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Abstract

A distortion-computation function D(C) is defined as the
minimum expected distortion in computing some quantity—
using an algorithm from a predefined set of algorithms—
while using no more than C computational units. When the
computational problem is to encode at rate R, this gives
slices of a computation-rate-distortion surface. This frame-
work is used in the analysis of a family of JPEG coders
that use output-pruned DCT calculations in place of some
Sfull DCT calculations. For encoding the Lena image at 0.5
bits/pixel, this yields a 30% reduction in complexity while
lowering the PSNR by only 0.4 dB. The decoding complex-
ity can be similarly reduced.

1 Introduction

It is clear to all source coding practictioners that compu-
tational complexity is of substantial importance, and there is
no question that a lot of effort has gone into optimizing cer-
tain calculations which are common in source coding, e.g.
matrix multiplications, filtering operations, and discrete co-
sine transforms. But, at least amongst theoreticians, there
seems to be a bit of a gap between the design of coding al-
gorithms and the computational optimization of them: One
occassionally finds discussions of computational trade-offs
in papers on coding algorithms, but rarely finds precise nu-
merical comparisons or justifications.

In a recent paper [6], we introduced a flexible framework
for systematically studying the trade-off between computa-
tional complexity and coding performance. The value of
the framework itself is to provide a common vocabulary; it
does not intrinsically aid in the analysis. The bulk of this
paper is devoted to one particular application of this frame-
work: JPEG encoding and decoding. Through the analysis
of a set of “simplified” encoding and decoding algorithms, a
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precise characterization of an achievable set of rate-PSNR-
complexity triples is found. (By “simplified” we mean that
certain calculations which would be performed in a stan-
dard JPEG encoder/decoder are omitted even though this
will generally impair the rate-distortion performance.) In
particular, we find that for a fixed rate, the computation vs.
distortion trade-off exhibits a diminishing returns character-
istic, where the computation can be reduced somewhat with
negligible effect on image quality.

This paper reviews the framework from [6] in Section 2
and then applies this framework to JPEG encoding and de-
coding in Section 3. Another application relevant to im-
age coding, namely to entropy pruned tree-structured vector
quantization [3], is briefly outlined in Section 4.

2 Computation-Rate-Distortion Framework

Let P be a set of computational problems which are
posed according to some underlying probability distribution
and let p be a distortion measure on approximate solutions
to problems in P. Suppose also there is a computational cost
function on algorithms for (approximately) solving P € P,
¢: AxP — Rt, where A is a set of such algorithms. Then
define the distortion-computation function of algorithms A
for problems P by

D(C) = Ep(P, A(P)).

inf
{A€A:Ec(A,P)XC}

In the context of source coding, we can specialize the def-
inition. Consider the problem to be finding a variable length
approximate representation of a source with expected length
bounded above by R. Denote the source and the reproduc-
tion by z and &, respectively. Then, define the distortion-
computation function at rate R by

Dgr(C) = inf

= E £
{ACA:Ec(A,z)<C,0(3)<R} oz, ),



where £(Z) is the length of the representation of 2 in bits.
Notice that in contrast to the definition of a rate distortion
function [4], we do not use the mutual information between
z and &. Doing so would implicitly assume that the en-
tropy coding of £ is ideal; instead, we would like to remain
open to the possibility that the entropy coding is included
in the computational cost. Varying the parameter R yields a
computation-rate-distortion surface.

This framework was introduced in [6]. That paper pro-
vided a detailed comparison of the use of the Karhunen-
Loeve Transform (KLT) and the Discrete Cosine Transform
(DCT) for transform coding of a Gauss-Markov source. In
this same context, Gormish and Gill [5] made earlier men-
tion of the concept of a computation-rate-distortion surface,
though in an operational sense.

A few properties are obvious. D(C) must be nonin-
creasing and Dg(C) must be nonincreasing with respect
to both R and C. If the set of algorithms produces a dis-
crete set of complexities, as is the case in Section 3, then
D(C) may be only piecewise continuous. If we allow time-
or probabilistic-multiplexing, then operational D(C) and
Dg(C) can always be made convex.

3 Application to JPEG Coding
3.1 Analysis

Of the major steps in JPEG coding (DCT, scalar quanti-
zation, zigzag scanning, runlength coding, and entropy cod-
ing), only the computation of the DCT seems to be computa-
tion scalable; thus, we focus on this step. In order to utilize
the framework of the previous section, we must explicitly
define P, A, p, and ¢. We do this as follows:

P JPEG-compatible encoding at R bits/pixel
A Approximate DCT followed by standard JPEG
quantization and entropy coding. The
approximate DCT is described below.
p = MSE
¢ = Number of multiplications per block in the

approximate DCT computation

The set of approximate DCT algorithms that we consider
are algorithms that compute a subset of the DCT coefficients
and assume that the remaining coefficients are zero. The im-~
age blocks in JPEG are 8 x 8, so there are 2% approximate
algorithms. Because of the frequency domain characteris-
tics of natural images, it is clear that a small number of the
possible algorithms are if interest. In this investigation, we
will limit the sets of calculated coefficients to be a triangle
or rectangle of low frequency coefficients, as shown in Fig-
ure 1. The use of the rectangular regions is motivated by the
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Figure 1. The DCT coefficients computed
form either a triangle or rectangle. The lowest
frequencies are in the upper left.

k | multiplications | additions
1 0 7

2 7 20

3 10 25

4 11 27

5 12 29

6 12 29

7 12 29

8 12 29

Table 1. Number of multiplications and ad-
ditions to compute the first k coefficents of
a length-8 DCT using algorithms designed
through output pruning.

trade-off between the number of coefficients calculated and
the computational complexity. Triangular regions are moti-
vated by the zigzag scanning of AC coefficients.

The DCT calculation itself is done separably using ouz-
put pruned decimation-in-frequency 1-D DCT algorithms,
by which we mean decimation in frequency length-8 DCT
algorithms [11] which are simplified because only a subset
of the eight coefficients are desired. Figure 2 shows an out-
put pruned DCT where only the first two coefficients (X [0]
and X [1]) are desired. Because of the shapes of the regions
considered (see Figure 1), we always require the & lowest
frequency DCT coefficients, 1 < &k < 8. The computational
complexities for these output-pruned 1-D DCTs are given in
Table 1.

From Table 1 it might seem that significant computa-
tional savings are achieved only if, say, two of eight DCT
coefficients are calculated. A large fraction of the savings
comes from the 2-D separable nature of the computation.
For example, computing the 4 x 4 block of lowest frequency
coefficients requires eight horizontal DCTs from which the
first four coefficients are desired (8 times 11 multiplications)
and four vertical DCTs from which the first four coefficients
are desired (4 times 11 multiplications) for a total of 132
multiplications. This is roughly two-thirds of the 192 multi-
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Figure 2. Output pruned signal flow graph for computing the first two coefficients of a length-8 DCT.
The full signal flow graph is from [11, p. 61] and represents a decimation-in-frequency algorithm.
(Boxes represent multiplications other than by +1 and subtractions are not distinguished from addi-
tions.) The dotted curves represent calcuiations that can be eliminated because we desire only X[0]
and X[1]. The computational complexity is reduced from 12 muitiplications and 29 additions for the
full calculation to 7 multiplications and 20 additions.

plications for a full 8 x 8 DCT. The situation is very similar 3.3 Comments
for decoding. If we assume that the DCT coefficients out-
side of a certain region are zero, we can use input pruned
1-D inverse DCT algorithms. The signal flow graph would
be like a left-right flipped version of Figure 2.

Not computing certain coefficients and setting them to
zero seems a very rudimentary way to produce an approx-
imate DCT algorithm, but it works reasonably well for this
application. Because of the runlength and entropy coding
3.2 Results used in JPEG, even when a high frequency DCT coefficient
has a nonzero quantized value, coding that coefficient (as
opposed to rounding it to zero) may not be wise in a rate-

A large number of computation-rate-distortion points distortion sense {10]. The approximate DCT considered
were determined for the standard Lena image using ap- here forces longer runs of zeros and hence gets good coding
proximate DCT calculations as we have described. The efficiency.
remaining components (quantization, zigzag scanning, and Output pruning is not the optimal way to produce the
entropy coding) were implemented as in an Independent desired 1-D DCT algorithms, but was done for conceptual
JPEG Group encoder! with “quality factors” 5, 10, ..., 95, transparency and so that the set of algorithms .4 could be
and 99. The points with rates less than 2 bits per pixel which precisely defined. Lengwehasatit [7] has provided the op-
are presumably on the computation-rate-distortion surface eration counts for hand-optimized algorithms which assume
are shown in Figure 3, where the connected points are at integer valued inputs and use some bit shifting. These oper-
the same complexity.? Figure 4 shows the computation- ation counts are given in Table 2 and yield the D(C') curves
distortion for several rates. We find that for low- to in Figure 5. The complexity reductions in Figure 5 are even
moderate-rate coding, the distortion as a function of com- more dramatic than those in Figure 4. At 0.5 bits/pixel, 0.1
putation becomes very flat. For example, at 0.5 bits/pixel, dB and 0.4 dB PSNR losses occur with 38% and 46% reduc-
one can have a 19% complexity reduction while lowering tions in complexity, respectively.
the PSNR by less than 0.1 dB, or have a 30% complexity One approach to improving on the results presented here
reduction while lowering the PSNR by less than 0.4 dB. is to use a variable complexity algorithm (VCA). The al-

gorithms we have discussed process each block identically,
1To download software, follow links from http:/www.ijg.org/. regardless of hOW many DCT coefficients of the b.k)Ck are
2We use “presumably” because we did not try every algorithm in A. zero. For decoding, blocks with many zero coefficients are
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Figure 3. Operational C — R — D for JPEG en-
coding of Lena with approximate DCT algo-
rithms designed through output pruning.
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Figure 4. Operational D(C) at various bitrates
for JPEG encoding of Lena with approxi-
mate DCT algorithms designed through out-
put pruning.
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Table 2. Operation counts to compute the first
k coefficents of a length-8 DCT [7].
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Figure 5. Operational D(C) at various bit rates
for JPEG encoding of Lena with computation
counts from Table 2.

clearly easiest to handle, assuming that they can be identi-
fied efficiently. Lengwehasatit and Ortega [8, 9] have de-
veloped a decoder which classifies blocks based on their
patterns of zero and non-zero coefficients and uses inverse
DCT algorithms optimized for each class. The definitions
of the classes themselves have been computationally opti-
mized, including the cost of classifying. The VCA work has
adistinct advantage over the present work: the complexity is
reduced with no degradation of rate-distortion performance.
On the other hand, the degree of complexity reduction with
this approach is limited.

4 Application to Entropy Pruned
Tree-Structured Vector Quantization

An eventual goal of this research is to provide meaningful
comparisons between vector quantization (VQ) based cod-
ing schemes and transform coding schemes. A requisite step
would be to characterize the computation-distortion behav-
ior of VQ coding. For VQ with unconstrained codebook de-
sign and full-search encoding, the rate determines the code-
book size and hence determines the computational complex-
ity of encoding. Therefore to have variable computational
load requires varying the vector dimension.? This is not pur-
sued here.

In contrast to the case of full-search VQ, the complexity
of entropy pruned tree-structured VQ (EPTSVQ) [3] is not
determinable from the output rate. Thus we can attempt to

3The situation is slightly more complicated with entropy coding, but the
fact remains that for a fixed output entropy it is difficult to vary the size of
the codebook in a meaningful way.



optimize simultaneously for rate, distortion, and computa-
tion.

In tree-structured VQ (TSVQ) [2], a binary tree is con-
structed with a codeword at each node. In the encoding pro-
cess, one starts at the root of the tree and iteratively traverses
the branch to the child node whose codeword is closest to
the source vector. Coding terminates when a leaf node is
reached. In the simplest form of TSVQ, the route from root
to leaf is the channel codeword (say, each left child selected
gives a zero and each right child gives a one). The rate can
be lowered by using an entropy code on the leaf nodes. This
is called entropy coded TSVQ. EPTSVQ is a design method
for entropy coded TSVQ. The idea is to start with a deep
TSVQ tree and prune it to minimize J = R+ AD, where R
is the entropy coded rate, D is the distortion, and A controls
the trade-off between R and D. (Optimality is within the
set of all subtrees of the original tree.) The pruning uses the
greedy algorithm of Breiman, Freidman, Olshen, and Stone
(BFOS) [1] which in general is not optimal, but is optimal
in this case because the objective functions are monotonic,
affine tree functionals [3].

Assuming a pair of distance determinations and a com-
parison takes one unit of computation, the average compu-
tational complexity of TSVQ encoding is the weighted av-
erage of the depths of the leaf nodes. Because the aver-
age tree depth is a monotonic, affine tree functional, J' =
R+ AD + pC can also be minimized with the BFOS algo-
rithm. Thus, we have an efficient method to find the lower
convex hull of computation-rate-distortion points in entropy
coded TSVQ. However, because of the close coupling be-
tween rate and computation, the optimal pruning does not
depend much on the relative weighting of rate and compu-
tation. Experiments for image coding at 1 bit per pixel show
that computation can be reduced by about 5% while incur-
ring an increase in distortion of about 5%.

5 Concluding Comments

Traditionally, image coding techniques have been com-
pared almost exclusively on the basis of their rate vs. dis-
tortion performances, with consideration of computational
complexity, if any, reduced to binary determinations: “too
complex” or “not too complex.” Through a simple example,
this paper provides a glimpse at what happens when a mea-
sure of computational complexity is thrown into the mix.
As a philosophical ideal, comparisons between algorithms
should be done by comparing their performances with a
fixed computational budget. Since many coding methods
are at least partially computation-scalable this is a sensible
objective.

We have used a very precise framework to define the opti-
mal trade-off between complexity and distortion. However,
it should be noted that the ability to draw precise conclu-
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sions is dependent on the set of algorithms .4 and the com-
putational complexity metric ¢. In Section 3, A is a rela-
tively small discrete set, so by using an (effectively) exhaus-
tive search, we were able to (essentially) exactly character-
ize Dp(C). If we were to enlarge A, then we would have
only an upper bound for Dg(C).
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