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Single-cell RNA-sequencing data has revolutionized our ability to understand of the patterns of 
cell–cell and ligand–receptor connectivity that influence the function of tissues and organs. However, 
the quantification and visualization of these patterns in a way that informs tissue biology are major 
computational and epistemological challenges. Here, we present Connectome, a software package 
for R which facilitates rapid calculation and interactive exploration of cell–cell signaling network 
topologies contained in single-cell RNA-sequencing data. Connectome can be used with any reference 
set of known ligand–receptor mechanisms. It has built-in functionality to facilitate differential and 
comparative connectomics, in which signaling networks are compared between tissue systems. 
Connectome focuses on computational and graphical tools designed to analyze and explore cell–cell 
connectivity patterns across disparate single-cell datasets and reveal biologic insight. We present 
approaches to quantify focused network topologies and discuss some of the biologic theory leading to 
their design.

Cell-to-cell communication is a major driver of cell differentiation and physiological function governing organ 
development, homeostasis, and response to injury. Within tissues, cells have local neighbors with whom they 
directly communicate via paracrine signaling and direct cell–cell contact, and long-range or mobile partners 
with whom they exchange information via endocrine signaling. In solid tissues, cell types have specific cellular 
niches incorporating localized matrix and signaling environments, which facilitate phenotypic maintenance 
and support specialized cell functions. Circulating immune cells use an extensive library of chemokines to 
coordinate multicellular system responses to threat or injury. The advent of single-cell technologies has made it 
technologically possible, for the first time, to codify cell-specific ligand–receptor patterns in complex tissues with 
both high accuracy and robust statistical confidence. Numerous computational tools have emerged in the last 
years to mine intercellular communication information from single-cell data1–8. The combination of single-cell 
sequencing data with ligand–receptor mapping is therefore a promising approach to exploring, understanding, 
and reverse-engineering complex tissue systems-biology for biologic, therapeutic, and regenerative efforts. This 
manuscript formalizes and disseminates the techniques first published by Raredon et al.1, presenting open-source 
software to the wider community facilitating exact recapitulation of this analysis.

A connectomic network from a single tissue has unique properties that must be taken into consideration 
for biologically relevant downstream information processing. Tissue-derived connectomic networks are direc-
tional—i.e. each ligand–receptor interaction matrix is asymmetric; multi-modal—i.e. many ligand–receptor 
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mechanisms contribute to the connectome; and weighted—i.e. interaction edges can be assigned quantitative 
values. These properties make data mining and data visualization substantially more complex than in some 
other genres of network science. Added dimensions can additionally come into play when it is necessary to 
compare cell–cell signaling in tissues between experimental conditions, over time during growth or remodeling, 
or between disparate tissue systems in which the same cell type annotations are not necessarily present. Here we 
describe a computational package in R called Connectome which facilitates each of these tasks. Connectome has 
been used to explore native signaling in human lung9 and to identify aberrant signaling in pulmonary arterial 
hypertension (PAH)10, chronic obstructive pulmonary disease (COPD)11, and COVID-1912.

Connectome is a multi-purpose tool designed to create ligand–receptor mappings in single-cell data, to iden-
tify non-random patterns representing signal, and to provide biologically-informative visualizations of these 
patterns. It can be applied to any single-cell dataset (or combination of datasets), and is designed to be used in 
association with the R package Seurat. By default, Connectome uses the FANTOM5 database of ligand–receptor 
interactions13, formalizing the workflow first presented in1, but it also allows mapping against any user-provided 
ligand–receptor list. Because the reference database can be customized, Connectome can also be used to investi-
gate newly discovered or hypothesized ligand–receptor mechanisms of particular interest.

To demonstrate Connectome, we apply the software analysis in three distinct use-cases on public data. First, 
we demonstrate application to an individual tissue by analyzing single-cell human pancreas data. Second, we 
describe differential connectomics, comparing IFN-stimulated human PBMCs with unstimulated control data. 
Third, we apply Connectome to a longitudinal wound-healing dataset in mouse muscle. All software is available at 
https://​github.​com/​msrar​edon/​Conne​ctome. Detailed vignettes and instructions for use are published at https://​
msrar​edon.​github.​io/​Conne​ctome/.

Methods
Definitions.  The term connectome refers to the complete set of interactions between nodes in a cell system, 
in the same way that transcriptome refers to the complete set of transcribed genes within a cell. The term parcel‑
lation refers to the way that the above system is divided up into distinct nodes and in the application described 
in this manuscript is synonymous with celltype cluster. The way a system is parcellated strongly affects its node 
architecture and therefore the shape of the resulting connectome. An edge in Connectome is a single unique cell-
type–ligand–receptor–celltype interaction. Edge attributes are quantitative or qualitative pieces of information 
associated with an edge. A differential connectome is the network that results when two connectomes are directly 
compared, edge-for-edge. Centrality, as used in the text, refers to quantitative metrics of how ‘connected’ a given 
node is to other nodes, in either an outgoing (sending) or incoming (receiving) fashion.

Defining the data structure of tissue connectomics.  The connectomic mapping discussed here treats 
every cell parcellation (e.g., different cell types, phenotypically distinct cell states of the same cell type, etc.) as a 
single node, averaging ligand and receptor values across a given cell parcellation to yield mean values which are 
then linked. Mean-wise connectomics has the advantage of accommodating the zero-values intrinsic to single-
cell data, while simplifying the system so that every cell parcellation is represented by a single, canonical node. 
However, as this approach will blend the effects of all cellular archetypes within a cluster, initial cell parcellation 
must be done carefully for the resulting connectomic networks to be biologically meaningful.

Connectome, by default, calculates two distinct edgeweights, each of which captures biologically relevant 
information. The first edgeweight, also referred to as ‘w1’ or ‘weightnorm,’ is defined as the product of the celltype-
wise normalized expression for the ligand and the receptor, or
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to the above edgeweights definitions because we have found them to be effective for understanding biological 
questions addressed in our studies.

Identification of edges of interest or significance.  Statistical significance depends upon the question 
being asked, the test being applied, and the threshold for important differences, and has a very different meaning 
depending on whether a research team is investigating a single tissue, comparing multiple tissues, or studying a 
physiologic process. We find two general statistical patterns to be of key importance, and we have built-in func-
tionality to Connectome to help the researcher focus on these patterns.

Single‑tissue system.  First, when studying a single tissue system (i.e., one organ in one condition), it is desirable 
to focus on those ligand–receptor interactions which are highly associated specific celltype-celltype pairings. To 
do so, we recommend limiting analysis to only those edges where the ligand and the receptor are both expressed 
in greater than a certain fraction of their respective clusters, generally 10%, and to then further limit analysis to 
those edges where both the ligand and the receptor have a p-value of less than a given threshold as determined 
by a system-wide Wilcoxon Rank Sum Test (calculated by default within CreateConnectome.) These thresholds 
can be further reduced within FilterConnectome, to identify those pathways of greatest significance, and can be 
crossed with additional thresholding to limit edge representation to specific vectors or signaling families (see 
vignettes online).

Two‑tissue comparison.  When comparing two tissue systems (i.e., one organ in two experimental conditions) 
it is generally interesting to focus on those mechanisms which, regardless of their association with a specific 
celltype-celltype vector, are differentially regulated across condition.

The vignette online shows how to use a Wilcoxon Rank Sum test to compare each pair of commensurate cells 
across two datasets and to thereby determine which ligands and which receptors are differentially expressed to 
a statistically significant degree. The differential connectome can then be thresholded to only those edges where 
both the ligand on the sending cell and the receptor on the receiving cell are differentially expressed between 
experimental conditions. All differential connectomics presented and discussed in this manuscript and online 
utilize this statistical approach.

Centrality definition and usage.  Centrality and CompareCentrality both calculate and plot-to-compare 
two key centrality metrics for networks of interest: the cumulative incoming/outgoing edgeweight for each node, 
and the Kleinberg Hub and Authority scores for each node. These two centrality metrics often correlate, but 
they do not always agree on node ranking. There is no single, proper and agreed upon way to best calculate 
network centrality16; these two metrics were chosen because they are commonly used in network research and 
are biologically interpretable. Cumulative incoming/outgoing edgeweight fraction is the sum of the incoming 
and outgoing edges, calculated per node, expressed by default as the fraction of total edgeweight within the con-
sidered system; this ranks each node’s ability to contribute or listen to a given set of interactions. Hub-Authority 
centrality is a heavily-used information flow metric17, which should be interpreted, in this instance, to reveal 
Hubs which send signal to Authorities, and Authorities which receive information from Hubs. Each of these 
metrics provide interpretable information regarding biologic network structure.

Perturbation score definition and usage.  In a differential connectome, every edge may fall into one of 
four distinct categories, ligand UP/receptor UP, ligand DOWN/receptor DOWN, ligand UP/receptor DOWN, 
or ligand DOWN/receptor UP. If both the ligand and receptor are upregulated, we may reasonably call the edge 
‘activated’, while conversely, when both the ligand and receptor are downregulated, we may think of the edge as 
‘deactivated’. The two alternate cases, when a ligand is upregulated and a receptor down, or vice-versa, are more 
complicated to interpret. Although such patterns may initially suggest ligand–pressure or ligand–starvation, in 
which the downstream cell changes its character in response to upstream influence, it is important to note that 
in most tissue systems there are many cells interacting at once, and that there are likely multi-cell feedback loops 
in play which confound easy interpretation of such patterns.

To accommodate this data architecture and identify strongly perturbed edges regardless of category, we 
defined a ‘perturbation score’ that is calculatable for each edge, expressed as the product of the absolute values 
of the log-fold change for both the receptor and ligand, or:
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Signaling family categorization.  The signaling family categorizations used in this manuscript are car-
ried over from1 with minor updates per recent literature findings. These groupings are loaded by default within 
Connectome. It should be noted that each signaling mechanism is allowed only a single designation in this 
formulation; in biologic reality, however, many signaling mechanisms can be considered to belong to multiple 
signaling families. These groupings are meant as a guide for hypothesis generation and later downstream explo-
ration, rather than as definitive classification.

Analysis of pancreas data.  In brief, the panc8 data was downloaded from SeuratData, normalized, scaled, 
and run through the CreateConnectome with a min.cells.per.ident cutoff of 75. Downstream analysis was limited 
to those edges where both the ligand and the receptor were expressed in > 10% of their respective clusters, and 
which had a p-value < 0.05 for both the ligand and the receptor. Additional thresholds applied for specific visu-
alization purposes are emphasized when appropriate in the figure legends.

For the centrality analysis present in Fig. 2, Centrality was first run across all signaling families. Each signal-
ing family was then grouped according to which of the 4 cell classes was found to dominate incoming centrality 
within the given dataset. Centrality was then re-run 4 times, once for each set of signaling families, to yield the 
4 sub-graphs.

Analysis of IFN‑stimulated vs. Control PBMC data.  In brief, the ‘ifnb’ dataset was loaded from Seu‑
ratData. Each dataset was normalized, scaled, and run through CreateConnectome. The two connectomes were 
then passed to DifferentialConnectome. A Wilcoxon Rank Sum test was then performed for each individual cell 
across conditions, for all ligands and all receptors, and the results from this test were used to limit the differential 
connectome to only those edges showing statistically significant differences (p < 0.05) for both the ligand and 
the receptor. Downstream analysis was further limited to those edges which had ligand and receptor expression 
in > 10% of their respective clusters in either the control or the test condition. Figure 3C was made with Differen‑
tialScoringPlot and Fig. 3D was made with CircosDiff, both of which are built in to Connectome.

Analysis of muscle wound‑healing data.  In brief, raw data was loaded from De Micheli et al.18, nor-
malized, scaled, and run through CreateConnectome. ggplot was use for Fig. 4A,D, CircosPlot for Fig. 4B, and 
CompareCentrality for Fig. 4C.

Results
Visualizing the connectomic signature of a single tissue.  Figure 1 shows the workflow for ligand–
receptor connectomics in a single tissue. In this instance we use single-cell data from 8 separate single-cell RNA 
libraries of human pancreatic tissue, available through the SeuratData database19. As a first step (Fig. 1A), the tis-
sue data are parcellated into defined cell types using a standard clustering workflow. Then, a mapping is created 
against a ground-truth database of known ligand–receptor mechanisms. This mapping yields a large edgelist, 
wherein nodes are defined as cell types and edge attributes contain quantitative information derived from cell 
type-specific expression levels. Source nodes denote the ligands, and target nodes refer to the cognate receptors. 
This data architecture is stored as a data frame in R, the environment which is particularly amenable to subset-
ting networks of interest and working with graph theory-based computational packages. This process is per-
formed by a single function in Connectome which allows customization of edgeweight definition and edge attrib-
ute calculations. By default, two edgeweights are calculated: weightnorm and weightscale, both of which are defined 
in “Methods”. Weightnorm is a measure of raw connectivity between two nodes, while weightscale is a measure of 
signal specificity between two nodes within a given tissue system. Both metrics are biologically informative.

Conceptually, the data architecture for a single edge attribute (one column in the above discussed edgelist 
data frame in Fig. 1A) can be thought of as a 3D matrix (Fig. 1B), where rows are source (sending) cells, columns 
are target (receiving) cells, and the z-axis is the full list of ground-truth known ligand–receptor mechanisms. 
This allows clear visualization of the data that needs to be subset in order to explore a single interactome (red), 
outgoing network (purple), niche network (blue), or cell–cell vector (green). The blue rectangle represents a 
niche-network, containing information on all edges in a position to influence a single cell type. The purple 
rectangle shows all edges coming from a single cell type. The red rectangle is a single interactome, containing 
information for a single signaling modality between all cell types. The green prism represents a single cell-to-cell 
vector, containing information for all signaling modalities.

Visualization of these connectomic networks can be done in multiple ways. Connectome includes a series 
of functions designed for tissue network exploration, including one which generates plots allowing immediate 
quantitative visualization of individual interactomes (e.g. Fig. 1C), celltype-to-celltype vectors (Fig. 1D) and niche 
networks (Fig. 1E). Further, the similarity between individual celltype-to-celltype vectors (vectortypes) can be 
analyzed using a k-nearest-neighbor style embedding (Fig. S1). This style of visualization places vectortypes in 
a 2-dimensional space and provides a quantitative way to cluster vectortypes based on which ligand–receptor 
mechanisms are most highly weighted in each celltype-to-celltype pairing. We provide a custom function in 
Connectome to perform this analysis.

Tissue network centrality analysis.  A major goal of tissue science and cell biology is to understand the 
roles that individual cells types play and their ability to affect other cell types. It is of interest, therefore, to rank 
cell types based on their ability to produce or receive information within a given signaling network, or signaling 
family. To quantify these roles, Connectome is capable of performing a centrality analysis, an example which is 
shown in Fig. 2. In this analysis, the total connectome for a single tissue is first subset down to only those edges 
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Figure 1.   Single-tissue connectomic topology. (A) Pancreas single-cell data is parcellated into defined cell types. 
These cell types are then mapped against a ground-truth database of known ligand–receptor mechanisms. This 
yields a comprehensive edgelist of cells expressing ligand connecting to cells expressing receptor, with associated 
edge attributes. Note that a single ligand may hit multiple receptors and vice-versa. (B) A conceptual visualization of 
the data architecture and biologically informative cuts through the data. (C–E) Selected quantitative visualizations 
of interactome-, vector-, and niche-networks made with Connectome. These three plots, respectively, allow (C) 
identification of top cell types utilizing a given L–R mechanism, (D) top mechanisms employed by a cell–cell vector, 
and (E) top cell-mechanism combinations in a position to influence a receiving cell. In (C)–(E), edge thickness is 
proportional to weightscale, which is larger when an edge is more highly associated with a specific celltype–celltype 
vector. In all cases, the network shown has been limited to those edges in which the ligand and receptor are both 
expressed in > 10% of their respective clusters and have a p-value of < 0.05. In subpanel E, for illustration, the network 
has been further thresholded to those edges with a ligand and receptor z-score of > 1. Connectome v1.0.0 (available at 
github.com/msraredon/Connectome) was used to generate subfigures (C)–(E).
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Figure 2.   Centrality analysis for a single tissue system. (A) The total connectome for the pancreas is iteratively 
subset to each individual signaling family, after which Kleinberg hub and authority scores are calculated for each 
cell type. (B) Signaling families, grouped by dominant receiving nodes, crafts a quantitative portrait of global 
tissue system signaling architecture. In alignment with biologic intuition, mesenchymal cells are top network 
receivers of PDGF-family signals, epithelial cells are top network receivers of EGF-family signals, immune 
cells are top networks receivers of CSF- and CC (Chemokine)-family signals, and endothelial cells are in top 
network receiving positions for VEGF-, and ANGPT-family pathways. Centrality analysis was performed once 
for all signaling families, groupings were designated by top receiving node, and the four grouped plots were 
then individually re-made. Connectome v1.0.0 (available at github.com/msraredon/Connectome) was used to 
generate subfigures (A) and (B).
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belonging to a single signaling family (Fig. 2A). This weighted graph is then used to calculate two centrality 
metrics: the Kleinberg Hub and Kleinberg Authority scores (represented as the dot size), and the cumulative 
directed edgeweight (x-axis), for each cell type within the network. A high Hub score, biologically, implies that a 
sending cell type is producing high levels of ligand which are sensed by other cells in the system. A high Author-
ity score, biologically, means that a receiving cell type is highly expressing receptors capable of sensing ligands 
secreted by other cells in the system. The dot sizes arising from the Kleinberg scores are then used to visualize 
outgoing and incoming centrality of each cell type (Fig. 2B), for a variety of specific signaling mechanisms. For 
example, the endothelial cell population of the pancreas has a high outgoing centrality score for signaling along 
the PDGB axis to the mesenchyme compartment (green circle in upper left panel of Fig. 2B, “endothelial”, highly 
connected to the ochre circle in upper right panel, ‘activated stellate’). The result is a ranking of outgoing and 
incoming centrality for every cell type, across every signaling family, for each target cell type within the tissue. 
Collectively, this analysis creates a comprehensive portrait of potential extracellular signal transfer within a given 
tissue system. As shown in Fig. 2, this information can then be used to group each signaling family based on the 
cell type that is best positioned to receive information (shown, sorted by incoming centrality) or best positioned 
to generate a signal (not shown—requires sorting by outgoing centrality).

Differential connectomics with aligned nodes.  It is common in systems biology to examine changes 
in cell–cell signaling between two systems, i.e., in a multicellular tissue before and after treatment with a drug 
or chemokine (Fig. 3A). In one such example, if the same cell types are present in both systems, we may cal-
culate direct, one-to-one comparison of all edges using the Connectome package. It should be noted, however, 
that within a differential connectome, there are four distinct types of perturbed edges, since for each cell in a 
differential edge, the ligand and the receptor may be either increased or decreased (see “Methods”, Fig. 3B). Fig-
ure 3 shows the utility of this concept in the interferon-simulated vs. control dataset of human peripheral blood 
mononuclear cells available through SeuratData20. Figure 3C shows log fold changes for selected ligands and 
receptors, and the resulting perturbation scores (which are always positive) for each cell–ligand–receptor–cell 
edge. Perturbed edges can then be grouped by their differential pattern and their perturbation scores visualized 
in readily-explorable network form (Fig. 3D).

Longitudinal connectomics for a dynamic tissue‑system process.  Comparing tissue-level connec-
tomics datasets can be difficult when the cell nodes are not directly comparable between the two tissue systems. 
Such a situation can occur if new cell types are recruited into, or eliminated from, a tissue system. Alternatively, 
normal differentiation processes may take place which cause a new cell type to emerge. Such changes occur fre-
quently, whether due to inflammation, response to injury, wound healing, or normal development. Many unan-
swered questions in tissue science center around how these changing cellular landscapes correlate with shifting 
cell–cell communication patterns that are present in tissues and organs. Because centrality analysis quantifies 
network topology while being agnostic to specific nodes being present, the described technique allows for the 
comparison of disparate tissue systems which do not necessarily contain the same cell types.

As an example of a comparison of tissue systems containing different cell types, the muscle wound-healing 
dataset recently published by De Micheli et al.18 provides an excellent use-case for longitudinal tissue con-
nectomics. In this study, done in vivo in mice, muscle tissue was injured and then allowed to heal over time. 
scRNAseq was performed on Day 0, immediately before injury, and then on Days 2, 5, and 7 post-injury. Cells 
were parcellated on a per-time-point basis, leading to clear trends in cell type tissue fractions over time (Fig. 4A). 
Certain cell types are present in the tissue throughout the wound healing process [i.e., endothelial cells, fibro/
adipogenic progenitors (FAPs)], while others are recruited into the tissue solely during acute wound healing 
(i.e., monocytes/macrophages/platelets).

For demonstration, we explore the network topology of cell–cell signaling based on Vascular Endothelial 
Growth Factor A (Vegfa) over time. Figure 4B–D suggests that there is a dramatic change in the dominant source 
of this ligand during wound healing. In the baseline state, FAPS are the dominant producers of Vegfa. Imme-
diately after injury, FAPs reduce their production of this ligand, and newly recruited Monocytes/Macrophages/
Platelets take up dominant production of Vegfa. On Day 5, these two cell types share this functional role, and at 
the conclusion of healing, FAPs again dominate the network. Endothelial cells, meanwhile, are always expressing 
a panoply of receptors for this secreted factor and are in a prime position to receive angiogenic information. We 
see that supporting cell types, including smooth muscle cells and tenocytes, are also in a position to receive Vegfa-
mediated information before injury and after the conclusion of healing (green sectors). Further, we observe that 
muscle stem cells (MuSCs) are also capable of sensing aspects of Vegfa-mediated signaling, in particular on Day 
5 post-injury, when they co-express and upregulate established angiogenesis-modulating receptors Egfr, Gpc1, 
and Itgb121–23. It should be noted that, because of the parcellations chosen, this technique cannot necessarily 
tell the difference between an entire population of cells shifting in character versus a new phenotypic archetype 
emerging within an existing population. Further sub-clustering (i.e. finer, follow-up parcellation) is currently 
required to explore these kinds of questions.

Discussion
Connectome is a multi-purpose toolset which can be used to map, explore, and visualize patterns of ligand–recep-
tor expression in any single-cell dataset. It generalizes the workflow first developed in1 and allows adoption by 
the wider community. The software is open-source on GitHub and includes vignettes to replicate and adapt all 
analyses discussed. It allows quantification and observation of both fine-grain (single-mechanism, single-celltype-
to-celltype vector), and coarse-grain (total signaling family, cross-system) connectivity patterns.



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:4187  | https://doi.org/10.1038/s41598-022-07959-x

www.nature.com/scientificreports/



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4187  | https://doi.org/10.1038/s41598-022-07959-x

www.nature.com/scientificreports/

There are a number of clear caveats to the above described techniques. First and foremost, strongly paired 
ligand and receptor expression is not direct evidence of cell–cell communication. For many ligand–receptor 
mechanisms, cells must be in direct or very close proximity in order to communicate via that mechanism. 
Suspension-based single-cell sequencing, however, does not preserve spatial histologic information, and so 
the techniques described here attempt to make a qualitative portrait of a tissue based on what interactions are 
possible; any robust claim of transduction requires extensive wet-lab experimentation. Although intracellular 
transduction can be computationally predicted5, the complexity of intracellular signaling networks makes this 
task fundamentally confounded for many ligand–receptor mechanisms.

Secondly, the outputs of Connectome, like any ligand–receptor mapping software, are only as good as the 
ground-truth database against which the original mapping takes place. This is why we have made the ground-
truth customizable in this platform. Customization allows removal of extraneous connections with low biologic 
relevance, or addition of newly-discovered or researcher-hypothesized mechanisms. The software here utilizes 
the FANTOM5 database without modification, but iterative application has shown that a custom database can 
be useful for many specific researcher inquiries, in particular in immunology where complex immune cues are 
of interest.

Connectome is designed to be a fundamental tool for single cell researchers, computational biologists, and 
tissue engineers. It is intended to allow rapid, low-computationally-intensive-access to cell–cell signaling patterns 
that are present in single-cell data. Our intent is to allow researchers to quickly identify strongly-expressed sign-
aling genes, to find strong pairings between cell types within identified signaling mechanisms, and to condense 
large amounts of network-level connectivity information into simple, quantitative plots which reflect the struc-
ture of tissue systems. We show here that Connectome can be applied to individual tissues, paired experimental 
conditions, and longitudinal datasets. In each case, Connectome yields biologically relevant information that can 
be used to help answer, and inform, specific questions regarding biological systems.

Figure 3.   Differential tissue connectomics. (A) Schematic showing comparison of a perturbed multicellular 
system against a known control or reference set of interactions. (B) Assuming we are only interested in those 
edges in which either the ligand or the receptor changes due to perturbation, each edge in a differential systems 
comparison falls into one of four distinct styles: the ligand and receptor are either both up, both down, or some 
combination. (If edges are also to be considered in which only the ligand or receptor change, then there are eight 
distinct categories of edge shift.) Dual ligand/receptor increase or decrease are consistent with edge activation 
or deactivation, respectively. A decreased ligand paired with an elevated receptor suggests ligand starvation, 
as is often seen in in vitro experiments. And increased ligand paired with a decreased receptor suggests the 
converse, ligand pressure. (C) Application to IFN-stimulated versus control PBMC data, showing how a positive 
ligand fold change (red arrow) and negative receptor fold change (blue arrow) combine to form a single positive 
edge perturbation score (green arrow). For illustration purposes, the differential network here has been heavily 
thresholded (minimum perturbation score of 2, a minimum expression cutoff of 20%, and only significant 
edges) yielding the presence of grey squares and the low number of displayed nodes and mechanisms. (D) 
Shows differential cell–cell signaling in IFN-stimulated PBMCs versus controls, sorted by style of perturbation. 
Edge thickness is proportional to perturbation score. Edge color correlates with source celltype. Blue and red 
arrow-heads emphasize the same edge similarly emphasized in (C). Networks in (D), for illustration, have 
been thresholded to a minimum perturbation score of 2 and a minimum percentage cutoff of 10%. In all cases, 
differential network analysis has been limited to those edges where the expression of both the ligand and 
receptor, in their respective populations across condition, are differentially expressed with a p-value < 0.05 as 
assessed by a Wilcoxon Rank Sum test. Connectome v1.0.0 (available at github.com/msraredon/Connectome) 
was used to generate subfigures (C) and (D).
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Figure 4.   VEGFA signaling over time in healing muscle tissue. (A) Schematic of in vivo muscle injury experiment 
from De Michelis et al.18 and associated dynamics in cell type dissociation fraction. (B) Vegfa signaling networks 
within muscle tissue at each time point. Edges coming from fibro/adipogenic progenitors (FAPs) are colored maroon 
while edges coming from monocytes/macrophages are colored blue. These network plots have been thresholded 
(minimum 10% expression) for legibility: the only source nodes which meet this criterion are the FAPs in Day 0, 5, and 
7 and the Monocyte/Macrophage cluster in Days 2 and 5. Edge thickness is proportional to weightscale. (C) Centrality 
analysis, over time, for all Vegfa-mediated edges between all cell types, without any thresholding. Recruited monocytes 
take over dominant Vegfa production in healing tissue from homeostatic fibro/adipogenic progenitors. Endothelial 
cells are consistently in the dominant position to receive information, through their expression of multiple receptors 
including Kdr, Flt1, and Nrp1/2. (D) Normalized expression of Vegfa (ligand) and Kdr (receptor) for all cell types 
over time, showing relative expression. This analysis can be generalized to any network made from any combination 
of ligand–receptor mechanisms. For simplicity we show an example here based on only a single ligand. Connectome 
v1.0.0 (available at github.com/msraredon/Connectome) was used to generate subfigures (B)–(D).
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