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history

Networks of neurons can perform com-
putations that have proved very difficult
to emulate in conventional computers.
In trying to understand how real ner-
vous systems achieve their remarkable
computational abilities, researchers have
been confronted with three major the-
oretical issues. How can we characterize
the dynamics of neural networks with
recurrent connections? How do the
time-varying activities of populations
of neurons represent things? How are
synapse strengths adjusted to learn these
representations? To gain insight into
these difficult theoretical issues, it has
proved necessary to study grossly ideal-
ized models that are as different from
real biological neural networks as apples
are from planets.

The 1980s saw major progress on all
three fronts. In a classic 1982 paper1,
Hopfield showed that asynchronous
networks with symmetrically connect-
ed neurons would settle to locally stable
states, known as ‘point attractors’, which
could be viewed as content-addressable
memories. Although these networks
were both computationally inefficient
and biologically unrealistic, Hopfield’s
work inspired a new generation of
recurrent network models; one early
example was a learning algorithm that
could automatically construct efficient
and robust population codes in ‘hidden’
neurons whose activities were never
explicitly specified by the training envi-
ronment2.

The 1980s also saw the widespread
use of the backpropagation algorithm
for training the synaptic weights in both
feedforward and recurrent neural net-
works. Backpropagation is simply an
efficient method for computing how
changing the weight of any given
synapse would affect the difference
between the way the network actually
behaves in response to a particular
training input and the way a teacher
desires it to behave3. Backpropagation

sequence, or how we learn the classes of
things that might be causes, it is very
helpful to think in terms of a top-down,
stochastic, generative model. This is
exactly the approach that statisticians
take to modeling data, and recent
advances in the complexity of such sta-
tistical models5 provide a rich source of
ideas for understanding neural compu-
tation. All the best speech recognition
programs now work by fitting a proba-
bilistic generative model.

If the generative model is linear, the
fitting is relatively straightforward but
can nevertheless lead to impressive
results6,7. There is good empirical evi-
dence that the brain uses generative
models with temporal dynamics for
motor control8 (see also ref. 9, this
issue). If the generative model is non-
linear and allows multiple causes, it can
be very difficult to compute the likely
causes of a pattern of sensory inputs.
When exact inference is unfeasible, it is
possible to use bottom-up, feedforward
connections to activate approximately
the right causes, and this leads to a
learning algorithm for fitting hierarchi-
cal nonlinear models that requires only
information that is locally available at
synapses10. So far, theoretical neurosci-
entists have considered only a few sim-
ple types of nonlinear generative model.
Although these have produced impres-
sive results, it seems likely that more
sophisticated models and better fitting
techniques will be required to make
detailed contact with neural reality.
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is not a plausible model of how real
synapses learn, because it requires a
teacher to specify the desired behavior
of the network, it uses connections
backward, and it is very slow in large
networks. However, backpropagation
did demonstrate the impressive power
of adjusting synapses to optimize a per-
formance measure. It also allowed psy-
chologists to design neural networks
that could perform interesting compu-
tations in unexpected ways. For exam-
ple, a recurrent network that is trained
to derive the meaning of words from
their spelling makes very surprising
errors when damaged, and these errors
are remarkably similar to those made by
adults with dyslexia4.

The practical success of backpropa-
gation led researchers to look for an
alternative performance measure that
did not involve a teacher and that could
easily be optimized using information
that was locally available at a synapse. A
measure with all the right properties
emerges from thinking about perception
in a peculiar way: the widespread exis-
tence of top-down connections in the
brain, coupled with our ability to gen-
erate mental images, suggests that the
perceptual system may literally contain
a generative model of sensory data. A
generative model stands in the same
relationship to perception as do com-
puter graphics to computer vision. It
allows the sensory data to be generated
from a high-level description of the
scene. Perception can be seen as the
process of inverting the generative
model—inferring a high-level descrip-
tion from sensory data under the
assumption that the data were produced
by the generative model. Learning then
is the process of updating the parame-
ters of the generative model so as to
maximize the likelihood that it would
generate the observed sensory data.

Many neuroscientists find this way
of thinking unappealing because the
obvious function of the perceptual sys-
tem is to go from the sensory data to a
high-level representation, not vice versa.
But to understand how we extract the
causes from a particular image
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