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C OMP UTATI ON AT THE EDGE OF CHAOS: 

PHASE TRANSITIONS AND EMERGENT C O M P U T A T I O N  

Chris G. LANGTON 
Complex Systems Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87454, USA 

In order for computation to emerge spontaneously and become an important factor in the dynamics of a system, the 
material substrate must support the primitive functions required for computation: the transmission, storage, and modification 

of information. Under what conditions might we expect physical systems to support such computational primitives? 
This paper presents research on cellular automata which suggests that the optimal conditions for the support of information 

transmission, storage, and modification, are achieved in the vicinity of a phase transition. We observe surprising similarities 

between the behaviors of computations and systems near phase transitions, finding analogs of computational complexity 

classes and the halting problem within the phenomenology of phase transitions. 
We conclude that there is a fundamental connection between computation and phase transitions, especially second-order or 

"critical" transitions, and discuss some of the implications for our understanding of nature if such a connection is borne out. 

1. Introduction 

Most of the papers in these Proceedings assume 

the existence of a physical system with the capac- 

ity to support computation, and inquire after the 

manner in which processes making use of this 

capacity mj'ght emerge spontaneously. 

In this paper, we will focus on the conditions 

under which this capacity to support computation 

itself might emerge in physical systems, rather 

than on how this capacity might ultimately come 

to be utilized. 

Therefore, the fundamental question addressed 

in this paper is the following: 

Under what conditions will physical systems 

support the basic operations of information trans- 

mission, storage, and modification constituting the 

capacity to support computation? 

This question is difficult to address directly. 

Instead, we will reformulate the question in the 

context of a class of formal abstractions of physi- 

cal systems: cellular automata (CAs). Our ques- 

tion, thus, becomes: 

Under  what conditions will cellular automata 

support the basic operations of information trans- 

mission, storage, and modification? 

This turns out to be a tractable problem, with a 

somewhat surprising answer; one which leads di- 

rectly to a hypothesis about the conditions under 

which computations might emerge spontaneously 

in nature. 

1.1. Overview 

First, we introduce cellular automata and a 

simple scheme for parameterizing the space of all 

possible CA rules. We then apply this parameteri- 

zation scheme to the space of possible one-dimen- 

sional CAs in a qualitative survey of the different 

dynamical regimes existing in CA rule space and 

their relationship to one another. Next, we present 

a quantitative picture of these structural relation- 

ships, using data from an extensive survey of 

two-dimensional CAs. Finally, we review the ob- 

served relationships among dynamical regimes, 

and discuss their implications for the more general 

question raised in the introduction. 
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1.2. Results 

We find that by selecting an appropriate param- 

eterization of the space of CAs, one observes a 

phase transition between highly ordered and 

highly disordered dynamics, analogous to the phase 

transition between the solid and fluid states of 

matter. Furthermore, we observe that CAs exhibit- 

ing the most complex behavior-  both qualitatively 

and quant i ta t ive ly-are  found generically in the 

vicinity of this phase transition. Most importantly, 

we observe that CAs in the transition region have 

the greatest potential for the support of informa- 

tion storage, transmission, and modification, and 

therefore for the emergence of computation. 

These observations suggest that there is a fun- 

damental connection between phase transitions 

and computation, leading to the following hypoth- 

esis concerning the emergence of computation in 

physical systems: 

Computation may emerge spontaneously and 

come to dominate the dynamics of physical sys- 

tems when those systems are at or near a transi- 

tion between their solid and fluid phases, espe- 

cially in the vicinity of a second-order or "critical" 

transition. 

This hypothesis, if borne out, has many implica- 

tions for understanding the role of information in 

nature. 

Perhaps the most exciting implication is the 

possibility that life had its origin in the vicinity of 

a phase transition, and that evolution reflects the 

process by which life has gained local control over 

a successively greater number of environmental 

parameters affecting its ability to maintain itself at 

a critical balance point between order and chaos. 

1.3. Cellular automata 

In this section, we review cellular automata, 

introduce a parameterization of the space of possi- 

ble CA rules, and discuss computation in CAs. 

Cellular automata are discrete space/ t ime logi- 

cal universes, obeying their own local physics [26, 

3, 5, 27, 28]. 

Space in CAs is partitioned into discrete volume 

elements called "cells" and time progresses in 

discrete steps. Each cell of space is in one of a 

finite number of states at any one time. The physics 

of this logical universe is a deterministic, local 

physics. "Local"  means that the state of a cell at 

time t + I is a function only of its own state and 

the states of its immediate neighbors at time t. 

"Deterministic" means that once a local physics 

and an initial state of a CA has been chosen, its 

future evolution is uniquely determined. 

1.4. Formal definition of cellular automata 

Formally, a cellular automaton is a D-dimen- 

sional lattice with a finite automaton residing at 

each lattice site. Each automaton takes as input 

the states of the automata within some finite local 

region of the lattice, defined by a neighborhood 

template .,,if, where the dimension of , ~  < D. The 

size of the neighborhood template, I.~1, is just the 

number of lattice points covered by ~4 r. By con- 

vention, an automaton is considered to be a 

member of its own neighborhood. Two typical 

two-dimensional neighborhood templates are: 

five cell neighborhood nine cell neighborhood 

Each finite automaton consists of a finite set of 

cell states Z, a finite input alphabet ~, and a 

transition function z~, which is a mapping from the 

set of neighborhood states to the set of cell states. 

Letting N = IXl: 

A: NN ~ 2~. 

The state of a neighborhood is the cross prod- 

uct of the states of the automata covered by the 

neighborhood template. Thus, the input alphabet 
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a for each automaton consists of the set of possi- 

ble neighborhood states: a = Z s. Letting K = I~;I 
(the number  of cell states) the size of a is equal to 

the number  of possible neighborhood states 

l a l  = IAI = I ~ S l  = K s .  

To define a transition function A, one must 

associate a unique next state in ~ with each 

possible neighborhood state. Since there are K = 

12:1 choices of state to assign as the next state for 

each of the IZSl possible neighborhood states, 

there are K (rN) possible transition functions A 

that can be defined. We use the notation ~ f f  to 

refer to the set of all possible transition functions 

A which can be defined using N neighbors and K 

states. 

1.5. Example 

Consider a two-dimensional cellular automaton 

using 8 states per cell, a rectangular lattice, and 

the five-cell neighborhood template shown above. 

Here  K =  8 and N = 5, so IAI = K s = 85 = 32768 

and there are thus 32 768 possible neighborhood 

states. For  each of these, there is a choice of 8 

states as the next cell state under za, so there are 

K txN) = I ~ l  = 8 (aS) --103000o possible transition 

functions using the 5-cell neighborhood template 

with 8 states per cell, an exceedingly large num- 

ber. 

2. Parameterizing the space of CA rules 

~N r ,  the set of possible transition functions A 

for a CA of K states and N neighbors, is fixed 

once we have chosen the number of states per cell 

and the neighborhood template. However, there is 

no intrinsic order within ~ ;  it is a large, undif- 

ferentiated space of CA rules. 

Imposing a structure on this undifferentiated 

space of CA rules allows us to define a natural 

ordering on the rules, and provides us with an 

index into the rule space. The ideal ordering 

scheme would partition the space of CA rules in 

such a manner  that rules from the same partition 

would support  similar dynamics. Such an ordering 

on ~N r would allow us to observe the way in 

which the dynamical behaviors of CAs vary from 

partition to partition. 

The location in this space of the partitions 

supporting the transmission, modification, and 

storage of information, relative to the location of 

partitions supporting other possible dynamical be- 

haviors should provide us with insight into the 

conditions under which we should expect compu- 

tation to emerge in CAs. 

2.1. The ~ parameter 

We will consider only a subspace of ~ ,  char- 

acterized by the parameter  h [18, 17]. 

The ?~ parameter  is defined as follows. We pick 

an arbitrary state s ~ ~,  and call it the quiescent 

state Sq. Let there be n transitions to this special 

quiescent state in a transition function A. Let the 

remaining K S - n  transitions in A be filled by 

picking randomly and uniformly over the other 

K -  1 states in Z - Sq. Then 

K S - n  

x IC s (1) 

If n = K s, then all of the transitions in the rule 

table will be to the quiescent state Sq and X = 0.0. 

If n = 0, then there will be no transitions to Sq 

and ~ =  1.0. When all states are represented 

equally in the rule table, then X = 1.0 - 1/K.  

The parameter  values X = 0.0 and ~ = 1 . 0 -  

1 / K  represent the most homogeneous and the 

most heterogeneous rule tables, respectively. The 

behavior in which we will be interested is captured 

between these two parameter  values. Therefore, 

we experiment primarily with h in this range. 

2.2. Searching CA space with the ~ parameter 

In the following, we use the ?~ parameter  as a 

means of sampling ~ in an ordered manner.  We 

do this by stepping through the range 0.0 < 2~ < 
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1 . 0 -  1 / K  in discrete steps, randomly construct- 

ing A functions for each 7  ̀ point. Then we run 

CAs under these randomly constructed A func- 

tions, collecting data on various measures of their 

dynamical  behavior. Finally, we examine the be- 

havior of these measures as a function of 7`. 

A functions are constructed in two ways using 

7`. In the " random-table  method", 7  ̀ is interpreted 

as a bias on the random selection of states from 

as we sequentially fill in the transitions that make 

up a z~ function. To do this, we step through the 

table, flipping a 7`-biased coin for each neighbor- 

hood state. If  the coin comes up tails, with proba- 

bility 1 . 0 -  7,, we assign the state Sq as the next 

cell state for that neighborhood state. If the coin 

comes up heads, with probability 7,, we pick one 

of the K - 1 states in ~ - Sq at uniform random 

as the next cell state. 

In the "table-walk-through" method, we start 

with a A function consisting entirely of transitions 

to Sq, so that 7  ̀= 0.0 (but note restrictions below). 

New transition tables with higher 7  ̀ values are 

generated by  randomly replacing a few of the 

transitions to Sq in the current function with tran- 

sitions to other states, selected randomly from 

-Sq .  Tables with lower 7  ̀values are generated 

by randomly replacing a few transitions that are 

not to Sq in the current table by transitions to Sq. 

Thus, under the table-walk-through method, we 

progressively perturb " the  same table", whereas 

under the random-table method, each new table is 

generated f rom scratch. 

2.4. Discussion 

7  ̀ is not necessarily the best parameter.  One can 

improve on 7  ̀ in a number  of ways. For instance, 

Gutowitz [12,11] has defined a hierarchy of pa- 

rameterization schemes in which 7  ̀ is the simplest 

scheme, mean field theory constitutes the next 

simplest scheme, and so on. 

However, 7  ̀ suffices to reveal a great deal about  

the overall structural relationships between the 

various dynamical regimes in CA rule space, and 

it is very useful to get a feel for the " lay  of the CA 

landscape" at this low-resolution level before in- 

creasing the resolution and surveying finer details. 

For one thing, 7  ̀ helps restrict the area of search 

to a particularly promising "spot" ,  which is useful 

because higher-order parameterizations map CA 

rule space onto many dimensions, whereas 7  ̀ is a 

one-dimensional parameter.  

7  ̀discriminates well between dynamical regimes 

for " large"  values of K and N, whereas 7  ̀discrim- 

inates poorly for small values of K and N. For 

example, for a 1D CA with K = 2, and N = 3, 7  ̀

is only roughly correlated with dynamical behav- 

ior. This may explain why the relationships re- 

ported here were not observed in earlier work on 

classifying CA dynamics [29, 28], as these investi- 

gations were carried out using CAs with minimal 

values of K and N. 

For  these reasons, we employ CAs for which 

K > 4 and N > 5, which results in transition tables 

of size 45 = 1024 or larger. 

2.3. Further restrictions on CAs 

In order to make our studies more tractable, we 

impose two further conditions on the rule space. 

First, a strong quiescence condition: all neighbor- 

hood states uniform in cell state s i will map to 

state s i. Second, an isotropy condition: all planar 

rotations of  a neighborhood state will map to the 

same cell state. These restrictions mean that arrays 

uniform in any single state will remain so, and 

that the physics cannot tell which way is up, so to 

speak. 

2.5. Computation in CAs 

Cellular au tomata  can be viewed either as com- 

puters themselves or as logical universes within 

which computers  may be embedded. 

On the first view, an initial configuration consti- 

tutes the data that the physical computer  is work- 

ing on, and the transition function implements the 

algorithm that is to be applied to the data. This is 

the approach taken in most  current applications of 

cellular automata,  such as image processing. 
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On the second view, the initial configuration 

itself constitutes a computer, and the transition 

function is seen as the "physics" obeyed by the 

parts of this embedded computer. The algorithm 

being run and the data being manipulated are 

functions of the precise state of the initial config- 

uration of the embedded computer. In the most 

general case, the initial configuration will consti- 

tute a universal computer. 

We can always take the first point of view, but 

what we are interested in here is the question: 

when is it possible- even necessary- to adopt the 

second point of view to understand the dynamics 

of a CA? 

That CAs are capable of supporting universal 

computation has been known since their invention 

by Ulam and von Neumann in the late 40's. Von 

Neumann's proof of the possibility of machine 

self-reproduction involves the demonstration of 

the existence of a universal computer/constructor 

in a 29-state CA [26]. Since then, Codd [5], Smith 

[24], Conway and co-workers [2], Fredkin and 

Toffoli [7]- to name but a few- have found much 

simpler CA rules supporting universal computa- 

tion. 

All of these proofs involve the embedding of a 

computer within the CA, or at least they show that 

all of the important parts of such a computer 

could be implemented and that those parts are 

sufficient to construct a computer. Some of these 

proofs involve the construction of Turing ma- 

chines, others involve the construction of stored- 

program computers. 

All of these constructs rely on three fundamen- 

tal features of the dynamics supported by the 

underlying transition function physics. First, the 

physics must support the storage of information, 

which means that the dynamics must preserve 

local state information for arbitrarily long times. 

Second, the physics must support the transmission 

of information, which means that the dynamics 

must provide for the propagation of information 

in the form of signals over arbitrarily long dis- 

tances. Third, stored and transmitted information 

must be able to interact with one another, result- 

ing in a possible modification of one or the other. 

These fundamental properties must be provided 

by any dynamical system if it is to support compu- 

tation. Taken together, they require that any dy- 

namical system supporting computation must 

exhibit arbitrarily large correlation lengths in space 

and time. These correlation lengths must be poten- 

tially infinite, but not necessarily so. Codd [5] 

refers to this situation as one in which the propa- 

gation of information must be unbounded in prin- 

ciple but boundable in practice. 

2.6. Wolfram's quafitative CA classes 

Wolfram [29] has proposed the following four 

qualitative classes of CA behavior: 

Class I evolves to a homogeneous state. 

Class II evolves to simple separated periodic 

structures. 

Class III yields chaotic aperiodic patterns. 

Class IV yields complex patterns of localized 

structures. 

Wolfram finds the following analogs for his 

classes of cellular automaton behaviors in the field 

of dynamical systems. 

Class I cellular automata evolve to limit points. 

Class II cellular automata evolve to limit cycles. 

Class III cellular automata evolve to chaotic 

behavior of the kind associated with strange at- 

tractors. 

Class IV cellular automata "effectively have very 

long transients ". 

This association of class IV CAs with "very 

long transients" will figure "critically" in what 

follows. 

Wolfram suggests that class IV CAs are capable 

of supporting computation, even universal compu- 

tation, and that it is this capacity that makes 

their behavior so complex. This paper supports 

Wolfram's hypothesis, and offers an explanation 

for both the existence of these classes and their 

relationship to one another. 
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In their surveys of 1D and 2D CAs, Packard 

and Wolfram [23] hypothesized that class IV CAs 

constitute a set of measure 0. This means that 

class IV behaviors should be infinitely hard to find 

in the " thermodynamic limit" of an infinitely large 

CA rule space. However, it turns out that they are 

not hard to find in rule spaces that are far from 

the thermodynamic limit. By locating class IV 

behaviors in these non-limiting rule spaces and 

tracking the manner in which they become vanish- 

ingly rare as one goes to larger rule spaces, we can 

derive a general theory about where to locate rules 

likely to support computation in any CA rule 

space. 

3. Qualitative overview of CA dynamics 

In this section, we present a series of examples 

illustrating the changes observed in the dynamical 

behavior of one-dimensional CAs as we alter the 

parameter throughout its range using the table- 

walk-through method. For these CAs, K = 4, N = 

5 (i.e. two cells on the left and two cells on the 

right are included in the neighborhood template). 

The arrays consist of 128 sites connected in a 

circle, resulting in periodic boundary conditions. 

Each array is started from a random initial con- 

figuration on the top line, and successive lines 

show successive time steps in the evolution. 

For  each value of X, we show two evolutions. 

The arrays in fig. 1 are started from a uniform 

random initial configuration over all 128 sites, 

while those in fig. 2 are started from configura- 

tions whose sites are all 0, with the exception of a 

patch of 20 randomized sites in the middle. 

Fig. 1 illustrates the kinds of structures that 

develop, as well as the typical transient times 

before these structures are achieved. Fig. 2 illus- 

trates the relative spread or collapse of the area of 

dynamical activity with time. For  those values of 

exhibiting long transients, we have reduced the 

scale of the arrays in order to display longer 

evolutions. 

We start with X--0.00. Note that under the 

strong quiescence condition mentioned above we 

cannot have X = 0.00 exactly. The primary fea- 

tures observed as we vary X throughout its range 

are itemized below. 

X = 0.00 

X = 0.05 

X = 0.10 

X -- 0.15 

X = 0.20 

= 0.25 

-- 0.30 

X ~ 0.35 

= 0.40 

All dynamical activity dies out after a 

single time step, leaving the arrays uni- 

form in state Sq. The area of dynamical 

activity has collapsed to zero. 

The dynamics reaches the uniform Sq 

fixed point after approximately 2 time 

steps. 

The homogeneous fixed point is reached 

after 3 or 4 time steps. 

The homogeneous fixed point is reached 

after 4 or 5 time steps. 

The dynamics reaches a periodic struc- 

ture which will persist forever (fig. 1, 

X = 0.20). Transients have increased to 

7 to 10 time steps as well. Note that the 

evolution does not necessarily lead to 

periodic dynamics (fig. 2, X = 0.20). 

Structures of period 1 appear. Thus, 

there are now three different possible 

outcomes for the ultimate dynamics of 

the system, depending on the initial 

state. The dynamics may reach a homo- 

geneous fixed point consisting entirely 

of state Sq, or it may reach a heteroge- 

neous fixed point consisting mostly of 

cells in state Sq with a sprinkling of 

cells stuck in one of the other states, or 

it may settle down to periodic behavior. 

Notice that the transients have length- 

ened even more. 

Transients have lengthened again. 

Transient length has grown signifi- 

cantly, and a new kind of periodic 

structure with a longer period has ap- 

peared (fig. 1, X = 0.35). Most of the 

previous structures are still possible, 

hence the spectrum of dynamical possi- 

bilities is broadening. 

Transient length has increased to about 

60 time steps, and a structure has ap- 

peared with a period of about 40 time 

steps. The area of dynamical activity is 
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A = 0 . 0 0  A = 0.05 

A = 0.10 A = 0.15 

A = 0.20 

. ~ ,  . ~ - ~ . ~ , - - . -  , ~ , . ~ - - - -  - ~ . - ; ~ - . , ~ .  ,~- .  

Fig. 1. Evolutions of one-dimensional, K =  4, N = 5 CAs from fully random initial configurations over 0.0 < h < 0.75. As A is 

increased the structures become more complicated, and the transients grow in length until they become arbitrarily long at ~ -- 0.50. 

For 0.50 < X < 0.75, the transient lengths decrease with increasing ~, as indicated by the arrows to the fight of the evolutions. 

--- 0.45 

still collapsing down onto isolated peri- 

odic configurations. 

Transient length has increased to al- 

most  1000 time steps (fig. 1, X = 0.45). 

Here, the structure on the right appears 

to be periodic, with a period of about 

100 time steps. However, after viewing 

several cycles of its period, it is appar- 

ent that the whole structure is moving 

to the left, and so this pattern will not 

recur precisely in its same position until 

it has cycled at least once around the 

array. Furthermore,  as it propagates to 

the left, this structure eventually annihi- 
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A = 0.25 A = 0.30 

" -  • , -,,~,.~-i~'~,, .-r,.-~ r~,n '.".. 

A = 0.35 A = 0.40 

• " :': :i 
i .i * , ~  

Fig. 1. Continued 

lates a period-1 structure after about 

800 time steps. Thus, the transient 

length before a periodic structure is 

reached has grown enormously. It turns 

out that even after one orbit around the 

array, the periodic structure does not 

return exactly to its previous position. 

It must orbit the array 3 times before it 

repeats itself exactly. As it has shifted 

over only 3 sites after its quasi-period 

of 116 time steps, the true period of this 

structure is 14 848 time steps. Here, the 

= 0.50 

area of dynamical activity is at a bal- 

ance point between collapse and expan- 

sion. 

Typical transient length is on the order 

of 12 000 time steps. After the transient, 

the dynamical activity settles down to 

periodic behavior, possibly of period 

one as shown in the figure. Although, 

the dynamics eventually becomes sim- 

ple, the transient time has increased 

dramatically. Note in fig. 2 that the 

general tendency now is that the area of 
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= 0.45 A = 0.50 A = 0.55 

I0 ,  000 time stepe 

Fig. 1. Continued 

= 0.55 

dynamical activity expands rather than 

contracts with time. There are, however, 

large fluctuations in the area covered by 

dynamical activity, and it is these fluc- 

tuations which lead to the eventual col- 

lapse of the dynamics. 

We have entered a new dynamical 

regime in which the transients have be- 

L 

~2 f 

"i 

r P 

come so long that,- for all practical pur- 

pose s -  they are the steady state behav- 

ior of the system over any period of 

time for which we can observe them. 

Whereas before, the dynamics eventu- 

ally settled down to periodic behavior, 

we are now in a regime in which the 

dynamics typically settles down to ef- 
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,\ = 0.65 

. . . .  , %  : ~ _ ~ , - , - ,  , - - ~ ,  . .  ~ - _  , 
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A = 0 . 7 0  

; . ~ - ' - , . -  _ ' . ~  r ,  I - - ~  % '  ~.~ 2 " , I ,  . , ~  

~ : ~  ;.-"~'T.~';-~,'r; ; :  .'i->/?. 
" -~ ~i - ; J 'I 1 t 

• ".0 ~" .~i. ~ -'-jk''tr:.. '~-,.,. ~...?.,, ,,, , 

• " .  e ~'~'~ • " "  M" ~ - ~ -  . " : ~  ~ "~ . ~ .  . . . .  -,,., -.,~ ,~... :-: ..... . , 

A = 0 . 7 5  

Fig. 1. Con t inued  

~r" ~ - q , "  _ , ~ J  : - "  ~ ' .  , ' , L  " .~  - ~ - . - , ¢  : :  
-~ j r~g.~,~._-~.-~-~ . . . .  : n % ; - : :  

t - ,  ~ , ,  . ~ -  ~ , : . , ~  _ ~ , . ~ _ _ ~ - . : ' :  

~y,- ,- ,. ,,, , ' -_ . , ~ ,  : ;. . . - . . ~ , , , . ' v  ~ n 
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A = 0.00 A = 0.05 A = 0.10 

. . & m ~  

A = 0.15 A = 0.20 A = 0.25 

o",~"~ '~'rt~*'~ 

A -- 0.30 A = 0.35 A = 0.40 

,.dr T[ 

Fig. 2. Evolutions of one-dimensional, K = 4, N = 5 CAs from partially random initial configurations over 0.0 < X < 0.75. This 
series illustrates the change in the rate of spread of the dynamics from negative for X < 0.45, to positive for X > 0.45. For 2, = 0.45, 
the dynamics is balanced between collapse and expansion, giving rise to particle-like solitary waves. 

f ec t ive ly  chaotic behav io r .  F u r t h e r m o r e ,  

t he  p r e v i o u s  t r end  o f  t r ans i en t  l e n g t h  

increasing wi th  i nc rea s ing  )t is reversed .  

T h e  a r r o w  to the  r igh t  o f  the  e v o l u t i o n s  

o f  figs. 1, )t = 0 .55 -0 .75  ind ica tes  the  

a p p r o x i m a t e  t i m e  by  w h i c h  the  si te-  

h -- 0.60 

o c c u p a t i o n  d e n s i t y  has  se t t l ed  d o w n  to 

w i t h i n  1% of  its l o n g - t i m e  average .  N o t e  

tha t  the  a rea  o f  d y n a m i c a l  ac t iv i ty  ex- 

p a n d s  m o r e  r a p i d l y  w i t h  t ime.  

T h e  d y n a m i c s  are  qu i t e  chao t i c ,  a n d  the  

t r a n s i e n t  l e n g t h  to  " t y p i c a l "  chao t i c  be-  
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A = 0.50 A = 0.55 

23 

~ 0.65 

Fig. 2. Continued 

havior has decreased significantly. The 

area of dynamical activity expands more 

rapidly with time. 

Typical chaotic behavior is achieved in 

only 10 time steps or so. The area of 

dynamical activity is expanding at about 

= 0.70 

one cell per time step in each direction, 

approximately half of the maximum 

possible rate for this neighborhood tem- 

plate. 

Fully developed chaotic behavior is 

reached in only 2 time steps. The area 
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Fig. 2. Continued 

l = 0.75 

of dynamical activity is expanding even 

more rapidly. 

After only a single time step, the array 

is essentially random and remains so 

thereafter. The area of dynamical activ- 

ity spreads at the maximum possible 

rate. 

• - ~ J - 

mediate values of X, we encounter a phase transi- 

tion between periodic and chaotic dynamics, and 

while the behavior at either end of the X spectrum 

seems "s imple"  and easily predictable, the behav- 

ior in the vicinity of this phase transition seems 

"complex" and unpredictable. 

Therefore, by varying the X parameter  through- 

out 0.0 < h < 0.75 over the space of possible K = 4, 

N = 5, 1D cellular automata, we progress from 

CAs exhibiting the maximal possible order to CAs 

exhibiting the maximal possible disorder. At inter- 

4. Comments on qualitative dynamics 

There are several observations to be made about 

the ID examples of section 3. 
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F i g .  3. A v e r a g e  t r a n s i e n t  l e n g t h  as  a f u n c t i o n  o f  h in  a n  a r r a y  

o f  1 2 8  cel ls .  
F ig .  4. G r o w t h  o f  a v e r a g e  t r a n s i e n t s  as  a f u n c t i o n  o f  a r r a y  

size f o r  h = 0 .50 .  

First, transients grow rapidly in the vicinity of 

the transition between ordered and disordered dy- 

namics, a phenomenon known in the study of 

phase transitions as critical slowing down. The 

relationship between transient length and 2~ is 

plotted in fig. 3. 

Second, the size of the array has an effect on the 

dynamics only for intermediate values of ~. For 

low values of X, array size has no discernible 

effect on transient length. Not until X = 0.45 do 

we begin to see a small difference in the transient 

length as the size of the array is increased. For 

= 0.50, however, array size has a significant ef- 

fect on the transient length. The growth of tran- 

sient length as a function of array size for X = 0.50 

is plotted in fig. 4. The essentially linear relation- 

ship on this log-normal plot suggests that transient 

length depends exponentially on array size at ~, = 

0.50. As we continue to raise X beyond 0.50, 

although the dynamics is now settling down to 

effectively chaotic behavior instead of periodic 

behavior, the transient lengths are getting shorter 

with increasing X, rather than longer. A number 

of statistical measures (see ref. [17]) reveal that the 

time it takes to reach "typical" behavior decreases 

as ~ increases past the transition point. Further- 

more, transient times exhibit decreasing depen- 

dence on array size as X is increased past the 

transition point. By the time all states are repre- 

sented uniformly in the transition t a b l e - a t  X = 

0.75 in this ca se -  the transient lengths exhibit no 

dependence on array s ize- jus t  as was the case for 

low values of 2~. 

Third, the overall evolutionary pattern in time 

appears more random as 2~--* 0.75. This observa- 

tion is borne out by various entropy and correla- 

tion measures (see section 5). h = 0.75 represents 

the state of maximal dynamical disorder. 

Fourth, the transition region supports both static 

and propagating structures (fig. 1, X = 0.45.) These 

particle-like structures are essentially solitary 

waves, quasi-periodic patterns of state change, 

which- l ike  the "gliders" in Conway's Game of 

Life [8]-  propagate through the array, constantly 

moving with respect to the fixed background of 

the lattice. The ~, value for the Game of Life 

(>'Li(e = 0.273) lies within the transition region for 

K = 2 ,  N - 9  2D CAs. Fig. 5 traces the time 

evolution of an array of 512 sites, and shows that 

the rule governing the behavior of fig. 1, ~, = 0.45 

supports several different kinds of particles, which 

interact with each other and with static periodic 
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storage elements in the construction of a general 

purpose computer  [2]. 

4.1. Complications 

Finally, it must be pointed out that although the 

examples presented illustrate the general behavior 

of the dynamics as a function of )~, the story is 

not quite as simple as we have presented it here. 

The story is complicated by two factors, which 

will be detailed in the next section. 

First, different traversals of )~ space using the 

table-walk-through method make the transition to 

chaotic behavior at different )~ values, although 

there is a well defined distribution around a mean 

value. Second, one does not always capture a 

second-order phase transition as neatly as in this 

example. Often, the dynamics jumps directly from 

fairly ordered to fairly disordered behavior, sug- 

gesting that both first- and second-order transi- 

tions are possible. 

Despite these complications, the overall picture 

is clear: as we survey CA rule spaces using the )~ 

parameter,  we encounter a phase transition be- 

tween periodic and chaotic behavior, and the most 

complex behavior is found in the vicinity of this 

transition, both qualitatively and quantitatively. 

Fig. 5. Propagating structures and their interactions in an 
array of 512 cells with )~ = 0.45. 

structures in complicated ways. Note that the col- 

lision of a particle with a static periodic structure 

produces a particle traveling in the opposite direc- 

tion. These propagating and static structures can 

form the basis for signals and storage, and interac- 

tions between them can modify either stored or 

transmitted information in the support of an over- 

all computation.  The proof that the Game of Life 

is computation-universal employs propagating 

"gliders" as signals and the period-2 "bl inkers"  as 

5. Quantitative overview of CA dynamics 

In this section, we present a brief quantitative 

overview of the structural relations among the 

dynamical regimes in CA rule spaces as revealed 

by the )~ parameter  #k 

The results of this section are based on experi- 

ments using 2D CAs with K = 8 and N = 5. Ar- 

rays are typically of size 64 × 64, and again, 

periodic boundary conditions are employed. 

#1The results presented here summarize my Thesis research 
[17]. The reader is referred to that work for a more detailed 
presentation of the results in this section. 
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Fig. 6. Average  single cell  en t ropy  H over  h space for approx-  

ima te ly  10000 C A  runs. Each point  represents  a different  

t r ans i t ion  funct ion.  

5.1. Measures of complexity 

The measures employed were chosen for their 

collective ability to reveal the presence of informa- 

tion in its various forms within CA dynamics. 

5.1.1. Shannon entropy 

We use Shannon's entropy H to measure basic 

information capacitY. For a discrete process A o f  

K states#2: 

K 

H (  A)  = - Y'~ pi logpi .  (2) 
i = 1  

Fig. 6 shows the average entropy per cell, H, as 

a function of ~ for approximately 10 000 CA runs. 

The random-table method was employed, so each 

point represents a distinct random transition table. 

First, note the overall envelope of the data and 

the large variance at most ~ points. Second, note 

the sparsely populated gap over 0.0 < ~ < 0.6 and 

between 0.0 < H _< 0.84. This distribution appears 

to be bimodal, suggesting the presence of a phase 

transition. Third. note the rapid decrease in 

"*2Throughout,  log is t aken  to the base  2, thus the un i t s  are 

bits.  

variability as ~ is raised from - 0 . 6  to its 

maximum value of 0.875. 

Two other features of this plot deserve special 

mention. First, the abrupt cutoff of low H values 

at ), =0 .6  corresponds to the site-percolation 

threshold Pc -- 0.59 for this ne ighborhood 

template. Thus, we may suppose that, since ~ is a 

dynamical analog of the site occupation prob- 

ability P, the dynamical percolation threshold for 

a particular neighborhood template is bounded 

above by the static percolation threshold Pc- This 

is borne out by experiments with other neighbor- 

hood templates. For instance, the 9-neighbor 

template exhibits a sharp cutoff at ~ = 0.4, which 

corresponds well with the site percolation 

threshold Pc = 0.402 for this lattice. 

The second feature is the "ceiling" of the gap at 

H = 0.84. This turns out to be the average entropy 

value for one of the most commonly occurring 

chaotic rules. In such rules the dynamics has 

collapsed onto only two s t a t e s - sq  and one 

other - and the rule is such that a mostly quiescent 

neighborhood containing one non-quiescent state 

maps to that non-quiescent state. In 1D CAs, such 

rules give rise to the familiar triangular fractal 

pattern known as the Sierpifiski gasket. There are 

many ways to achieve such rules, and they can be 

achieved at very low )~ values. Most of the low-X 

chaotic rules are of this type. 

The entropy data of fig. 6 suggest an anomaly at 

intermediate parameter values, possibly a phase 

transition between two kinds of dynamics. Since 

there seems to be a discrete jump between low and 

high entropy values, the evidence points to a 

first-order transition, similar to that observed 

between the solid and fluid phases of matter. 

However, the fact that the gap is not completely 

empty suggests the possibility of second-order 

transitions as well. 

The table-walk-through method of varying 

reveals more details of the structure of the entropy 

data. Fig. 7 shows four superimposed examples of 

the change in the average cell entropy as we vary 

the ~ value of a table. Notice that in each of the 

four cases the entropy remains fairly close to zero 
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until - at some critical X value - the entropy jumps 

to a higher value, and proceeds fairly smoothly 

towards its maximum possible value as ~, is in- 

creased further. Such a discontinuity is a classic 

signature of  a first-order phase transition. Most of  

our complexity measures exhibit similar discon- 

tinuities at the same X value within a particular 

table. 

Not ice  also that the ~ value at which the 

transition occurs is different for each of the four 

examples. Obviously, the same t h i n g -  a j u m p -  is 

happening as we vary h in each of these examples, 

but it happens at different values of  X. When we 

superimpose 50 runs, as in fig. 8. we see the 

internal structure of the entropy data envelope 

plotted in fig. 6. 

Since we have located the transition events, we 

may line up these plots by the events themselves, 

rather than by X, in order to get a clearer picture 

of  what is going on before, during, and after the 

transition. This is illustrated in fig. 9. The abcissa 

is now measured in terms of A~: the distance 

from the transition event. Fig. 10 shows the same 

data as fig. 8 but lined up by AX. 

5.1.2. Mutual information 

In order for two distinct cells to cooperate in 

the support of  a computation, they must be able 
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Fig .  8. S u p e r p o s i t i o n  o f  50  t r a n s i t i o n  e v e n t s ,  s h o w i n g  the  in-  
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to affect one another's behavior. Therefore, we 

should be able to find correlations between events 

taking place at the two cells. 

The mutual information I(A; B) between two 

cells A and B can be used to study correlations in 

systems when the values at the sites to be measured 

cannot be ordered, as is the case for the states of  

the cells in cellular automata [19]. 
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Compare with fig. 8. 

Fig. 11. Average mutual information between a cell and itself 

at the next time step. 

The mutual information is a simple function of 

the individual cell entropies, H(A) and H(B), and 

the entropy of the two cells considered as a joint 

process, H(A, B): 

I(A;B) =H(A) +H(B) - H(A,B). (3) 

This is a measure of the degree to which the 

state of cell A is correlated with the state of cell B, 

and vice versa. 

Fig. 11 shows the average mutual information 

between a cell and itself at the next time step. 

Note  the tight convergence to low values of the 

mutual information for high )~ and the location of 

the highest values. 

The increase of the mutual information in a 

particular region is evidence that the correlation 

length is growing in that region, further evidence 

for a phase transition. 

Fig. 12 shows the behavior of the average mutual 

information as 9~ is varied, both against ?~ and 

A?t. The average mutual information is essentially 

zero below the transition point, it jumps to a 

moderate value at the transition, and then decays 

slowly with increasing ~. The jump in the mutual 

information clearly indicates the onset of the 

chaotic regime, and the decaying tail indicates the 

approach to effectively random dynamics. The lack 

of correlation between even adjacent cells at high 

h means that cells are acting as if they were 

independent of each other, even though they are 

causally connected. The resulting global dynamics 

is the same as if each cell picked its next state at 

uniform random from among the K states, with 

no consideration of the states of its neighbors. 

This kind of global dynamics is predictable in the 

same statistical sense that an ideal gas is globally 

predictable. In fact it is appropriate to view this 

dynamical regime as a hot gas of randomly flipping 

cells. 

Fig. 13 shows the average mutual information 

curves for several different temporal and spatial 

separations. Note that the decay in both time and 

space is slowest in the middle region. 

At intermediate )~ values, the dynamics support 

the preservation of information locally, as indi- 

cated in the peak in correlations between distinct 

cells. If cells are cooperatively engaged in the 

support of a computation, they must exhibit 

s o m e - b u t  not too much-cor re la t ion  in their 

behaviors. If the correlations are too strong, then 

the cells are overly dependent, with one mimicing 

the other - not a cooperative computational 

enterprise. 
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On the other hand, if the correlations are too 

small, then the cells are overly independent, and 

again, they cannot cooperate in a computational 

enterprise, as each cell does something totally 

unpredictable in  response to the state of the other. 

Correlations in behavior imply a kind of common 

code, or protocol, by which changes of state in one 

cell can be recognized and understood by the 

other as a meaningful signal. With no correlations 

in behavior, there can be no common code with 

which to communicate information. 

6. Mutual information and entropy 

It is often useful to examine the way in which 

observed measures behave when plotted against 

one another, effectively removing the (possibly 

unnatural) ordering imposed by the control pa- 

rameter. 

Of the measures we have looked at, the most 

informative pair when plotted against each other 

are the mutual information and the average single 

cell entropy. The relationship between these two 
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Fig. 14. Average mutual information versus average single cell 

entropy H. The mutual information in this case is computed 

between a cell and itself at the next time step. The entropy is 

normalized to 1.0. 

measures is plotted in fig. 14. Again, we see clear 

evidence of a phase transition. 

The envelope of the relationship is bounded 

below the transition by the linear bound that H 

places on the mutual information. All of the points 

on this line are for periodic CAs. This line inter- 

sects the curve bounding the envelope above the 

transition at an entropy value H c ---0.32 on the 

normalized entropy scale. 

This is a very informative plot. There is a clear, 

sharply defined maximum value of mutual infor- 

mation at a specific value of the entropy, and the 

mutual information falls off rapidly on either side. 

This seems to imply that there is an optimal work- 

ing entropy at which CAs exhibit large spatial and 

temporal correlations. Why should this be the 

case? 

Briefly, information storage involves lowering 

entropy while information transmission involves 

raising entropy [10]. In order to compute, a system 

must do both, and therefore must effect a trade-off 

between high and low operating entropy. It would 

seem from the work reported here that this trade- 

off is optimized in the vicinity of a phase transi- 

tion. 

A similar relationship has been observed by 

Crutchfield at Berkeley in his work on the transi- 

tion to chaos in continuous dynamical systems [6]. 

This relationship is illustrated in fig. 15. Briefly, 

the ordinate of this p l o t -  C - i s  a measure of the 

size of the minimal finite state machine required 

to recognize strings of l 's  and O's generated by a 

dynamical system (the logistic map, in this case) 

when these strings are characterized by the nor- 

malized per-symbol entropy listed on the abcissa. 

The observance of this same fundamental en- 

t ropy/complexi ty  relationship in these different 

classes of dynamical systems is very exciting. 

These relationships support the view that, rather 

than increasing monotonically with random- 

n e s s - a s  is the case for the usual measures of 

complexity, such as that of Chaitin and Kol- 

mogorov [4, 16]-complexi ty  increases with ran- 

donmess only up to a p o i n t -  a phase transition- 

after which complexity decreases with further in- 
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Fig. 15. Crutchfield's plot of machine complexity versus nor- 
malized per-symbol entropy for the logistic map. Compare 
with fig. 14. 

creases in randomness, so that total disorder is 

just as "simple",  in a sense, as total order. Com- 

plex behavior involves a mix of order and disor- 

der. 

7. Phase transitions and computation 

What does all of this tell us about emergent 

computation? The answer is that information be- 

comes an important  factor in the dynamics of CAs 

in the vicinity of the phase transition between 

periodic and chaotic behavior. Only in the vicinity 

of this phase transition can information propagate 

over long distances without decaying appreciably. 

This allows for the long-range correlations in be- 

havior, sensitivity to "size", extended transients, 

etc., which are necessary for the support of com- 

putation. By contrast, the ordered regime does not 

allow information to propagate at all, whereas the 

disordered regime propagates effects too well, 

causing information to decay rapidly into random 

noise. 

If it is true that these phase-transition 

dynamics-especial ly  "critical" or second-order 

dynamics - suppor t  the possibility of emergent 

computation, then we should be able to find 

analogs for various well-known features of compu- 

HIGH 

o 

LOW 

.~0 ~,c 1 . 0  

Fig. 16. Location of the Wolfram classes in ~, space. 

tation in the phenomenology of phase transitions, 

and vice versa. In the following sections, we point 

out several possible analogs, and offer an interpre- 

tation which suggests that computation as we know 

it is really just a special case of a more universal 

physical phenomenon. 

7.1. Locating the Wolfram classes 

First, there is an obvious mapping of the 

Wolfram classes onto the spectrum of dynamical 

possibilities over the k space: classes I and II 

constitute the ordered phase, while class III con- 

stitutes the disordered phase. Because of their long 

transients, propagating structures, large correla- 

tion lengths, and other statistical properties, the 

only logical choice for the location of class IV 

CAs is at the transition between these two phases 

of dynamical behavior. Fig. 16 shows how the 

Wolfram classes fit into the k spectrum. 

This also explains why one expects class IV CAs 

to constitute a set of measure 0. In the thermody- 

namic limit, the phase transition is located along a 

( K -  2)-dimensional hyperplane in the rule space 

for K-state CAs (see ref. [17]). Hyperplanes em- 

bedded in higher-dimensional spaces constitute 

sets of measure 0. However, if we know where to 

look for a set of measure 0, we can find many 

instances. As we go to the thermodynamic limit, 

we can locate the phase transition more and more 

precisely, and hence we should be able to locate 

class IV CAs in arbitrarily large rule spaces even 

though they constitute a set of measure 0. 
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If Wolfram is correct in attributing the capacity 

for universal computation to class IV CAs, then 

when we locate class IV CAs at a phase transition, 

we are also locating universal computation at a 

phase transition. 

7.2. Complexity classes 

One obvious property of computations for which 

we would like to find an analog in phase-transition 

phenomena is the existence of the various com- 

plexity classes. Some computations may be per- 

formed using an amount of time or space which is 

only a l i nea r -  or even a cons tan t -  function of the 

"size" of the input, while other computations ex- 

hibit polynomial, or even exponential dependence 

[9]. Where can we find a natural analog of these 

complexity classes within the phenomenology of 

phase transitions? 

The obvious answer is in the divergence of 

transient times as one approaches the phase tran- 

sition. As illustrated in the qualitative dynamics of 

1D CAs, for ~, values far from the transition 

point, transients die out in time which is indepen- 

dent of the size of the array. As X approaches the 

transition point, transients begin to show more 

and more dependence on array size. For  values of 

very near a "critical" transition, this size depen- 

dence appears to be exponential or worse. This is 

true whether we approach the transition from the 

ordered regime or the disordered regime, which 

suggests that in addition to the familiar complex- 

ity-class hierarchy for halting computations, there 

should be a similar complexity-class hierarchy for 

non-halting computations. 

lem" is undecidable: there exist computations for 

which it is not possible to decide whether or not 

they will halt. 

Thus, with respect to our ability to decide the 

ultimate outcome of computations, there are es- 

sentially three possibilities: we can determine that 

they will halt, we can determine that they will not 

halt, or we cannot determine whether or not they 

will halt. 

As we have seen, there are three similar possibil- 

ities for the ultimate outcome of the evolutions of 

CAs. CAs below the transition point rapidly 

"freeze up" into short-period behavior from any 

possible initial configuration. On the other hand, 

CAs above the transition point will never freeze 

into periodic behavior, settling down rapidly in- 

stead to chaotic behavior. Thus, we can predict 

the ultimate dynamics of CAs away from the 

transition point with a high degree of certainty. 

For CAs in the vicinity of the transition, how- 

ever, both of these ultimate dynamical outcomes 

are possible, and because of the extended tran- 

sients, it will be "effectively" undecidable whether 

a particular rule operating on a particular initial 

configuration will ultimately lead to a frozen state 

or not for this range of ~,. 

Thus, we can identify a natural analog of 

Turing's Halting problem in what we call the 

Freezing problem: for an arbitrary CA in the vicin- 

ity of the transition point, will the dynamics ulti- 

mately "freeze up" into short-period behavior or 

not? It is quite likely that the freezing problem is 

undecidable. 

7.3. The Halting problem 8. The natural domain of information 

This last point brings up another property of 

computation which should be reflected in phase- 

transition dynamics. 

Some computations halt, and some do not. For 

some computations, we can decide whether or not 

they will halt. However, Turing demonstrated that 

for certain classes of machines this "halting prob- 

Let us now lay out in general outline an inter- 

pretation that will tie together all of these dis- 

parate phenomena into a coherent picture of the 

nature of computation. The reader should bear in 

mind that this interpretation, although strongly 

supported by evidence, is only a conjecture at this 

point; many details remain to be worked out. 
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8.1. Solids, fluids, and dynamics 

We propose that the solid and fluid phases of 

matter, with which we are so familiar from every- 

day experience, are much more fundamental as- 

pects of nature than we have supposed them to be. 

Rather than merely being possible states of mat- 

ter, they constitute two fundamental universality 

classes of dynamical behavior. 

We know solids and fluids primarily as states of 

matter because up until quite recently, everything 

that exhibited dynamical behavior was made up of 

some kind of material. Now, however, with the 

availability of computers, we are able to experi- 

ment with dynamics abstracted from any particu- 

lar material substrate. The findings reported in 

this paper suggest that for dynamical systems in 

general- whether purely formal or manifestly ma- 

terial- there are primarily only two ultimate dy- 

namical possibilities. 

However, these two universality classes are sep- 

arated by a phase transition. The dynamics of 

systems within this transition region-especially 

the "critical" systems- appear to support the ba- 

sic mechanisms necessary for information trans- 

mission, storage, and modification, and therefore 

provide the capacity for emergent computation. 

Thus, a third possibility is that systems can be 

constructed in such a way that they manage to 

avoid either of the two primary dynamical out- 

comes by maintaining themselves on indefinitely 

extended transients. 

It is a system's capacity for supporting a dy- 

namics of information that allows complex behav- 

ior in the vicinity of a phase transition. This in 

turn allows for ihe possibility of the freezing 

problem. Since computers and computations are 

specific instances of material and formal systems 

respectively, they are also ultimately bound by 

these universalicty classes. Therefore, if this inter- 

pretation is correct, the halting problem can be 

seen as a specific instance of the more general 

freezing problem for dynamical systems. We can 

therefore view computations as special instances 

of the kinds of processes that occur in a physical 

system in the vicinity of a solid/liquid or a liq- 

uid/vapor transition. 

8.2. Related work 

Others have been working on the problem of 

finding structure in the rule spaces of cellular 

automata and other, similar spatially distributed 

dynamical systems. 

In my initial investigations with the )~ parame- 

ter [18], I suggested that Wolfram's class IV CAs 

constituted a transition between class II and class 

III, that is, between periodic and chaotic dynam- 

ics. 

Kauffman [14, 13] has investigated a class of 

related dynamical systems known as Boolean nets, 

in which he finds a similar phase transition be- 

tween ordered and disordered dynamics. 

Vichniac, Tamayo and Hartman [25] discovered 

that the Wolfram classes could be recovered by 

varying the frequency of two simple rules in an 

inhomogeneous cellular automaton. They also sug- 

gested a relation between critical slowing down 

and the halting problem. 

Packard and Li [20] have mapped out the space 

of "elementary" K =  2, N =  3, 1D CAs fairly 

completely, using a parameterization scheme simi- 

lar to ~. 

Packard [22] has also performed an interesting 

series of experiments in which he "adapts" CA 

rules by selecting for certain behaviors. He finds 

an initially random population of rules will drift 

towards the phase-transition region. His interpre- 

tation of this phenomenon is that it is easier to 

find rules which will compute the desired 

behavior-by making use of a general computa- 

tional capacity-than it is to find rules that are 

"hard-wired" to produce only the desired behav- 

ior. 

McIntosh [21] has applied the mean-field ap- 

proach of Gutowitz [12, 11] and suggests that the 

Wolfram classes can be distinguished on the basis 

of simple features of the mean field theory curves. 

Wootters [30] has applied mean-field theory to 

explain the results from the ~ parameter, and has 
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been able to reproduce many of the features of 

fig. 6. 

Together with Crutchfield's work mentioned 

earlier, these results collectively point to the exis- 

tence of a phase transition in the spectrum of 

dynamical systems, and also suggest that the com- 

plex dynamics of systems in the vicinity of a phase 

transition rest on a fundamental capacity for pro- 

cessing information. 

8.3. Questions 

There are many questions that need to be ad- 

dressed. For instance, can the "fluid" dynamical 

systems be further divided up into "gases" and 

"liquids"? There is some evidence for both 

solid/l iquid and liquid/gas transitions in the space 

of CAs [17]. 

How might these issues be addressed by statisti- 

cal mechanics, which has been very effective in 

treating phase transitions in general? Can analogs 

for temperature, pressure, volume, and energy be 

found? There is some evidence that equivalent 

measures can be defined [6, 17]. On the other 

hand, it is possible that statistical mechanics alone 

will not be able to fully treat phase-transition 

phenomena without being augmented by ideas 

from the theory of computation. 

What are the implications for optimization tech- 

niques such as simulated annealing [15], which call 

for extended stays in the vicinity of the freezing 

point? It is interesting that this is the very point at 

which we would expect information processing to 

emerge spontaneously within the system being an- 

nea l ed -  suggesting that the real reason for hover- 

ing in the vicinity of the freezing point is to allow 

the system to compute its own solution via an 

emergent computation. 

How are the notions reported here related to 

Bak's self-organized criticality [1]? In many ways, 

it seems that Bak has discovered that dynamical 

systems can be made to boil when driven in the 

right way, which is a phenomenon we would 

expect at a phase transition. In fact, Bak has 

suggested that Conway's game of Life is a self- 

organized critical system, although he does not 

bring Life's computational capacity into the dis- 

cussion. 

Finally, what are the implications for under- 

standing the origin and evolution of life? One of 

the most exciting implications of this point of 

view is that life had its origin in just these kinds 

of extended transient dynamics. Looking at a liv- 

ing cell, one finds phase-transition phenomena 

everywhere. The point of view advocated here 

would suggest that we ourselves are examples of 

the kind of "computat ion" that can emerge in the 

vicinity of a phase transition given enough time. 

Now nature is not so beneficient as to maintain 

conditions at or near a phase transition forever. 

Therefore, in order to survive, the early extended 

transient systems that were the precursors of life 

as we now know it had to gain control over their 

own dynamical state. They had to learn to main- 

tain themselves on these extended transients in the 

face of fluctuating environmental parameters, and 

to steer a delicate course between too much order 

and too much chaos, the Scylla and Charybdis of 

dynamical systems. Such transient systems must 

have "discovered" how to make use of their intrin- 

sic information processing capability in order to 

sense and respond to their local environment. 

Evolution has been the process by which such 

systems have managed to gain local control over 

more and more of the environmental variables 

affecting their ability to maintain themselves on 

extended transients with essentially open futures. 

9. Conclusion 

Von  Neumann observed that#3: 

"There  is thus this completely decisive property 

of complexity, that there exists a critical size be- 

low which the process of synthesis is degenerative, 

but above which the phenomenon of synthesis, if 

¢*3john von  Neumann, in his 1949 University of Illinois 
lectures on the Theory and Organization of Complicated Au- 
tomata [26]. 
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properly arranged, can become explosive, in other 

words, where syntheses of automata can proceed 

in such a manner that each automaton will pro- 

duce other automata which are more complex and 

of higher potentialities than itself". 

Although we are using a slightly different sense 

of "complexity" than von Neumann, the results of 

this paper support his observation. More impor- 

tantly, however, we suggest that a similar observa- 

tion can be made in the case of too much "com- 

plexity": aboue a certain level of "complexity", 

the process of synthesis is also degenerative. 

In other words, we find that there exist an upper 

limit as well as a lower limit on the "complexity" 

of a system if the process of synthesis is to be 

non-degenerative, constructive, or open ended. We 

also find that these upper and lower bounds seem 

to be fairly close together and are located in the 

vicinity of a phase transition. 

As the systems near the phase transition exhibit 

a range of behaviors which reflects the phe- 

nomenology of computations surprisingly well, we 

suggest that we can locate computation within the 

spectrum of dynamical behaviors at a phase tran- 

sition here at the "edge of chaos". 
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