
A longstanding goal for regulatory biology is to learn 
how genomes encode the diverse patterns of gene expres-
sion that define each cell type and state. Genome-wide 
measurements of protein-DNA interaction by chro-
matin immunoprecipitation (ChIP) and quantitative 
measurements of transcriptomes are increasingly used 
to link regulatory inputs with transcriptional outputs. 
Such measurements figure prominently, for example, in 
efforts to identify all functional elements of our genom-
es, which is the raison d’être of the Encyclopedia of DNA 
Elements (ENCODE) project consortium1. Although 
large-scale ChIP and transcriptome studies first used 
microarrays, deep DNA sequencing versions (ChIP-seq 
and RNA-seq) offer distinct advantages in increased 
specificity, sensitivity and genome-wide comprehensive-
ness that are leading to their wider use2.

The overall flavor and objectives of ChIP-seq and 
RNA-seq data analysis are similar to those of the cor-
responding microarray-based methods, but the par-
ticulars are quite different. These data types therefore 
require new algorithms and software that are the focus 

of this review. We view the data analysis for ChIP-seq 
and RNA-seq as a bottom-up process that begins with 
mapped sequence reads and proceeds upward to pro-
duce increasingly abstracted layers of information (Fig. 
1). The first step is to map the sequence reads to a ref-
erence genome and/or transcriptome sequence. It is no 
small task to optimally align tens or even hundreds of 
millions of sequences to multiple gigabases for the typi-
cal mammalian genome3, and this early step remains one 
of the most computationally intensive in the entire pro-
cess. Once mapping is completed, users typically display 
the resulting population of mapped reads on a genome 
browser. This can provide some highly informative 
impressions of results at individual loci. However, these 
browser-driven analyses are necessarily anecdotal and, at 
best, semiquantitative. They cannot quantify binding or 
transcription events across the entire genome nor find 
global patterns.

Considerable additional data processing and analy-
sis are needed to extract and evaluate the genome-wide 
information biologists actually want. Although there 
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Genome-wide measurements of protein-DNA interactions and transcriptomes are 
increasingly done by deep DNA sequencing methods (ChIP-seq and RNA-seq). The 
power and richness of these counting-based measurements comes at the cost of 
routinely handling tens to hundreds of millions of reads. Whereas early adopters 
necessarily developed their own custom computer code to analyze the first ChIP-
seq and RNA-seq datasets, a new generation of more sophisticated algorithms and 
software tools are emerging to assist in the analysis phase of these projects. Here 
we describe the multilayered analyses of ChIP-seq and RNA-seq datasets, discuss the 
software packages currently available to perform tasks at each layer and describe 
some upcoming challenges and features for future analysis tools. We also discuss how 
software choices and uses are affected by specific aspects of the underlying biology 
and data structure, including genome size, positional clustering of transcription factor 
binding sites, transcript discovery and expression quantification.
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such as Drosophila melanogaster or Caenorhabditis elegans, a typical 
ChIP-seq assay performed at similar 2–20M read depths will place 
read tags over most of the genome at increasing densities (roughly 
1×–10× coverage), and true ChIP-seq positive signals will be com-
pressed along the chromosome because there is much less intergenic 
space in the smaller genomes.

The strongest ChIP-enriched positions can have hundreds of 
overlapping reads for DNA-binding factors that are highly efficient 
targets for ChIP. These strongest signals are not, however, the only 
biologically meaningful ones. Statistically robust and reproducible 
ChIP signals that have modest read counts (in absolute terms and 
by comparison with empirically determined background read dis-
tributions) have been observed for locations known to have high 
biological regulatory activity by independent criteria4. This means 
that a key challenge for ChIP-seq algorithms is to identify reproduc-
ibly true binding locations while including as few false positives 
from the background as possible. The background distribution of 
reads in ChIP-seq is often determined empirically from a control 
reaction, but some algorithms model the background from the 
ChIP sample itself. Whichever approach is taken, the background 
read-tag distribution is not reliably uniform, nor is it identical for 
all cell types and tissues of the same organism. It is also not expected 
to be identical from one specific ChIP protocol to another. Various 
artifacts can cause different chromosomal areas to be systematically 
underrepresented (extremes of base composition that affect library 
making and or sequencing itself, for instance) or overrepresented 
(sites of preferential chromosomal breakage in the cell or during 

are now multiple algorithms and software tools to perform each of 
the possible analysis steps (Fig. 1), this is still a rapidly developing 
bioinformatics field. Our purpose here is to give a sense of the tasks 
to be done at each layer, coupled with a reasonably current sum-
mary of tools available. We explicitly do not attempt any software 
‘bake-off ’ comparisons, aiming instead to provide information to 
help biologists to match their analysis path and software tools to the 
aims and data of a particular study. Finally, we try to focus atten-
tion on some pertinent interactions between the molecular biology 
of the assays, the information-processing methods and underlying 
genome biology.

General features of ChIP-seq
The success of genome-scale ChIP experiments depends critically 
on (i) achieving sufficient enrichment of factor-bound chromatin 
relative to nonspecific chromatin background and (ii) obtaining suf-
ficient enriched chromatin so that each sequence obtained is from 
a different founder molecule in the ChIP reaction (in other words, 
that the molecular library has adequate sequence complexity). When 
these criteria are met, successful ChIP-seq datasets typically consist 
of 2–20 million mapped reads. In addition to the degree of success 
of the immunoprecipitation, the number of occupied sites in the 
genome, the size of the enriched regions and the range of ChIP signal 
intensities all affect the read number wanted. These parameters are 
often not fully known in advance, which means that computational 
analysis for a given experiment is usually performed iteratively and 
repeatedly, with results dictating whether additional sequencing is 
needed and is cost-effective. This means that the choice of software 
for running ChIP-seq analysis favors packages that are simple to use 
repeatedly with multiple datasets.

Mapped reads are immediately converted to an integer count of 
‘tags’ at each position in the genome that is ‘mappable’ under the 
selected mapping algorithm and its parameters (that is, read length 
can be fixed or variable, and reads mapped can be restricted to those 
that map to a unique position in the genome or can include ‘multi-
reads’ that map to multiple sites). These early choices in the analysis 
affect sensitivity and specificity, and their effects vary based on the 
specifics of each genome. If only uniquely mapping reads are used, 
some true sites of occupancy will be invisible because they are located 
in repeats or recent duplicated regions. Conversely, allocating low-
multiplicity multireads will capture and improve some true signals 
but will also likely create some false positives. The choice of mapping 
algorithm can thus be made with an eye toward increasing specificity 
(unique reads only) or increasing sensitivity (multireads used).

It is relevant to data processing and interpretation that ChIP reac-
tions are enrichments, not purifications. This is especially true for 
current protocols that use a single antibody reagent because the 
majority (~60–99%) of DNA fragments (and therefore of sequence 
reads) in a ChIP reaction are background, whereas the minority cor-
responds to DNA fragments to which the transcription factor or 
histone mark of interest was cross-linked at the beginning of the 
experiment. These substantial levels of impurity are expected for 
a one-round enrichment, and background sequence reads must be 
discriminated from true signal in the analysis phase. ‘Background’ 
read distributions will be different depending on the composition 
and size of the genome. In ChIP-seq datasets from larger mam-
malian genomes, most nucleotides have no mapped tags because 
the overall mapped sequence coverage is much less than the total 
genome size (that is, less than 0.1× coverage). In smaller genomes 
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Figure 1 | A hierachical overview of ChIP-seq and RNA-seq analyses. The 
bottom-up analysis of ChIP-seq and RNA-seq data typically involves the 
use of several software packages whose output serves as the input of the 
higher level analyses, with the subsections covered by this review circled 
in red. Apart from de novo transcript assembly for organisms without a 
reference genome, all sequence-counting packages build upon the output 
of read mappers onto a reference sequence, which serves as the input of 
programs that aggregate and identify these reads into enriched regions, 
density of known exons; many of these programs will further try to identify 
the sources (ChIP-seq) or novel RNA-seq transcribed fragments (transfrags). 
These regions and sources can then be analyzed to identify motifs, genes 
or expression levels that are typically considered the biologically relevant 
output of these analyses.
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but broader regions of up to a few kilobases; 
and broad regions up to several hundred 
kilobases. Punctate enrichment is a signa-
ture of a classic sequence-specific transcrip-
tion factor such as NRSF or CTCF binding 
to its cognate DNA sequence motif (Fig. 2a). 
A mixture of punctate and broader signals 
is associated with proteins such as RNA 
polymerase II that bind strongly to specific 
transcription start sites in active and stalled 
promoters (in a punctate fashion), but RNA 
polymerase II signals can also be detected 
more diffusely over the body of actively 
transcribed genes5,6 (Fig. 2b). ChIP-seq sig-
nals that come from most histone marks and 
other chromatin domain signatures are not 
point sources as described above but range 
from nucleosome-sized domains to very 
broad enriched regions that lack a single 
source entirely such as  histone H3 Lys27 
trimethylation (H3K27me3) in repressed 
areas7,8 (Fig. 2c).

These different categories of ChIP enrich-
ment have distinct characteristics that 
algorithms can use to predict true signals 
optimally. Punctate events offer the greatest 
amount of discriminatory detail to model the 
source point down to the nucleotide level. To 
date, most algorithms have been developed 
and tuned for this class of binding, though 
specific packages can work reasonably well 
for mixed binding, typically requiring the use 
of nondefault parameters.

Peak-finders, regions, summits and sourc-
es. The first step in analyzing ChIP-seq data 
is to identify regions of increased sequence 
read tag density along the chromosome rela-
tive to measured or estimated background. 
After these ‘regions’ are identified, process-
ing ensues to identify the most likely source 
point(s) of cross-linking and inferred bind-
ing (called ‘sources’). The source is related, 
but not identical, to the ‘summit’, which 
is the local maximum read density in each 
region. When there is no single point source 
of cross-linking, as for some dispersed chro-
matin marks, the region-aggregation step is 

appropriate but the ‘summit-finding’ step is not. Software packages for 
ChIP-seq are generically and somewhat vaguely called ‘peak finders’. 
They can be conceptually subdivided into the following basic com-
ponents: (i) a signal profile definition along each chromosome, (ii) 
a background model, (iii) peak call criteria, (iv) post-call filtering of 
artifactual peaks and (v) significance ranking of called peaks (Fig. 3). 
Components of 12 published software packages are summarized in 
Table 1.  

The simplest approach for calling enriched regions in ChIP-seq 
data is to take a direct census of mapped tag sites along the genome 
and allow every contiguous set of base pairs with more than a 

the workup). The current algorithms have each been designed 
to ignore a variety of false positive read-tag aggregations that are 
judged unlikely to be due to immuno-enriched factor binding, but 
they are not identical, and users should expect different packages 
and different parameters to eliminate some overlapping and some 
novel tag patterns as background.

Classes of ChIP-seq signals.  Consistent with previous ChIP-chip 
results, ChIP-seq tag enrichments or ‘peaks’ generated by typical 
experimental protocols can be classified into three major categories: 
punctate regions covering a few hundred base pairs or less; localized 
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Figure 2 | ChIP-seq peak types from various experiments. (a–c) Data shown are from remapping of a 
previously published human ChIP-seq dataset7. Proteins that bind DNA in a site-specific fashion, such 
as CTCF, form narrow peaks hundreds of base pairs wide (a). The difference of plus and minus read 
counts is generally expected to cross zero near the signal source, the source in this example being the 
CTCF motif indicated in red. Signal from enzymes such as RNA polymerase II may show enrichment over 
regions up to a few kilobases in length (b). Experiments that probe larger-scale chromatin structure 
such as the repressive mark for H3K27me3 may yield very broad ‘above’-background regions spanning 
several hundred kilobases (c). Signals are plotted on a normalized read per million (RPM) basis.
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nonoverlapping windows, then aggregates windows into ‘islands’ 
of subthreshold windows separated by gaps in order to capture 
broad enrichment regions. An alternate approach is to extend the 
ChIP-seq tags along their strand direction (called an ‘XSET’) and 
to count overlaps above a threshold as peak regions16. Tag exten-
sion before signal calculation serves the dual purpose of correct-
ing for the assumed fragment length and also smoothing over gaps 
that were not tagged because of low sampling or read mappability 

threshold number of tags covering them to define an enriched 
sequence region. Although this can be effective for highly defined 
point source factors with strong ChIP enrichment, it is not satis-
factory overall because of inherent complexities of the signals as 
well as experimental noise and/or artifacts. Additional informa-
tion present in the data is now used to help discriminate true posi-
tive signals from various artifacts. For example, the strand-specific 
structure of the tag distribution is useful to discriminate the punc-
tate class of binding events from a variety 
of artifacts9. Because immunoprecipitated 
DNA fragments are typically sequenced as 
single-ended reads, that is, from one of the 
two strands in the 5′ to 3′ direction, the tags 
are expected to come on average equally 
frequently from each strand, thus giving 
rise to two related distributions of stranded 
reads. The corresponding individual strand 
distributions will occur upstream and 
downstream, shifted from the source point 
(‘summit’) by half-the average sequenced 
fragment length, which is typically referred 
to as the ‘shift’ (Fig. 4a). Note that the aver-
age observed fragment length can differ 
considerably from the ‘expected’ fragment 
length derived from agarose gel cuts made 
during Illumina library preparation; short 
fragments are further favored by Illumina’s 
solid-state PCR. For this reason, the shift is 
now mainly determined computationally 
from the data rather than imposed from the 
molecular biology protocol. The shift will 
be smaller and the two strand distributions 
will come closer together in experiments in 
which the fragment length, read-length and 
recognition site length converge.

Building a signal profile. The signal pro-
file is a smoothing of the tag counts to 
allow reliable region identification and 
better summit resolution. The simplest 
way to define a signal profile is to slide a 
window of fixed width across the genome, 
replacing the tag count at each site with 
the summed value within the window 
centered at the site. Consecutive windows 
exceeding a threshold value are merged. 
This is what cisGenome10 does. SiSSRs11 
and spp12 count tags within a window in 
a strand-specific fashion. Other programs 
also use sliding window scans but com-
pute various modified signal values. The 
program MACS13 performs a window 
scan but only after shifting the tag data in 
a strand-specific fashion to account for the 
fragment length. F-Seq14 performs kernel 
density estimation with a Gaussian kernel. 
QuEST9 creates separate kernel density 
estimation profiles for the two strands. 
SICER15 computes probability scores in 
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Figure 3 | ChIP-seq peak calling subtasks. A signal profile of aligned reads that takes on a value at each 
base pair is formed via a census algorithm, for example, counting the number of reads overlapping each 
base pair along the genome (upper left plot ‘+’ strand reads in blue, ‘–’ strand reads in red, combined 
distribution after shifting the ‘+’ and ‘–‘ reads toward the center by the read shift value in purple). 
If experimental control data are available (brown), the same processing steps are applied to form a 
background profile (top right); otherwise, a random genomic background may be assumed. The signal 
and background profiles are compared in order to define regions of enrichment. Finally, peaks are 
filtered to reduce false positives and ranked according to relative strength or statistical significance. 
Bottom left, P(s), probability of observing a location with s reads covering it. The bars represent the 
control data distribution. A hypothetical Poisson distribution fit is shown with sthresh indicating a cutoff 
above which a ChIP-seq peak might be considered significant. Bottom right, schematic representation 
of two types of artifactual peaks: single strand peaks and peaks formed by multiple occurrences of only 
one or a few reads.
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Table 1 | Publicly available ChIP-seq software packages discussed in this review

Profile Peak criteriaa Tag shift Control datab Rank by FDRc
User input 
parametersd

Artifact 
filtering: 

strand-based/ 
duplicatee Refs.

CisGenome  
v1.1

Strand-specific 
window scan

1: Number of reads 
in window 
2: Number of 
ChIP reads minus 
control reads in 
window

Average 
for highest 
ranking peak 
pairs

Conditional 
binomial used to 
estimate FDR

Number of 
reads under 
peak

1: Negative 
binomial 
2: conditional 
binomial

Target FDR,  
optional window 
width, window 
interval

Yes / Yes 10

ERANGE  
v3.1

Tag 
aggregation

1: Height cutoff 
Hiqh quality peak 
estimate, per-
region estimate, 
or input

Hiqh quality 
peak estimate, 
per-region 
estimate, or 
input

Used to calculate 
fold enrichment 
and optionally  
P values

P value 1: None 
2: # control

# ChIP

Optional peak 
height, ratio to 
background

Yes / No 4,18

 
FindPeaks 
v3.1.9.2

Aggregation 
of overlapped 
tags

Height threshold Input or 
estimated

NA Number of 
reads under 
peak

1: Monte Carlo 
simulation 
2: NA

Minimum peak 
height, subpeak 
valley depth

Yes / Yes 19

F-Seq 
v1.82

Kernel density 
estimation 
(KDE)

s s.d. above KDE 
for 1: random 
background, 2: 
control

Input or 
estimated

KDE for local 
background

Peak height 1: None 
2: None

Threshold s.d. 
value, KDE 
bandwidth

No / No 14

GLITR Aggregation 
of overlapped 
tags

Classification 
by height 
and relative 
enrichment

User input tag 
extension

Multiply sampled 
to estimate 
background class 
values

Peak height 
and fold 
enrichment

2: # control
# ChIP

Target FDR,  
number nearest 
neighbors for 
clustering

No / No 17

MACS 
v1.3.5

Tags shifted 
then window 
scan

Local region 
Poisson P value

Estimate from 
high quality 
peak pairs

Used for Poisson 
fit when available

P value 1: None 
2: # control

# ChIP

P-value threshold, 
tag length, mfold 
for shift estimate

No / Yes 13

PeakSeq Extended tag 
aggregation

Local region  
binomial P value

Input tag 
extension 
length

Used for 
significance of 
sample enrichment 
with binomial 
distribution

q value 1: Poisson 
background 
assumption 
2: From 
binomial for 
sample plus 
control

Target FDR No / No 5

QuEST 
v2.3

Kernel density 
estimation

2: Height 
threshold, 
background ratio

Mode of local 
shifts that 
maximize 
strand cross-
correlation

KDE for 
enrichment and 
empirical FDR 
estimation

q value 1: NA 
2: # control

# ChIP
 

 
as a function of 
profile threshold

KDE bandwidth, 
peak height, 
subpeak valley 
depth, ratio to 
background

Yes / Yes 9

SICER 
v1.02

Window scan 
with gaps 
allowed

P value from 
random 
background 
model, enrichment 
relative to control

Input Linearly rescaled 
for candidate peak 
rejection and P 
values

q value 1: None 
2: From Poisson 
P values

Window length, 
gap size, FDR  
(with control) or 
E-value  
(no control)

No / Yes 15

SiSSRs 
v1.4

Window scan N+ – N- sign 
change, N+ + 
N- threshold in 
regionf

Average 
nearest paired 
tag distance

Used to compute 
fold-enrichment 
distribution

P value 1: Poisson 
2: control 
distribution

1: FDR 
1,2: N++ N- 
threshold

Yes / Yes 11

spp 
v1.0

Strand specific 
window scan

Poisson P value 
(paired peaks 
only)

Maximal 
strand cross-
correlation

Subtracted before 
peak calling

P value 1: Monte Carlo 
simulation 
2: # control

# ChIP

Ratio to 
background

Yes / No 12

USeq 
v4.2

Window scan Binomial P value Estimated or 
user specified

Subtracted before 
peak calling

q value 1, 2: binomial 
2: # control

# ChIP
 

Target FDR No / Yes 20

aThe labels 1: and 2: refer to one-sample and two-sample experiments, respectively. bThese descriptions are intended to give a rough idea of how control data is used by the software. ‘NA’ means that 
control data are not handled. cDescription of how FDR is or optionally may be computed. ‘None’ indicates an FDR is not computed, but the experimental data may still be analyzed; ‘NA’ indicates the 
experimental setup (1 sample or 2) is not yet handled by the software. # control / # ChIP, number of peaks called with control (or some portion thereof) and sample reversed. dThe lists of ‘user input 
parameters’ for each program are not exhaustive but rather comprise a subset of greatest interest to new users. e’Strand-based’ artifiact filtering rejects peaks if the strand-specific distributions of reads 
do not conform to expectation, for example by exhibiting extreme bias of tag populations for one strand or the other in a region. ‘Duplicate’ filtering refers to either removal of reads that occur in excess 
of expectation at a location or filtering of called peaks to eliminate those due to low complexity read pileups that may be associated with, for example, microsatellite DNA. fN+ and N– are the numbers of 
positive and negative strand reads, respectively.
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or the signal may be thresholded by its enrichment ratio relative to 
the control. Using experimental control data is thought important 
because it substantially reduces false positive regions that come from 
DNA shearing biases or sequencing artifacts. CisGenome, ERANGE, 
GLITR, MACS, PeakSeq, QuEST, SICER, SiSSRs, spp and USeq20 
all use control data when it is available. FindPeaks, F-Seq and the 
approach of Mikkelsen et al.8 do not.

Peak call criteria. Once the signal profile has been generated and 
tags allocated to regions, those for which the signal satisfies certain 
quality criteria are considered candidate peaks. The main quality 
criterion is either an absolute signal threshold or a minimum enrich-
ment relative to the background or both. Specifics for various soft-
ware implementations are given in Table 1. Default values for these 
are provided, but users will need to consider whether their data are 
similar enough to those on which a specific algorithm was tuned to 
justify using the defaults. Some exploration of the parameter space 
may be helpful. Ideally, an end user would specify a desired false dis-
covery rate (FDR), with parameters then set to achieve it for a given 
algorithm and dataset. A few packages implement some version of 
this (see significance ranking below), but there is no consensus yet 
on how to best estimate the FDR for ChIP-seq, and different meth-
ods produce different outcomes.

Post-filtering. After the initial peak calling step, simple filters are 
optionally available to eliminate artifacts. Two popular filtering  
criteria are based on the distributions of tags between the DNA 

issues. GLITR17 uses this algorithm. PeakSeq5 combines tag exten-
sions with tag aggregation. ERANGE4,18 aggregates tags within a 
fixed distance of one another into candidate peak regions.

Strand-specific read shifting can yield considerably improved 
summit resolution as well as greater sensitivity for punctate source 
calls, if the shift distance is accurate. If the shift is badly misesti-
mated, some true ChIP sites will not be called. Experiments with 
longer average fragment lengths benefit more from read shifting 
because the effect is greater. The read-shift distance used is gener-
ally either fixed to a user-specified value or it is estimated from ChIP 
data; generally the latter is based upon high quality peaks only (those 
with very large enrichment relative to background). MACS, QuEST, 
SiSSRs and spp perform mandatory tag shifting before generating 
a set of peak calls. ERANGE and FindPeaks19 offer it as an option, 
whereas cisGenome shifts tags only as a post-processing step to 
refine binding site locations. F-Seq, GLITR and SICER shift tags by 
a user-specified distance. Tag extension can accomplish the same 
goals as tag shifting in many cases.

Handling the background. The background model consists of 
an assumed statistical noise distribution or a set of assumptions 
that guide the use of control data to filter out certain types of false 
positives in the treatment data. In the absence of control data, the 
background tag distribution is typically modeled with a Poisson or 
negative binomial distribution. When available, control data may be 
used to determine parameters for these distributions. Alternatively, 
the control data may be subtracted from the signal along the genome 
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Figure 4 | The impact of fragment length and complex peak structures in ChIP-
seq. (a) A ChIP-seq experiment yields distributions for tags sequenced from the 
forward and reverse strands, the maxima of which should be separated by the 
average fragment length. In real experimental data, an overlap of the two 
distributions is often observed. If the average fragment length is much longer 
than the width of the strand distributions, the binding site will fall between 
the two distributions. Tag shifting is necessary for a single summit (top). 
Intermediate fragment lengths yield a single broadened peak in the unshifted 
aggregate distribution, and tag shifting may improve resolution a small 
amount by more precisely locating the summit (middle). Very short fragments, 
can yield good binding site resolution without tag shifting (bottom). f, forward 
strand density; r, reverse strand tag density; and L F is the (average) fragment 
length. (b) Overlapping tag distributions are observed for clusters of nearby 
peaks such as the pictured double for a CTCF peak region in the human 
genome7. Motif mapping reveals two CTCF binding sites (red), though ChIP-seq 
signal suggests a single binding site lying between the two motifs. As an 
example, the ERANGE region call (orange) is shown to cover both motifs. 
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peaks in a portion or all of the control data. The FDR in this case is 
given as the ratio of the number of peaks called in the control to the 
number of peaks called for the ChIP data.

Specialized software to analyze histone modification ChIP-seq 
data that start to address higher-level analyses include ChIPDiff21 
and ChromaSig22. ChIPDiff uses a hidden Markov model to assess 
the differences in the histone modifications from the ChIP-seq sig-
nal between two libraries, for example, from different cell types. 
ChromaSig performs unsupervised learning on ChIP-seq signals 
across multiple experiments to determine significant patterns of 
chromatin modifications.

Other subtleties in the ChIP-seq signal present challenges for 
both computation and interpretation of downstream results. Some 
ChIP-seq peak regions are spatial or temporal convolutions of mul-
tiple biologically true sources. In such cases, the highest density of 
reads does not always correspond to a source point (Fig. 4b). This 
complexity can be magnified as one moves from relatively large 
mammalian genomes with long stretches of intervening DNA iso-
lating regulatory modules from each other, to smaller genomes with 
potentially higher densities of binding sites compressed in compli-
cated modules. Computationally, this turns the problem from one 
of peak identification to peak deconvolution. In regions where this 
occurs the signal-to-noise characteristics usually determine whether 
it is feasible to discriminate occupancy among the different indi-
vidual sites. In the temporal case, a transcription factor binding site 
that is bound in an undifferentiated cell type, for instance, and not 
bound in a differentiated cell type, will be diluted relative to sites 
that are bound in both states whenever the starting cell population 
is a mixture of the two cell types. In an embryo or whole organism, 
a given factor may bind partly or entirely nonoverlapping regulatory 
modules, thus mixing signals that would otherwise be spatially and/
or temporally distinct in defined cell subpopulations.

Last but not least, the stochastic sampling of the DNA fragments 
means that as more sequencing is done on a given sample addi-
tional weak but potentially significant signals will continue to be 
discovered. How many of these are functionally important is not 
a priori clear, without explicit testing. This uncertainty will affect 
how these weaker features are used (or eliminated) for input into 
higher-level integrative analysis. Although weak-signal sites can be 
confirmed using related techniques such as ChIP–quantitative PCR 
and ChIP-chip, supported by in vitro binding to the sequence and 
by computational presence of binding motifs in the DNA, utterly 
independent evidence of occupancy, such as that provided by in 
vivo footprinting or site mutation in transfection assays, has yet to 
be marshaled for a convincingly large sample of such peaks with 
weak signal. What is certain, however, is that the complexity of the 
ChIP library (how many different founder DNA fragments are cap-
tured for sequencing) and the depth of sequencing must be properly 
adjusted to match the experimental goal and the underlying biology. 
Thus chromatin marks that cover large areas of the genome call for 
deeper sequencing or for additional algorithmic inferences to define 
large signal domains, compared with point source binding.

Transcriptome analysis of RNA-seq data
Transcriptome analysis has multiple functions, broadly divided 
between transcript discovery and mapping on one hand and RNA 
quantification on the other. The software subtasks needed for 
analysis depend on which of those two aspects are paramount in 
a given study. The first generation of RNA-seq studies published 

strands (directionality) and single-site duplicates. Directionality cri-
teria include: fraction of plus and minus tags, fraction of plus (minus) 
tags occurring to the left (right) of the putative peak, and the presence 
of a partnered plus (minus) peak for each minus (plus) peak. Note 
that default values for the directionality filtering may be too strin-
gent if data are noisier than in the first generation of experiments 
used to develop the algorithms. Also, this filter may incorrectly reject 
complex peak regions, that is, those that contain more than one sum-
mit. QuEST, FindPeaks and PeakSeq attempt to subdivide regions 
into more than one summit call (multiple overlapping sources), but 
this remains an active area of research. Duplicate filters are relatively 
straightforward and eliminate tags at single sites that exhibit counts 
much greater than that expected by chance.

Significance ranking. Called peak regions encompass a wide range 
of quantitative enrichments; thus an assessment of the relative confi-
dence one should place in a given set of peaks or, if possible, each indi-
vidual peak is informative. Most of the algorithms currently compute 
P values either after the fact or as part of the peak calling procedure 
and these are provided with the output peak list. The packages that 
provide P and/or q values are: CisGenome, ERANGE, GLITR, MACS, 
PeakSeq, QuEST SICER, SiSSrs spp and USeq (Table 1). A few callers 
do not provide P values, in which case the use of the peak height or 
fold enrichment may be used to provide a peak ranking, though not 
statistical significance. From an end user perspective, the false discov-
ery rate is often of paramount interest and one can compute a P value 
from a false discovery rate or vice versa for a known distribution. 
Generally, however, it is not known a priori whether the distribution 
assumption made in calculating the P value is appropriate, thus the 
correct false discovery rate may be far different from the one based on 
the P value threshold. Therefore some programs (ERANGE, MACS, 
QuEST, spp and USeq) instead compute an empirical FDR by calling 

Select RNA fraction of interest
(poly(A), ribo-minus and others)

Fragment and reverse transcribe

Sequence, map onto genome

Quantitate
(relative, absolute, nonmolar and others)

3× 2× 1×

AAA

AAA
AAA

AAA
AAA

AAA

AAA
AAA

AAAAAA
AAA

AAA

Figure 5 | Overview of RNA-seq. A RNA fraction of interest is selected, 
fragmented and reverse transcribed. The resulting cDNA can then be 
sequenced using any of the current ultra-high-throughput technologies to 
obtain ten to a hundred million reads, which are then mapped back onto the 
genome. The reads are then analyzed to calculate expression levels. 

S28 | VOL.6 NO.11s | NOVEMBER 2009 | nature methods SUPPLEMENT

review
©

20
09

 N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.



Mapping splices and multireads. For all other RNA-seq analyses 
with 10–100 million reads and for which a reference genome is 
known, the reads can be mapped as in ChIP-seq, but with the added 
opportunity to map reads that cross splice junctions (Fig. 6b,c). 
Known splice junctions, based on gene models and ESTs can be 
handled by incorporating them informatically in the primary read 
mapping, whereas newly inferred junctions are considered later. 
Once the reads are mapped, the question of their correspondence 
with gene and transcript models arises, as it is common to have more 
than one transcript type from a single gene, with alternate splicing, 
alternate promoter use and different 3′ poly(A) addition sites all con-
tributing diversity. More sophisticated questions follow concerning 
the respective prevalence of each transcript isoform and the relative 
prevalence of RNAs in a given transcriptome. A final goal in a major-
ity of transcriptome studies is to quantify differences in expression 
across multiple samples to capture differential gene expression.

The main challenges of mapping RNA-seq reads center around the 
handling of splice junctions, paralogous gene families and pseudo-
genes. Nearly all RNA-seq packages are built on top of short read 
mappers such as bowtie34 and SOAP35, and may require multiple 
runs to map splice-crossing reads. The primary approach is to sim-
ply map the ungapped sequence reads across sequences representing 
known splice junctions, which can also be supplemented with any set 
of predicted splice junctions from spliced ESTs or gene finder predic-
tions as implemented by ERANGE or RNA-MATE36. However, all 
of these approaches are ultimately limited to recovering previously 
documented splices. Alternatively, packages such as TopHat32 and 
G-Mo.R-Se37 first identify enriched regions representing transcribed 
fragments (transfrags) and build candidate exon-exon splice junc-
tions to map additional reads across, whereas QPALMA38 attempts 
to predict whether a read is spliced as part of the mapping process.

Multireadsreads that map equally well to multiple genomic 
locationsarise predominantly from conserved domains of par-
alogous gene families and repeats. Another confounding problem 
is the prevalence of short and long interspersed nuclear elements  

in 2008 (refs. 18,23–28) used very short, unpaired reads (25–32 
nucleotides) of cDNA made by reverse transcription of poly(A)–
selected RNA (Fig. 5). As longer read lengths and larger numbers 
of reads have become routine in some platforms, and as ‘mate-
paired’ or ‘paired-end’ formats have been added, the bioinformat-
ics tools are evolving to handle the changing data. Experimental 
protocol choices also affect the downstream data analysis. For 
example, RNA fragmentation and size selection steps of 200-base-
pair fragments in current RNA-seq protocols will likely result in 
under-representation of the shortest transcripts, as has already 
been noted29,30. Given the keen interest in RNA-seq, it is natural 
that platform vendors such as ABI and Illumina, and commercial 
software ventures, are beginning to provide commercial packages, 
but we limit this overview to publicly available packages connect-
ed to published papers (Table 2).

For a subset of RNA-seq users who work on organisms with-
out a reference genome sequence or aim to detect chimeric tran-
scripts from chromosomal rearrangements such as those found 
in tumors, analyzing the transcriptome involves assembling 
expressed sequence tags (ESTs) de novo using short-read assembly 
programs such as Velvet31, which assemble sequences by assem-
bling reads that overlap by a preselected k-mer, that is, by a mini-
mum number of bases. Typically, a finite range of k-mers are tried 
to find the optimal k-mer that will give the best assembly in terms 
of both number and lengths of contigs or ESTs. As short read 
assemblers are primarily designed to assemble genomic sequence 
with relatively even depth of coverage, the five orders of magni-
tude of prevalence in transcriptomes are a difficult challenge32. 
A recent study using ABySS33 assembled 764,365 ESTs from 194 
million 36-base-pair reads from a human follicular lymphoma 
transcriptome with k = 28 base pairs; half of the 30 megabases of 
unique sequence was found on contigs longer than 1.1 kilobases. 
At lower sequencing depths, de novo assembly will work best for 
genes that are highly expressed enough to be tiled by reads that 
overlap at the selected k-mer (Fig. 6a).

Table 2 | List of publicly available RNA-seq software packages discussed in this review

Primary category Discovery
Need genomic 
assembly

Associated 
read mapper Splice junctions Quantitation Reference

ABySS 
v1.0.11

Short-read assembler Yes No NA Assembled Read coverage 33

BASIS 
V1

Existing transcript 
quantitation

No Yes External From existing models Read coverage 41

ERANGE 
v3.1

Existing and novel gene 
quantitation

Yes Yes Blat 
Bowtie 
Eland

From existing models 
Novel with blat

RPKM from gene 
annotations and novel 
transfrags

18

G-Mo.R-Se 
v1.0

Novel gene model 
annotation

Yes Yes SOAP Predicted from transfrags No 37

QPALMA 
v0.9.9.2

Spliced read mapper Yes Yes Integrated Predicted from transfrags No 38

RNA-mate 
v1.1

Existing and novel gene 
quantitation

Yes Yes Map reads From existing models Deprecated in v1.1 36

RSAT 
v0.0.3

Existing transcript 
quantitation

No No; requires  
transcript sequences

Eland, SeqMap 
(bundled)

From supplied transcript 
sequences

RPKM from transcript 
sequences

40

TopHat 
v1.0.10

Existing and novel gene 
quantitation

Yes Yes Bowtie Predicted from transfrags 
From existing models

RPKM from supplied 
annotations

32

Velvet 
v0.7.47

Short read assembler Yes No NA Assembled Fold coverage 31

NA, short-read assemblers do not rely on any particular annotated read mapper to assemble the transcripts.
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the ‘noise’ level generated by mismapped reads or intronic RNA 
from incompletely spliced heterogenous nuclear RNA (hnRNA). 
In mouse and human samples, we have especially noticed that 
prominent read densities often extend well beyond the annotated 
3′ untranslated regions or as alternatively spliced 5′ untranslated 
regions, internal exons or retained introns. ERANGE, G-Mo.R-Se 
and TopHat first aggregate reads into transfrags. Whereas G-Mo.R-
Se and TopHat rely primarily on spliced reads to connect transfrags 
together, ERANGE uses two different strategies depending on the 
availability of paired reads. In the currently conventional unpaired 
sequence read case, ERANGE assigns transfrags to genes based on an 
arbitrary user-selected radius, whereas in the paired-end read case, 
it will bring together transfrags only when they are connected by at 
least one paired read. Both strategies work much better with data 
that preserve RNA strandedness.

Quantifying gene expression. Given a gene model and mapped 
reads, one can sum the read counts for that gene as one measure of 
the expression level of that gene at that sequencing depth. However, 
the number of reads from a gene is naturally a function of the 
length of the mRNA as well as its molar concentration. A simple 
solution that preserves molarity is to normalize the read count by 
the length of the mRNA and the number of million mappable reads 
to obtain reads per kilobase per million (RPKM) values18. RPKMs 
for genes are then directly comparable within the sample by pro-
viding a relative ranking of expression. Although they are straight-
forward, RPKM values have several substantive detail differences 
between software packages, and there are also some caveats in using 
them. Whereas ERANGE uses a union of known and novel exon 
models to aggregate reads and determine an RPKM value for the 
locus, TopHat and RSAT restrict themselves to known or prespeci-
fied exons. ERANGE will also include spliced reads and can include 
assigned multireads in its RPKM calculation, whereas other pack-
ages are limited to uniquely mappable reads.

Several experimental issues influence the RPKM quantification, 
including the integrity of the input RNA, the extent of ribosomal 
RNA remaining in the sample, size selection steps and the accuracy 
of the gene models used. RPKMs reflect the true RNA concentration 
best when samples have relatively uniform sequence coverage across 
the entire gene model, which is usually approached by using random 
priming or RNA-ligation protocols, although both protocols cur-
rently fall short of providing the desired uniformity. Poly(A) prim-
ing has different biases (3′) from partial extension or when there is 
partial RNA degradation. Resulting ambiguities in RPKMs from an 
RNA-seq experiment are akin to microarray intensities that need 
to be post-processed before comparison to other RNA-seq samples 
using any number of well-documented normalization methods, 
such as variance stabilization42, for example.

More sophisticated analyses of RNA-seq data allow users to extract 
additional information from the data. One area of considerable inter-
est and activity is in transcript modeling and quantifying specific 
isoforms. BASIS calculates transcript levels from coverage of known 
exons by taking advantage of specifically informative nucleotides 
from each transcript isoform. A second area is sequence variation. The 
RNA sequences themselves can be mined to identify positions where 
the base reported differs from the reference genome(s), identifying 
either a single-nucleotide polymorphism or a private mutation25,43. 
When these are heterozygous and phased or informatively related to 
the source genome, RNA single-nucleotide polymorphisms can be 

(SINEs and LINEs) in the untranslated regions of genes as well as 
the abundance of retroposed pseudogenes for highly expressed 
housekeeping genes in large genomes. Both of these vary from one 
genome to the next39. For example, several GAPDH retroposed 
pseudogenes in the mouse genome differ by less than 2 nucleotides 
(0.2%) from the mRNA for GAPDH itself, making it difficult to 
map reads correctly to the originating locus based on RNA-seq data 
alone. Orthogonal data such as RNA polymerase II occupancy and 
ChIP-seq measurements can later be brought to bear in some cases, 
but different software and use parameters make starting choices 
based on the RNA data alone. Whereas the algorithms are generally 
sensible, specific cases can be insidious and are worth being aware 
of. For example, a minority of reads from one paralog can map best 
to other sites (usually another paralog or pseudogene) because of 
the error rate in sequencing, which is quite substantial on current 
platforms (typically around 1%). For highly expressed genes, this 
can cause a shadow of expression at these pseudogenes, which may 
then be called as transfrags. Similarly, reads that are intron-spanning 
from a source gene may map instead perfectly and uniquely to a 
retroposed pseudogene. The ERANGE package avoids such mis-
assignment by mapping reads simultaneously across the genome 
and splice junctions, thus turning them into multireads that are 
subsequently handled separately.

Assigning reads to known and new gene models. The next level 
of RNA-seq analysis associates mapped reads with known or new 
gene models. Given a set of annotations, all tools can tally the reads 
that fall on known gene models, and several tools like RSAT40 and 
BASIS41 deal primarily with the annotated models. However, a sub-
stantial fraction of reads fall outside of the annotated exons, above 

De novo assembly of the transcriptome

Map onto the genome and splice junctions

Map onto the genome

Highly expressed gene

Lowly expressed gene

Read coverage must
be high enough to build
EST contigs (solid bar)

Read mapper must
support splitting reads
to record splices

Splice junctions
sequences from
either annotations
or inferred

AAA

AAA

a

b

c

Figure 6 | Approaches to handle spliced reads. (a) In de novo transcriptome 
assembly, splice-crossing reads (red) will only contribute to a contig (solid 
green), when the reads are at high enough density to overlap by more than 
a set of user-defined assembly parameters. Parts of gene models (dotted 
green) or entire gene models (dotted magenta) can be missed if expressed 
at sub-threshold. (b) Splice-crossing reads can be mapped directly onto the 
genome if the reads are long enough to make gapped-read mappers practical. 
(c) Alternatively, regular short read mappers can be used to map spliced reads 
ungapped onto supplied additional known or predicted splice junctions. 
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used to detect allele-specific gene expression. Yet another source of 
observed sequence differences between the transcriptome and genome 
are changes owing to RNA editing44. In general, bioinformatics tools 
are evolving to match changes in sequencing technology. Longer and 
more informative reads produce a higher fraction of uniquely map-
pable reads that cross one or more splice junctions, which calls for 
changes in transcript mapping and assembly. Paired reads with good 
control over insert size distribution (that is, tight size distributions) 
will provide a superior substrate for determining long-range isoform 
structure and quantifying them. We also expect that strand-reporting 
protocols45 will be more widely used and that they will help to disam-
biguate instances in which both strands are represented or when the 
strand of origin is entirely unknown.

Future opportunities and challenges
A virtue of sequence-based RNA and ChIP datasets is that the raw 
unmapped reads can be re-analyzed to gain the benefits of ongoing 
algorithmic improvements, updated genome references and gene 
models, including single-nucleotide polymorphism anotations and, 
eventually, source DNA sequences from the same individuals or cell 
lines used for RNA and ChIP experiments. Beyond these incremen-
tal changes, major improvements are anticipated for both ChIP-seq 
and RNA-seq that will require substantial algorithmic advances. 
Variations on chromatin conformation capture (3C)46 and their 
combination with ChIP-seq in genome-wide formats promise to 
provide physical linkages between distal (even transchromosomal) 
regulatory elements and the genes that they regulate47. They call for 
new algorithms and software to find, cull, quantify and ultimately 
integrate longer-range physical interactions in the nucleus with the 
kind of occupancy and chromatin state information now being gath-
ered. The current forms of RNA-seq will likely transition to a more 
quantitative form of ‘universal’ RNA-seq that captures short and 
long RNAs while preserving strand origin without poly(A) selec-
tion48. Whereas ChIP-seq is less likely to benefit from the substan-
tially longer reads promised by the upcoming generation of DNA 
sequencers, these will be invaluable to RNA-seq as most transcripts 
will be unambiguously sequenced as a single ‘read’.

Growth of publicly available ChIP-seq and RNA-seq datasets will 
increasingly drive integrated computational analysis that aims to 
address basic questions about how the chemical code of in vivo DNA 
binding for multiple factors relates to transcription output. ChIP-seq 
experiments, just as ChIP-chip experiments before them, reveal thou-
sands of reproducible binding events that do not follow the simplest 
possible logic of a predictable positive or negative effect on the nearest 
promoter. What is the logic? How can functionally important sites 
of occupancy be discerned computationally and discriminated from 
others that are inactive or differently active sites? Computational inte-
gration of factor binding, histone marks, polymerase loading, meth-
ylation and other genome-wide data will be pursued to determine 
whether highly combinatorial models of inputs can predict regulatory 
output. Finally, additional integrative analyses that draw on data from 
RNA interference perturbations and high-throughput functional ele-
ment assays will likely be needed to extract functionally the important 
connections and relationships of a working regulatory code.
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