), this quantity can be made arbitrarily large almost
surely by making D small, giving that dierence between the
limsup and liminf is almost surely zero. 	erefore,

lim
�→∞

1
�∑�=0� − 1��� (0) (25)

exists almost surely.

Because of this, the limiting fraction of time that site 0
spends in free �ow also exists, almost surely. Again using the
argument that the free �ow space, as time goes to in�nity, is
made up of primarily pack distribution as time goes on, we
will get our result. Formally, we write

��� (0) = 1{car from regular pack at 0 at time �}

+ 1{car from exceptional sequence at 0 at time �}.
(26)

	e density of cars from exceptional sequences has been
shown to approach zero, so upon dividing by �, we get that

lim
�→∞

1
�
�−1
∑
�=0

��� (0) (27)

exists and equals lim�→∞����� , and the proof of Lemma 7 is
complete.

4.3. Outline of Proof �at �∗=��. Recall that the density of
free �ow cars emitted from a block as regular packs, which we
label �� in (12), is exactly what we claim as �∗, the maximal
free �ow density from	eorem 1. 	erefore, we must justify
why the quantity �� should be �∗.

	e general idea is as follows. Since cars do not move
when they are in blocks, there is no throughput within the
blocks. 	erefore, the entire contribution to the throughput
must come from the free �ow regions. If all cars enter blocks
at some point, then all cars are eventually emitted as part of
a pack. 	erefore, there is a certain density of free �ow cars
which cannot be surpassed, provided all cars enter blocks.
Loosely speaking, in order to conclude that �� = �∗, we must
show that there is an initial distribution which will force all
cars to enter blocks if the density is greater than ��, that all
cars will enter permanent free �ow if the density is less than
��, and that the presence of tailgaters does not profoundly
change the calculations. 	ese general ideas will be made
precise throughout the rest of this section.

We will divide the proof of �∗ = �� into two parts. For
the �rst half of the proof we must turn to showing that �∗ ≥��.	e formal proof of this, given in Section 4.4, is borrowed
almost completely from the paper of Gray and Grieath [2].
To show�∗ ≥ ��, we assume� > �∗ and show that this implies
� > ��.	e basic idea of the proof is to show that the expected
distance between two cars cannot be too far apart when cars
are forced to run into blocks (because � > �∗).

Second, we will show that �∗ ≤ ��. To do this, we prove
	eorem 2, showing that if � is a Bernoulli product measure
distribution with density � with � > �� then it must be the
case that � > �∗. 	e proof of this is in Section 4.5.

4.4. Proof �at �∗ ≥ ��. We seek to prove �∗ ≥ ��. 	e proof
given here is a modi�cation of the proof given for general
cruise control systems in the Gray-Grieath paper [2].

Assume � > �∗. We seek to show that � > �∗ implies
that � ≥ ��. We condition on the event that a car starts at the
origin at time 0. Let O� be the position of that car at time �
and let N� be the position of the next car to the right of the car
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at O�. 	e ergodic theorem tells us that G[N� − O�] = 1/� for
all �. For 0 ≤ - < �, de�ne the following events:

K � = {N� − O� = 1} ,
L�,� = {N� − O� = 1, N� − O� > 1 for - < V ≤ �} ,

W� = {N� − Ou > 1 for 0 ≤ V ≤ �} .
(28)

Since we assume that � > �∗, the probability of the event
that the car that starts out at the origin stays in free �ow goes
to zero as time goes to in�nity, so �(W�) → 0. 	us,

1
� = lim
�→∞

G [N� − O�]

= lim
�→∞

1 ⋅ � (K �) +
�
∑
�=0

� (L�,�) G [N� − O� | L�,�] .
(29)

Since G[N� −O� | L�,�] > 1 for all - and �, if we could show
that

G [N� − O� | L�,�] ≤ 2� + 1 − �
� (30)

for all - and �, we would then get that

1
� ≤ 2� + 1 − �

� , (31)

which is the desired conclusion.
	us, we turn to proving (30). As in [2], we will actually

prove

G [N� − O� | L�,�, N� − N�,F�] ≤ 2� + 1 − �
� , (32)

whereF� is the �-�eld generated by the processes up to time
-.

Since we are assuming that N�+1 − O�+1 > 1, there is a
vacancy to the right of the car at position O�+1 at time - + 1.
If there is also vacancy to the le� of that car, then the car at
positionO�+1 willmove in free �ow. In order to have the event
L�,� hold, we must have N� − O� = 2 in this case. Since 2 ≤
(2�+ 1− �)/�, we can restrict our attention to the case where
there is a car immediately to the le� of the car at site O�+1 at
time - + 1.

Since N� − O� = 1 and N�+1 − O�+1 > 1, we must have that
the car at site N� moved at time - + 1 but the car at siteO� did
not.	erefore, in order for the car at siteO�+1 tomove at time
- + 2, the car must �ip heads on a �-coin.

Let \ = (� − -) − (N� − N�), the number of times that
the leading car (denoted by the letter N) did not move in
the time interval [-, �]. Because � < �, we are guaranteed a
density of cars in the system, bounded away from zero, which
are in blocks at any given time. Along with Lemma 4, this
tells us that the average block size is nondecreasing in time.
	erefore, we can be assured that as time goes on it becomes
very unlikely that the car at position N will pass through an
entire block between time - and time � with the car behind it
not reaching that block. 	erefore, with probability that goes

to one, we either have that the leading car is at the le� edge
of a block at time � − \ (and still at time �), or \ = 0. If the
event L�,� occurs, then the car at site O�+1 must �ip tails at
times - + 2, - + 3, . . . , - + \, because there is no way for the
gap between the two cars to grow once the trailing car enters
free �ow. 	us, if these �ips were not all tails, there would be
a time V with - < V ≤ � with N� − O� = 1.

A�er time - + \, the coin tosses made by the car at site
O�+� are independent of L�,� and N� − N�, since there is no
way that this car could catch up to the car at site N�+� in the
next � − - − \ time steps to aect its movement. 	erefore,
N�−O� = 2+�, where� represents the number of consecutive
tails beginning with time - + \ + 1 tossed by the car which
began at the origin.	e random variable� is independent of
L�,�, N� − N�, andF�. 	erefore,

G [N� − O� | L�,�, N� − N�,F�] = 2 + G [�] . (33)

We can decompose the value of G[�] according to
whether or not the leading car hits a block before time � as
follows:

G [�] = G [� | \ = 0] ⋅ P (\ = 0)
+ G [� | \ > 0] ⋅ � (\ > 0) . (34)

We have already argued in Lemma 4 that the probability of
a car being at the edge of a block goes to zero as time goes
to in�nity independently of�. 	us, as time goes to in�nity,
�[\ > 0] → 0.	erefore, we only need to look atG[� | \ =
0].

In that case, � = 0 means the car at site O�+1 moved at
time - + 2 despite having a car immediately behind it and 2
sites in front of it. 	is happens with probability �. If � > 0,
then the car at site O�+1 did not move at time - + 2 (which
happens with probability 1−�), did notmove at the next�−1
steps (which happens with probability 1−� at each time step),
but did move on the (� + 1)st time step (with probability �).
	us,

G [�] =
∞
∑
�=1

� (1 − �) (1 − �)�−1� = 1 − �
� . (35)

	us, 1/� ≤ 2 + (1 − �)/�, which gives the desired
inequality, thus completing the proof that �∗ ≥ ��.
4.5. Start of Proof of �eorem 2. In this section, we establish
the existence of ergodic initial distributions which lack
permanent free �ow for any density � greater than ��.
Such an example is the Bernoulli product measure family of
distributions.

Lemma 8. When the initial distribution � is Bernoulli product
measure with density �, � > ��, each car is in a block at some
time � ≥ 0 with probability one; no car enters permanent free
ow.

Proof. Since we are assuming that the initial distribution is
a Bernoulli product measure, we can guarantee that there
are arbitrarily long blocks in the initial con�guration. Since
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a block can dissolve only linearly in time, we can guarantee
blocks of arbitrary length at any �nite time � ≥ 0.

By Lemma 4, we are able to �x a time 5 ≥ 0 so that the
density LCBs is less than (1/8)(�−��). At this time 5, we will
consider a block which has the following properties. Recall
we have assumed that � > ��.
Property A. Let � be the site which is at the front of this block.
For any ; < �, the spatial density of cars in the interval [;, �]
is ≥ (1/2)(� + ��).
Property B. Let ;� be the site occupied by the LCB (last car
in the block). For any ?� < ;� − 4/(� − ��), the density

of LCBs in the interval [?�, ;�] is less than (1/4�0)(� − ��),
where�0 is a bound on the expected length of the exceptional
subsequences from Lemma 4.

We claim that there are in�nitely many blocks which
possess both of these properties. To see this claim for Property
A, suppose on the contrary that there are not any blocks with
Property A at a given time. Fix a block L1, and let �1 be
the site of the �rst car in block L1 at this given time. By our
assumption, there exists a site ;1 < �1 so that the density of
cars in the interval [;1, �1] is less than (1/2)(� + ��). Now
let �2 ≤ ;1 be the largest site index less than or equal to ;1
which marks the front of another block, which we call L2.
We iterate this construction to obtain an in�nite collection
of intervals {[;�, ��]}. Let _ be the union of these intervals. By
construction, the density of cars in _ is less than (1/2)(�+��).
	e set (−∞, �1] \ _ is a set of sites which are not in blocks
at the given time. Any cars in these sites were either emitted
from blocks as part of packs (in which case, by Lemma 4,
their density becomes asymptotically close to ��) or they have
never been in a block (in which case they occur with density
� according to the Bernoulli productmeasure). In either case,
the density of cars in this region is atmost �. Combining these
facts shows that the density of cars in the interval (−∞, �1] is
less than �, which is a contradiction. 	erefore, there must
be at least one block with Property A at any given time.
However, by translation invariance, the existence of one block
implies the existence of in�nitely many blocks, and our claim
is shown.

To see that there must be in�nitely many blocks with
Property B, we recall that by Lemma 4 the density of LCBs
decreases to 0 in time. Suppose on the contrary that no block
has Property B. At any time � > 5, �x a block L1 which
has LCB at site �1 and let �2 < �1 − 4/(� − ��) be the
rightmost site for which the density of LCBs is greater than
(1/4�0)(� − ��) in the interval [�2, �1]. By construction, �2
will be the site of an LCB, so we can �nd the rightmost site
�3 < �2 − 4/(� − ��) so that the density of LCBs in [�3, �2]
is greater than (1/4�0)(� − ��). We iterate this construction
and �nd that the density of LCBs in the interval (−∞, �1]
is greater than (1/4�0)(� − ��), which we have assumed to
be false for all times � > 5. Again by translation invariance,
the existence of one block with Property B at any time � > 5
implies the existence of in�nitely many such blocks.

At this �xed time 5, pick a block a of length b so that
block a has Properties A and B. Let us say at time 5 block
a occupies the sites �, � + 1, . . . , � + b − 2 and � + b − 1 on

the integer lattice.Wewill say that a carwhich starts at site; <
� reaches block a when it �rst reaches the site � −∑��=� ��(�),
regardless of whether or not block a has dissolved by that
time. Since the cars in front of blockawill not enter into this
discussion, we may as well suppose that there are no cars in
front of block a.

Consider the �rst car to the le� of block a which is able
to be in free �ow forever a�er time 5. 	at is, it is the �rst
car to reach the last sites block a occupied a�er block a has
dissolved and without having been in a block since time 5.
We call this the �rst free ow car. Letc� be the event that the
�rst free �ow car occupies site ; at time 5. In order for this
to happen, block amust dissolve by the time this car reaches
block a, which is certainly at or before time 5 + (� − ;), as
free �ow cars move at unit speed.

Since the �rst free �ow car does not hit a block, at time
5 + (� − ;) there are no blocks between coordinates � + b −
1 + (� − ;) and ; + (� − ;), and all of the cars in this interval
except the �rst free �ow car are in blocks a�er time 5.

	e number of cars in the interval [�, � + b − 1 + (� −
;)] at time 5 + (� − ;) is the same as the number of cars in
the interval [;, � + b − 1] at time 5, which by Property A is
at least (1/2)(� + ��)(� + b − ;). 	e number of tailgaters
among these cars is at most (1/4�0)(� − ��)(� + b − ;). We
remove the exceptional subsequences from this interval, and
the density of cars which remain in this interval has expected
value at least (1/4)�+(3/4)��.	e probability of the eventc�
is less than the probability of having a density at least (1/4)�+
(3/4)�� over an interval of length �+b−; emitted as regular
packs from a block.

Since the expected value of the density of regular packs
is �� (from Section 3.3), we can use Markov’s inequality to
conclude that it is exponentially unlikely in (� − ;) that this
scenario occurs. To verify thatMarkov’s inequality applies, let
E� denote the the �th pack to the le� of coordinate�+b+(�−;)
at time 5 + (� − ;), and let _ be the �th partial sum of the
#(E�)’s (number of cars in packE�). To get our conclusion, we
must see that

G [��(#(�1))] = (1 − �) +
∞
∑
�=1

������−1 (1 − �) , (36)

is �nite. 	is is true when we choose C > 0 so that � < �−�.
Since we are assuming � ∈ [0, 1), we can always �nd such
a C.

Since �(c�) = 0 for any ; within b units of �, if we
choose b large enough, we can assure a positive probability
of no eventc� occurring (�(∪∞�=�−�c−�) < 1), which implies

that every car behind block a will be in a block at some time
a�er time 5. Since there are in�nitely many blocks in the
con�guration at any �nite time with Properties A and B and
the density of tailgaterswill decrease in time,we conclude that
every car must enter a block at some point in its lifespan.	is
completes the proof of Lemma 8.

	e proof of 	eorem 2 is almost complete and will be
completed in the next section along with the completion of
the other two theorems.
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4.6. Explicit Calculation of Density of Cars in Free Flow,
Proof of �eorem 3 and Completion of Proof of �eorem 2.
According to Lemma 7, the throughput � is given by the
limiting density of cars which are in free �ow. In order to
complete the proof of 	eorem 1, we must verify that the
formula for � in (5) is correct.

If � ≤ �∗, then ��(H) = � trivially, since all cars eventually
enter permanent free �ow. 	erefore, we focus our attention
to the case when � > �∗.

Because of (21), any interval [−g,g] will, with proba-
bility which approaches one, be either completely enclosed in
free �ow region or completely enclosed in a block as time goes
to in�nity. Since tra
c density is preserved in time, we have

! (limiting free �ow density)
+ (1 − !) (limiting block density) = �. (37)

	e block density is clearly 1, and the density in the free �ow
region is asymptotically given by �� by Lemma 4 and the
corollary to Lemma 5. We then solve for ! and get

! = (� − 1) 1 + 2� − �
� − 1 − � (38)

which gives 	eorem 3.
Putting all of this together, we get that the density of the

subset of cars which are in free �ow is equal to the fraction of
space that is occupied by free �ow times the density of cars
there. 	us,

�� (H) = (� − 1) 1 + 2� − �
� − 1 − �

�
2� + 1 − � = (1 − �) �

1 + � − � ,
(39)

which completes the veri�cation of (5) and we have proved
	eorem 1.

Finally, since Lemma 8 guarantees that under a Bernoulli
(�) initial distribution, there is no permanent free �ow, we
can use the results of 	eorem 3 to establish 	eorem 2.
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