
Computation in Multicriteria Matroid Optimization

JESÚS A. DE LOERA †
University of California, Davis

DAVID C. HAWS †
University of California, Davis

JON LEE ‡
IBM T.J. Watson Research Center

ALLISON O’HAIR †
University of California, Davis

Motivated by recent work on algorithmic theory for nonlinear and multicriteria matroid optimiza-
tion, we have developed algorithms and heuristics aimed at practical solution of large instances
of some of these difficult problems. Our methods primarily use the local adjacency structure in-
herent in matroid polytopes to pivot to feasible solutions which may or may not be optimal. We
also present a modified breadth-first-search heuristic that uses adjacency to enumerate a subset
of feasible solutions. We present other heuristics, and provide computational evidence supporting
our techniques. We implemented all of our algorithms in the software package MOCHA.

Categories and Subject Descriptors: G.2.1 [Discrete Mathematics]: Combinatorics—Combina-
torial Algorithms; G.2.2 [Mathematics of Computing]: Discrete Mathematics—Graph Theory

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Matroids, Matroid Optimization, Multicriteria Optimization,
Local Search, Tabu Search, Non-linear combinatorial optimization, Multiobjective Optimization

1. INTRODUCTION

Let M be a matroid on the ground set [n] := {1, . . . , n} with set of bases BM.
Consider d vectors w1, . . . ,wd ∈ Rn where each vector applies a weighting to
the ground set [n]. That is, every wi assigns a real-value to each element of [n].
We let W ∈ Rd×n be the matrix with rows w1, . . . ,wd. We use the standard
notation where ei ∈ Rn means the vector with one in the ith position and zeros
in the rest. For each base B ∈ BM ⊆ 2[n], we define the incidence vector of
B as e(B) :=

∑
i∈B ei ∈ Rn, and we let e(BM) := { e(B) | B ∈ BM }. Then

We(B) is the vector of evaluations of the base B under the different weightings
w1, . . . ,wd, and We(BM) := {We(B) | B ∈ BM } ⊆ Rd. We also define PM :=
conv(e(B) | B ∈ BM) ⊆ Rn, where conv stands for the convex hull, and where

† Department of Mathematics, University of California, Davis, CA 95616, USA
‡ IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA
Authors from University of California, Davis were supported by NSF-DMS 0608785 and 0914107,
NSF-VIGRE grant 0636297, and an IBM Open Collaborative Research Grant.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20 ACM 0004-5411/20/0100-0001 $5.00

Journal of the ACM, Vol. , No. , 20, Pages 1–0??.

2 · De Loera, Haws, Lee and O’Hair

vert(P) = {vertices of P} for a polytope P. Finally WPM := {Wx | x ∈ PM }.
Matroids are undeniably one of the fundamental structures in combinatorial op-

timization (e.g., see [Schrijver 2003; Lee 2004]). In this paper, we consider tech-
niques aimed at four generalizations of the classical single-criterion linear-objective
matroid optimization problem.

Nonlinear Matroid Optimization: Given a matroid M on [n] with set of bases
BM, W ∈ Rd×n, and a function f : Rd → R, find a base B ∈ BM such that
f(We(B)) = min(f(We(B′)) | B′ ∈ B).

The motivation for nonlinear matroid optimization is that the function f that
we seek to optimize trades off the competing d linear objectives described by the
rows of W . When d = 1 and f is the identity (or any monotone) function, then we
have classical linear-objective matroid optimization which is solvable via the greedy
method.

Two important special cases of nonlinear matroid optimization are as follows.

Convex Matroid Optimization: Given a matroid M on [n] with set of bases
BM, W ∈ Rd×n where d is fixed, and a convex function f : Rd → R, find a base
B ∈ BM such that f(We(B)) = max(f(We(B′)) | B′ ∈ BM). Similarly we con-
sider the minimization problem f(We(B)) = min (f(We(B′)) | B′ ∈ BM)

Min-Max Multi-criteria Matroid Optimization: Given a matroid M on [n]
with set of bases BM, W ∈ Rd×n, find a base B ∈ BM such that

max
i=1...d

((We(B))i) = min(max
i=1...d

((We(B′))i) | B′ ∈ BM).

Also, we investigate the following problem.

Pareto Multi-criteria Matroid Optimization: Given a matroid M on n-
elements with set of bases BM, W ∈ Rd×n, find a base B ∈ BM such that
B ∈ argminPareto((We(B′)) | B′ ∈ BM).

Above, minPareto is understood in the sense of Pareto optimality for problems
with multiple objective functions, that is, we adopt the convention that for vectors
a,b ∈ Rd, we have a ≤ b if and only if ai ≤ bi for all entries of the vectors. Further,
we say that a < b if a ≤ b and a 6= b. Given a set S ⊆ Rn we say a ∈ S is a Pareto
optimum if there does not exist b ∈ S such that b < a. We note that an optimum
of the min-max problem will be a Pareto optimum. This is easy to see because if
a ≤ b then maxi(ai) ≤ maxi(bi). The Pareto multi-criteria matroid optimization
problem has been studied by several authors before. For example, Ehrgott [Ehrgott
1996] investigated two optimization problems for matroids with multiple objective
functions, and he pioneered a study of Pareto bases via the base-exchange property
of matroids. See [Ehrgott and Gandibleux 2000] for a detailed introduction to some
aspects of multicriteria combinatorial optimization.

The matroid optimization problems we consider here have wide applicability. For
Journal of the ACM, Vol. , No. , 20.

Computation in Multicriteria Matroid Optimization · 3

example, in [Berstein et al. 2008] the authors consider the “minimum aberration
model fitting problem” in statistics, which can be reduced to a nonlinear matroid
optimization problem. Multi-criteria problems concerning minimum spanning trees
of graphs are common in applications (see [Ehrgott and Gandibleux 2000; Knowles
and Corne 2002] and references therein).

As a concrete example related to spanning trees, consider a graph G with three
linear criteria on the edges described as the three rows of a matrix W .

1. the first row of W encodes the fixed installation cost of each edge of G;
2. the second row of W encodes the monthly operating cost of each edge of G;
3. assuming that the edge j fails independently with probability 1 − pj , then by

having the log pj as the third row of W (possibly scaled and rounded suitably),∑
j∈T log pj captures the reliability of the spanning tree T of G.

It can be difficult for a decision maker to balance these three competing objectives
in selecting a best spanning tree. There are many issues to consider such as the time
horizon, repairability, fault tolerance, etc. These issues can be built into a concrete
function f , for example a weighted norm, or can be thought of as determining a
black-box f .

Unfortunately, although useful, the problems we are considering are also very
difficult in general. Multicriteria matroid optimization is generally NP-complete
[Ehrgott 1996]. The Min-Max optimization problem includes the NP-complete par-
tition problem (see [Garey and Johnson 1979]), certain multi-processor scheduling
problems (see [Graham et al. 1979]), and specific worst-case stochastic optimization
problems (see [Warburton 1985]).

Nevertheless, recently there has been considerable progress on algorithmic and
complexity theory for nonlinear matroid optimization. In particular, algorithms
with polynomial worst-case complexity bounds have been developed under nice
assumptions on W, f and d. For instance, it has been shown that although multi-
criteria matroid optimization is NP-complete in general, it is polynomial-time solv-
able under certain restrictions on W and with fixed d [Berstein et al. 2009]. We refer
the reader to the recent series of papers on nonlinear matroid optimization [Berstein
et al. 2009; Berstein and Onn 2008; Onn 2003; Berstein et al. 2008] which serve as
background for the algorithms and strategies implemented here. The present paper
reports on some of the current computational possibilities by comparing various
heuristics and algorithms.

In Section 2, we present several heuristics and algorithms for nonlinear matroid
optimization and multicriteria matroid optimization problems. At a glance, Table
I shows the four problems described above indicating which of our algorithms or
heuristics presented in this paper concern them.

Section 2 begins with a description of our implementation of a speed-up of the al-
gorithm proposed in [Onn 2003] for convex maximization and two primal heuristics,
Heuristic 1 (Local Search) and Heuristic 2 (Tabu Search), for convex minimization.
Using either Local Search or Tabu Search, we present Heuristic 3 (Pivot Test)
that is aimed at finding a large subset of We(BM). We also present Algorithm
4 (Projected Boundary) that finds all vertices of WPM. Combining Algorithm 4
(Projected Boundary) and Heuristic 3 (Pivot Test) we derive Heuristic 5 (Bound-
ary and Triangular Region Pareto Test) which finds approximate solutions to the

Journal of the ACM, Vol. , No. , 20.

4 · De Loera, Haws, Lee and O’Hair

Nonlinear Matroid Optimization
Heuristic 6 (DFBFS)
Heuristic 3 (Pivot Test)

Convex Matroid Optimization

Heuristic 1 (Local Search)
Heuristic 2 (Tabu Search)
Heuristic 6 (DFBFS)
Heuristic 3 (Pivot Test)

Min-Max Matroid Optimization

Heuristic 6 (DFBFS)
Heuristic 3 (Pivot Test)
Heuristic 5 (Boundary and Triangular
Region Pareto Test)

Pareto Multi-criteria Matroid Optimization

Heuristic 6 (DFBFS)
Heuristic 3 (Pivot Test)
Heuristic 5 (Boundary and Triangular
Region Pareto Test)

Table I. Our four optimization problems and our algorithms and heuristics applicable to them.

Pareto optimization problem or Min-Max problem. Finally, we present a modified
breadth-first-search heuristic, Heuristic 6 (DFBFS), that is also aimed at finding a
large subset of We(BM). We especially note that Heuristic 3 (Pivot Test), Heuris-
tic 6 (DFBFS), and Heuristic 5 (Boundary and Triangular Region Pareto Test) do
not explicitly optimize a function, but instead find a subset of the feasible points,
the projected bases We(B). From there, one can easily scan through the subset to
determine the optimum (with respect to that subset) using any objective.

We describe our software MOCHA in Section 3. In Section 4, we present our
computational results followed by a discussion.

2. DESCRIPTION OF THE ALGORITHMS AND HEURISTICS

Throughout the paper we refer to a piece pseudocode as an algorithm if it is guar-
anteed to output an optimal solution, otherwise we refer to the pseudocode as
a heuristic. Before we start our description of the algorithms and heuristics, we
remark that all of them rely on the geometry of the 1-skeleton graph of the ma-
troid polytope (see [Schrijver 2003]). The edges correspond to base exchanges.
These graphs have a lot of special structure. For example, these graphs are always
Hamiltonian (see [Holtzmann and Harary 1972]), and it is known that each two-
dimensional face of every matroid polytope is either a triangle or a quadrilateral.
This implies that the graph of the 1-skeleton of WPM is quite dense and easy to
traverse (see [Borovik et al. 2007]).

Given v1, . . . ,vk, we define cone(v1, . . . ,vk) :=
{∑k

i=1 λivi | λi ≥ 0
}

. If P ⊆
Rn is a polytope, we say two vertices v1,v2 ∈ P are adjacent if they are contained in
a one-dimensional face. Next we give a vital but elementary proposition necessary
for our algorithms.

Journal of the ACM, Vol. , No. , 20.

Computation in Multicriteria Matroid Optimization · 5

Proposition 1. Let P ⊆ Rn be a polytope, v1,v2 vertices of P, and W ∈ Rd×n.
Then there exists λv ≥ 0 such that

Wv2 = Wv1 +
∑

v adjacent to v1

λv(Wv −Wv1).

Proof. Let ṽ1, . . . , ṽk be adjacent to v1. It follows from convexity of P that
there exist λ1, . . . , λk ≥ 0 such that

v2 = λ1(ṽ1 − v1) + · · ·+ λk(ṽk − v1) + v1

=⇒ Wv2 = λ1W (ṽ1 − v1) + · · ·+ λkW (ṽk − v1) + Wv1.

Let WP := {Wx | x ∈ P }. Proposition 1 implies the following lemma.

Lemma 1. Let P ⊆ Rn be a polytope, v a vertex of P, and W ∈ Rd×n. Then
Wv ∈ relint(WP) if and only if cone(W ṽ −Wv | ṽ adjacent to v) = Rd.

Next we state a vital lemma which fully characterizes adjacency on PM.

Lemma 2 (See [Gelfand et al. 1987]). Let M be a matroid on the ground set
[n]. Two vertices e(B1), e(B2) of PM are adjacent if and only if e(B1)− e(B2) =
ei − ej for some i, j.

Define Adj(B) := { B̃ ∈ BM | e(B̃)− e(B) = ei − ej }. Using Lemma 2 we get the
following corollaries of Proposition 1 and Lemma 1.

Corollary 1. Let M be a matroid on the ground set [n], W ∈ Rd×n, B, B̃ ∈
BM. Then

We(B̃) = We(B) +
∑

B′∈Adj(B)

λB′(We(B′)−We(B))

for some λB′ ≥ 0.

Corollary 2. Let M be a matroid on the ground set [n], W ∈ Rd×n, and B ∈
BM . Then We(B) ∈ relint(WP(M)) if and only if cone (We(B′)−We(B) | B′ ∈ Adj(B)) =
Rd.

In order to present a general situation for which some of our heuristics are effi-
cient, we consider the “generalized unary encoding” of the weight matrix W ∈ Rd×n

introduced in [Berstein et al. 2009]. We consider weights Wi,j of the form

Wi,j =
p∑

k=1

W k
i,jak ,

where p ≥ 1 is a fixed integer, a = (a1, . . . , ap) is a p-tuple of distinct positive
integers ak that are binary encoded, and the integers W k

i,j (unrestricted in sign)
are unary encoded. For each k, we can organize the W k

i,j into a matrix W k :=
((W k

i,j)). Then we have W := ((Wi,j)) =
∑p

k=1 akW k. We say that W has a
generalized unary encoding over a. The length of the generalized unary encoded
W (=

∑p
k=1 akW k) is the sum of the lengths of the binary encoded a and the

lengths of the unary encoded W k .
The generalized unary encoding includes important special cases:

Journal of the ACM, Vol. , No. , 20.

6 · De Loera, Haws, Lee and O’Hair

1. Unary-encoded weights: With p = 1 and a1 = 1, we get the ordinary model
of unary-encoded W = W 1.

2. Binary-encoded {a1, . . . , ap}-valued weights: With W k ≥ 0 for all k, and∑p
k=1 W k

i,j ≤ 1, for all i, j, we get the case of all Wi,j in the set {a1, . . . , ap}
having binary-encoded elements.

The following lemma is a variation on facts pointed out in [Berstein et al. 2009].
With W having a generalized unary encoding, it is simple to bound the size of
#We(BM).

Lemma 3. Let d and p be fixed, M a matroid on n elements, and a generalized
unary encoded matrix W := ((Wi,j)) =

∑p
k=1 akW k ∈ Zd×n. Then #We(BM) is

polynomially bounded in n and the lengths of the unary encodings of the W k, for
1 ≤ k ≤ p.

Proof. Let ω := maxW k
i,j . We have

We(BM) = {We(B) | B ∈ BM }

⊆

{
p∑

k=1

λkak | λ ∈ {0,±1, . . . ,±ω · rank(M)}p,

}d

Therefore, #We(BM) ≤ (2ω · rank(M) + 1)pd.

A fortiori, #We(BM) is bounded by the length of a generalized unary encoding of
W . This is useful for us, but some of our heuristics depend on the number of integer
points in the smallest rectangular region containing We(BM) being polynomially
bounded in order to prove efficiency. In such situations, we can only make the claim
that the number of integer points in the smallest rectangular region containing
We(BM) is polynomially bounded, when W has a unary encoding, as the number
of such points depends exponentially on the lengths of the binary encodings of the
ak, 1 ≤ k ≤ p.

2.1 Local and Tabu Search

First we present Heuristic 1 that starts at any base of M and proceeds by pivoting
to its neighbors on PM as long as the pivot decreases the value of the given function
f through the weighting W .

In the majority of our experiments f is concave or convex. In the case where f is
concave, there will be a minimum on the boundary of WPM. If f is convex, then
the minima may be in the interior of WPM. We emphasize that Heuristic 1 is not
guaranteed to terminate at an optimum.
Journal of the ACM, Vol. , No. , 20.

Computation in Multicriteria Matroid Optimization · 7

Heuristic 1 (Local Search)

LS(M,W, f, B)
Input: Matroid M on n elements, B ∈ BM, W ∈ Rd×n, f : Rd → R.
Output: A base B′ ∈ BM such that f(We(B̃)) ≥ f(We(B′)) ∀ B̃ ∈ Adj(B′)
begin

B′ := B
repeat

OLDB′ := B′

if f(We(B̃)) < f(We(B′)) for some B̃ ∈ Adj(B′) then
B′ := B̃

end
until B′ = OLDB′ ;
return B′

end

If the objective function f is linear, then Heuristic 1 follows non-degenerate steps
of the simplex method for some pivot rule. The following is a well-known result
concerning an efficient algorithm for finding a minimum-weight base of a matroid.

Lemma 4. Let M be a matroid on [n], B ∈ BM, W ∈ Rd×n, and f(x) = c · x,
where c ∈ Rd. LS(M,W, g, B) terminates at B̂ where f(We(B̂)) = min{ f(WeB) |
B ∈ BM }.

Lemma 4 is used by MOCHA in the implementation of our heuristics. For
example, we can easily compute a tight rectangular region containing WP. We
also use Lemma 4 to obtain an integer point on the boundary of We(BM), a
prerequisite for some of our heuristics.

In Section 4, we will show the practical limitations of Heuristic 1, and we give a
theoretical bound on the running time of the previous algorithm given restrictions
on W and d.

Lemma 5. Let d and p be fixed, M a matroid on [n] given by an independence
oracle, a generalized unary encoded matrix W := ((Wi,j)) =

∑p
k=1 akW k ∈ Zd×n,

and f : Rd → R given by comparison oracle. Heuristic 1 takes in as input M , a base
B ∈ BM, W , f and in time polynomial in n and the length of the generalized unary
encoding of W outputs a base B′ ∈ BM such that f(We(B̃)) ≥ f(We(B′)) ∀ B̃ ∈
Adj(B′).

Proof. For any B ∈ BM we can enumerate Adj(B) in polynomial time via an
oracle for M by testing which of {B\{i}∪{j} | i ∈ B, j ∈ [n]\B } are bases. Thus,
we can pivot in polynomial time in the input. Because Heuristic 1 always pivots
to an adjacent base that is smaller, through f and W , than the current base, each
point of We(BM) will be visited at most once. By Lemma 3, #We(BM) ∩ Zd is
polynomially bounded in the input. Also, the arithmetic in Heuristic 1 is polynomial
in n and the binary encoding of ak.

Tabu search was first presented in [Glover 1986] and has been widely used in
combinatorial optimization. It begins at base B ∈ BM and pivots to an adjacent
base B′ if it is smaller than some other adjacent base, through f and the weighting

Journal of the ACM, Vol. , No. , 20.

8 · De Loera, Haws, Lee and O’Hair

W . This differs from Heuristic 1 in that we allow pivots that are not necessarily
smaller than the current base, through f and the weighting W . We record the
smallest value f(We(B)) encountered and terminate after L pivots with no update
to the minimum encountered. As for Heuristic 1, for the majority of our experi-
ments f is concave or convex. We emphasize that Heuristic 2 is not guaranteed to
terminate at the optimum.

Heuristic 2 (Tabu Search)

TS(M, B, W, L)
Input: Matroid M on [n], B ∈ BM, W ∈ Rd×n, L ∈ N.
Output: B′ ∈ BM s.t. f(We(B′)) ≤ f(We(B̃)) for all bases and neighbors B̃

for L pivots.
begin

B′ := B
VIS := {B}
CURMIN := f(We(B′))
repeat

if f(We(B̃)) < f(We(B̂)) for some B̃, B̂ ∈ Adj(B′) \ VIS then
VIS := VIS ∪{B̃}
B′ := B̃

end
if f(We(B′)) < CURMIN then

CURMIN := f(We(B′))
end
return B′

until L pivots with CURMIN unchanged ;
end

Heuristic 2 can also be modified such that we mark We(B) as visited, not B, and
only pivot to B such that We(B) is unvisited. In this way, we could also prove that
the running time of the modified algorithm is polynomial in the input, given the
same restrictions for Lemma 5. Though, restricting to visiting new We(B) could
limit the possibilities of quickly converging to the optimum though.

We observed through our computational experiments that Heuristic 1 and Heuris-
tic 2 work very well when optimizing concave or convex functions f over projected
matroid polytopes as we will show in Section 4. However, when f is arbitrary then
the previous algorithms may not perform well.

2.2 Listing Heuristics

In the remainder of the present section, we describe algorithms and heuristics aimed
at tackling problems with an arbitrary function f or using Pareto or minmax op-
timization. For maximum generality, the following algorithms do not explicitly
evaluate f but are presented as listing algorithms. Note that if we have all of the
projected matroid bases We(BM), then it is simple to extract the Pareto optima
through a straight forward pairwise comparison. Likewise for optimizing f or with
a min-max objective, we simply evaluate over all projected bases found as we go
through them. This is the same methodology as [Berstein et al. 2009] where the
Journal of the ACM, Vol. , No. , 20.

Computation in Multicriteria Matroid Optimization · 9

authors prove efficient deterministic algorithms, given sufficient conditions on the
input, to list all projected bases. Efficiency follows due to assumptions on the input,
i.e. d is fixed and W is a generalized unary encoded matrix.

In [Berstein et al. 2009], the authors used matroid intersections to solve the
problem: Given x ∈ Rd find B ∈ BM such that We(B) = x if such a B exists.
Guided by the success of our previous heuristics, we had the idea of using either
Heuristic 2 or Heuristic 1 to find a B ∈ BM such that We(B) = x. The novelty of
our heuristic is that we use convex optimization as a subroutine to solve nonlinear
and Pareto optimization problems.

Given an x′ ∈ Zd, Heuristic 3 forms a convex function fx′ that is minimized at
x′ and fx′(x′) = 0. Our heuristic calls Heuristic 1 or Heuristic 2 with the function
fx′ and if it returns a base B ∈ BM such that fx′(We(B)) = 0 then We(B) = x.

Heuristic 3 (Pivot Test)

PT (M, B, W, t, S)
Input: Matroid M on n elements, B ∈ BM, W ∈ Rd×n, t ∈ N, finite set

S ⊆ Zd.
Output: PT ⊆ BM such that {We(B) | B ∈ PT } ⊆ S.
begin

PT := ∅
for each x′ ∈ S do

fx′(x) :=
∑d

i=1(xi − x′i)
2

for 1, . . . , t do
B′ := random base of M
B := LS(M,W, fx′ , B′) (Or use Heuristic 2)
if fx′(We(B)) = 0 then

PT := PT ∪{B}
Break for loop

end
end

end
return PT

end

Lemma 6. Let d and p be fixed, M a matroid on [n] given by an independence
oracle, a generalized unary encoded matrix W := ((Wi,j)) =

∑p
k=1 akW k ∈ Zd×n,

and a finite set S ⊂ Zd. Heuristic 3 takes in as input M , W , S and in time
polynomial in n, t, the size of S, and the length of the generalized unary encoding
of W outputs PT ⊆ BM such that {We(B) | B ∈ PT } ⊆ S.

Proof. This follows from the fact that Heuristic 1 and Heuristic 2 are polyno-
mial under these assumptions. Moreover, we call Heuristic 1 or Heuristic 2 at most
t|S| times.

Typically we wish to use Heuristic 3 to try to enumerate a subset of WPM. Thus,
if we further assume W is unary encoded, then the smallest box containing WPM
is polynomial which we use as our input S in Heuristic 3.

Journal of the ACM, Vol. , No. , 20.

10 · De Loera, Haws, Lee and O’Hair

For general nonlinear multi-criteria matroid optimization problems, when the
function f we are minimizing is concave, then some optimum will be a vertex of
WPM. Thus, in such a case, it is sufficient to enumerate the vertices of WPM and
test f over those points. Furthermore, the vertices are also Pareto optimal, but in
general, the vertices are not all of the Pareto optima. Later we will give an algo-
rithm that uses the vertices of We(BM) to facilitate finding other Pareto optima.
In [Okamoto and Uno 2007] the authors develop an output-sensitive polynomial
time algorithm using the well-known Avis-Fukuda’s reverse search algorithm which
outputs all bases which project to the vertices of WPM. We will prove that the
following algorithm will enumerate all vertices of WPM and possibly other integral
points on the boundary of WPM. The following algorithm not only finds all the
vertices, but also finds a base which projects to each vertex. Algorithm 4 starts at
a base B ∈ BM such that We(B) is on the boundary of WPM. If B′ ∈ Adj(B),
We(B′) is a newly seen point and is on the boundary of WPM, then we record B′

and We(B′), pivot to B′, and continue.
Algorithm 4 (Projected Boundary)

Input: Matroid M on n elements, W ∈ Rd×n, B ∈ BM such that We(B) is
an extreme point of WPM.

Output: CH ⊆ BM such that {We(B) | B ∈ CH } ⊇ vert(WPM).
begin

CH := {B′}
Mark B′ as unvisited in CH
PB := {We(B′)}
repeat

B′ := first unvisited base in CH
Mark B′ as visited.
for B̂ ∈ Adj(B′) do

if We(B̂) is an extreme point of WPM then
if We(B̂) /∈ PB then

CH := CH ∪ {B̂} Mark B̂ as unvisited. PB := PB ∪{We(B̂)}
end

end
end

until PB unchanged. ;
return CH

end

In Section 4 we will show that Algorithm 4 works well. Empirical observations
seem to suggest this because the projected bases are highly clustered and with much
fewer projected bases near the boundary of WPM. To see how large the pre-image
of x via W can be, for x ∈ Rd, see Figure 1 in [Gunnels et al. 2008]. The following
lemma proves that the output of Algorithm 4 will contain all vertices of the convex
hull of We(BM).

Lemma 7. Let M be a matroid on [n], W ∈ Rd×n, B ∈ BM such that We(B)
is an extreme point of WPM. Then
Journal of the ACM, Vol. , No. , 20.

Computation in Multicriteria Matroid Optimization · 11

vert(WPM) ⊆ W (PB(M,W, B)) ⊆ (We(BM) ∩ ∂WPM).

Proof. Let B′, B̂ ∈ BM where We(B′) is an extreme point and We(B̂) is a
vertex of WPM. Moreover let We(B′) and We(B̂) be on a 1-face F of WPM.
By Corollary 1 there exists B′′ ∈ Adj(B′) such that either We(B′′) = We(B̂) or
We(B′′) is a positive convex combination of We(B′) and We(B̂), i.e. We(B′′) ∈ F .
Thus We(B′′) is extreme and Algorithm 4 can always pivot towards every vertex
of WPM and will output all vertices of WPM.

B′ B̂B′′

F

Fig. 1. A pivot from B′ to B′′ towards bB in Algorithm 4.

In [Onn 2003], it was shown that the number of vertices of WPM is polynomially
bounded when then number of weightings d is fixed (see Proposition 2.1 and Lemma
2.3). Moreover the author showed that the vertices of WPM can be found in
polynomial time. A similar result can be found in [Berstein et al. 2009]. Algorithm
4 can (and does in practice) pick up non-vertex integral boundary points. Hence,
a bound on the number of vertices is not sufficient to guarantee efficiency of the
algorithm.

Lemma 8. Let d and p be fixed, M a matroid on [n] given by an independence
oracle, and a generalized unary encoded matrix W := ((Wi,j)) =

∑p
k=1 akW k ∈

Zd×n. Algorithm 4 takes in as input M , W , B ∈ BM such that We(B) is an
extreme point of WPM, and runs in time polynomial in n, and the length of the
generalized unary encoding of W outputs CH ⊆ BM such that {We(B) | B ∈ CH } ⊇
vert(WPM).

Proof. Because #We(BM) ∩ Zd is polynomially bounded and #Adj(B) ≤ n2

we only have to show that deciding if We(B̃) is an extreme point of WPM is
polynomial in the input. This is equivalent to deciding if cone{We(B)−We(B̃) |
B ∈ Adj(B̃) } is pointed. We can decide this by solving the feasibility problem:{

x,−x ∈ cone{We(B)−We(B̃) | B ∈ Adj(B̃) } | x > 0
}

We will show in Section 4 the effectiveness of Heuristic 3 (PT) in enumerating
all projected bases. When finding Pareto optima though it is not necessary to
enumerate all projected bases. The following heuristic combines Algorithm 4 and
Heuristic 3 to find a set of points which could be Pareto optima of We(BM), and

Journal of the ACM, Vol. , No. , 20.

12 · De Loera, Haws, Lee and O’Hair

hence could be a min-max optimum of We(BM). The main idea is that if we have
the boundary points, then the regions where other Pareto optima lay is determined
by the convex hulls of points derived from a triangulation of the boundary.

Heuristic 5 (Boundary and Triangular Region Pareto Test)

BTRPT (M,W, t)
Input: Matroid M on n elements, W ∈ Rd×n, t ∈ N.
Output: PO ⊆ BM, Pareto optima of Heuristic 4 (PB) and Heuristic 3 (PT)

on certain convex regions.
begin

PO := PB(M,W)
for B ∈ PO do

for B′ ∈ PO \B do
if We(B′) ≥Pareto We(B) then

PO := PO \B′

end
end

end
PPO := WPO projected on the hyperplane H := {x |

∑
xi = 1 }.

Triangulate PPO.
for each facet F of PPO do

TRIPOINTS := {Bases in PO corresponding to vertices of F}
for i = 1, . . . d do

Xmax
i := max((We(B))i | B ∈ TRIPOINTS)

end
PO := PT (M, B, W, t, conv(TRIPOINTS ∪ Xmax)) ∪ PO

end
for B ∈ PO do

for B′ ∈ PO \B do
if We(B′) ≥Pareto We(B) then

PO := PO \B′

end
end

end
return PO

end

Except for the boundary points, Heuristic 5 is not guaranteed to return points
that are Pareto optima because Heuristic 3 (PT) may miss some projected bases
in the test regions.

Motivated by the need of optimizing any function f and exploring all Pareto or
minmax optima, we devised a variation of the breadth-first search algorithm that
would limit the search to some depth of the tree. Our intuition is that the graph
of base exchanges is highly connected, thus small depth is all that is necessary for
listing a large proportion, as we will see in Section 4, of all projected bases:
Journal of the ACM, Vol. , No. , 20.

Computation in Multicriteria Matroid Optimization · 13

Boundary Points

3 (Pivot Test) regions

Fig. 2. Pareto optima boundary points and blue regions where other Pareto optima may lay.

Heuristic 6 (Different Fiber BFS)

DFBFS(M,W, B, d, l, PB)
Input: Matroid M on n elements, W ∈ Rd×n, B ∈ BM, d, l ∈ N, PB

⊆ We(BM).
Output: DFBFS ⊆ {We(B) | B ∈ BM }, an approximation of all projected

bases WPM
begin

if l ≥ d then
return ∅

end
PB := PB ∪{We(B)}
PTT := ∅
for each B′ ∈ Adj(B) do

if We(B′) /∈ PB then
if We(B′) 6= We(B) then

PB := PB ∪We(B′)
PTT := PTT ∪B′

end
end

end
for each B′ ∈ PTT do

PB := PB ∪DFBFS(M,W, B′, d, l + 1, PB).
end
return PB

end

Heuristic 6 begins at a base B ∈ BM. It adds the projected point We(B) to the
set PB, short for projected bases. It then enumerates all adjacent bases Adj(B) of
B. If a neighbor B′’s projected point We(B′) /∈ PB and We(B) 6= WeB′ , then we
add We(B′) to PB and recursively call DFBFS on B′. We allow a parameter d

Journal of the ACM, Vol. , No. , 20.

14 · De Loera, Haws, Lee and O’Hair

which determines the recursive depth allowed. Heuristic 6 takes its name, different
fiber breadth-first-search, from the fact that we do not allow pivots that evaluate
the same under the weighting W . As a small consequence, this guarantees that the
number of times DFBFS is called is bounded by #We(BM) a useful fact if the
input is bounded as in Lemma 3.

3. SOFTWARE IMPLEMENTATION

Our heuristics are implemented in C++ and take advantage of the object-oriented
paradigm. The software MOCHA1 [De Loera et al. 2009] reads in either a vecto-
rial matroid, represented by an m × n floating-point matrix or a graphic matroid,
represented by an n × n adjacency matrix. The weightings are read in as a d × n
floating point matrix.

For vectorial matroids, the rank of a subset of columns is computed using LA-
PACK ([Anderson et al. 1999]), a standard and robust linear algebra package. For
vectorial matroids with elements in Z, our software has the option of using the GMP
arbitrary-precision software ([Granlund and et al. 2009]) to perform Gaussian elim-
ination using exact arithmetic. Enumeration of the neighbors of a base B is done
by calculating the rank of B\i∪ j for all i ∈ B and j ∈ [n]\B. If it is full rank then
it is returned as a neighboring base. Random bases are determined by randomly
choosing a rank(M) sized subset A ⊆ [n] and checking if rank(A) = rank(M),
repeating until such an A is found.

For graphic matroids, the rank of the matroid, and any A ⊆ [n], is determined by
calculating the size of a spanning forest by breadth-first-search. To enumerate the
neighbors of B ∈ BM, we first calculate all paths in B using dynamic programming.
Adding any element (edge) j /∈ B to B will create a cycle C. We use our pre-
calculation of all paths of B to quickly determine C. Then all subsets B\i ∪ j
where i ∈ C will be an adjacent base to B. This is not the most efficient method
for adjacency enumeration with respect to a graphic matroid, but it is straight
forward and good enough.

The Projected Boundary algorithm (Algorithm 4) is only implemented for d = 2.
This is due to the computational expense of determining if We(B̂) is an extreme
point of WPM on line 8. When d = 2 this is easy to check by sorting the vectors
We(B̂) − We(B) with respect to their angle to the positive x-axis, where B̂ is a
neighbor of B. If there exists two sorted vectors with angle larger than π then
We(B̂) is extreme, due to Corollary 2.

For correctness, we compare the number of projected spanning trees found using
our methods versus the actual total number of projected spanning trees. We used
an algorithm for generating all of the spanning trees in undirected graphs presented
by Matsui (see [Matsui 1997]). The algorithm requires O(n + m + τn) time when
the given graph has n vertices, m edges, and τ spanning trees. For outputting all
of the spanning trees explicitly, this time complexity is optimal. We also imple-
mented the asymptotic 0\1 polytope vertex-estimation presented in [Barvinok and
Samorodnitsky 2007]. This gives us the ability to estimate the number of bases
of matroid polytopes in order to better understand the ratio of bases to projected
bases for problems where full enumeration is intractable.

1Matroid Optimization: Combinatorial Heuristics and Algorithms

Journal of the ACM, Vol. , No. , 20.

Computation in Multicriteria Matroid Optimization · 15

4. COMPUTATIONAL RESULTS

Now we present our experiments. We performed many more experiments as pre-
sented here but for compactness and space limitation we present the full collection
at [De Loera et al. 2009]. In the experiments we used six roughly comparable
machines (see Table XVII). Heuristic 1 uses the pivot rule that f(We(B̃)) <

f(We(B′)) for all B̃ ∈ Adj(B′) in line 4. Heuristic 2 uses the pivot rule that
f(We(B̃)) < f(We(B̂)) for all B̃, B̂ ∈ Adj(B′) \ VIS in line 5.

4.1 Calibration Set

Table II. Calibration Graphs

N
a
m

e

N
o
d
es

E
d
g
es

#
S
p
a
n
n
in

g
T
re

es

gn10e22 10 22 53, 357
gn10e28 10 28 800, 948
gn10e33 10 33 3, 584, 016
gn11e41 11 41 90, 922, 271
gn13e39 13 39 131, 807, 934

Our first goal was to perform experiments on matroids for which we can compute
all bases in order to better understand our heuristics and algorithms. We generated
five connected random graphs: gn10e22, gn10e28, gn10e33, gn11e41, gn13e39 (see
II) which we will refer to as our calibration set. We consider two, three and five
criteria, i.e. number of weightings. We further consider three different ranges of
integral weights for each criterion. For the calibration set we adopt the following
nomenclature

gn[#nodes]e[#edges]d[#criteria]w[low weight]w[high weight]

where we generated random integral weightings between [low weight] and [high
weight]. First we simply compare the number of spanning trees of our calibration
set to the number of projected spanning trees.

—Table III shows the calibration set with two, three, and five weightings (criteria)
and various integral weights.

We give the exact number of projected spanning trees and compare versus the exact
number of spanning trees. We also generated ten additional graphs and generated
complete tables for all fifteen graphs which can be found at [De Loera et al. 2009].

4.1.1 Calibration Set - Heuristic 6. There are four parameters to our imple-
mentation of Heuristic 6 (DFBFS): number of searches N , BFS depth, boundary
retry limit and random retry limit. First we attempt to find a new boundary pro-
jected base using Heuristic 1 (Local Search) and a random direction. For every
new projected base, we run Heuristic 6 (DFBFS) with the given depth parameter.

Journal of the ACM, Vol. , No. , 20.

16 · De Loera, Haws, Lee and O’Hair

We attempt to find N new boundary projected bases and give up if we exceed the
boundary retry limit. Next our algorithm will generate a random base and project
it by the weighting. If it is a new projected base we run Heuristic 6 (DFBFS) with
the given depth parameter. We attempt to find N new random projected bases and
give up if we exceed the random retry limit.

—Table IV shows Heuristic 6 (DFBFS) on the calibration set in two, three, and
five criteria.

We list the machine used, seconds required, number of searches, BFS depth, bound-
ary retry limit and the random retry limit. We noticed a decrease in the ratio of
projected trees found to all projected trees as the dimension and weights increased.
It is also important to note, as seen in Table III, as the dimension and weights
increase, the ratio of all projected trees to all spanning trees increases.

In our experiments, in almost all cases, Heuristic 6 (DFBFS) terminated by
exceeding the boundary and random retry limit and not the number of searches.
This can be attributed to the phenomenon where most bases are projected in a
relatively tight area, with few projected bases near the boundary. Other conditions
for picking the initial base for Heuristic 6 (DFBFS) could yield better results.
For example, keeping a random leaf of the previous truncated BFS. Or we could
compute the boundary of the projected bases and attempt to find a new initial base
using Heuristic 3 (PT) on the “holes” in the convex hull.

Fig. 3. 96.18% projected bases of gn11e41d2w0w100 using Heuristic 6 (DFBFS)

Journal of the ACM, Vol. , No. , 20.

Computation in Multicriteria Matroid Optimization · 17

4.1.2 Calibration Set - Heuristic 3. Our implementation of Heuristic 3 (PT)
uses Heuristic 1 (LS) with the 2d directions {±ei | i ∈ {1, . . . , d} } to compute a
bounding box containing all projected base.

—Table V shows the result of Heuristic 3 (PT) on our calibration test set with two
criteria and weights 0−20 and 0−100 using Heuristic 1 (LS) as our test method
subroutine. We give the percentage of projected trees found versus all projected
trees. Naturally with larger weight values, the projected trees will be contained
in a larger box, requiring more time.

—Table VI shows the result of Heuristic 3 (PT) on our calibration test set with two
criteria and weights 0−20 using Heuristic 2 (TS) as our test method subroutine.
The run times using Heuristic 2 (TS) are longer than Heuristic 1 (LS), but we
find nearly all the projected trees.

Heuristic 3 (PT) has two major advantages;

—Heuristic 3 uses very little memory since Heuristic 2 (TS) and Heuristic 1 (LS)
use little memory;

—Heuristic 3 can be distributed since one can partition up test regions and run
each region as a separate instance.

4.1.3 Calibration Set - Algorithm 4. Table VIII shows the number of projected
spanning trees found on the boundary using Algorithm 4 (PB). All computations
took less than one second. To find a starting base, Algorithm 4 (PB) generates a
random direction and calls Heuristic 1 (LS). It is interesting to note that the graph
gn13e39d2w0w1000 has 15, 037, 589 projected spanning trees, yet there are only 26
points found by Algorithm 4 (PB).

4.1.4 Calibration Set - Heuristic 5. Table IX shows the results of Heuristic 5
(BTRPT) on the calibration set with weightings 0−20 and 0−100 in two criteria.
We use Heuristic 2 (TS) as our subroutine in Heuristic 3 (PT). We give the
seconds, the exact number of Pareto optima and the number of Pareto optima
found. Heuristic 5 (BTRPT) not only found the correct number of Pareto optima,
it found the correct Pareto optima in all cases. Heuristic 5 (BTRPT) can be
distributed: once the boundary is computed and the regions are found, Heuristic 3
(PT) can be run as separate instances for each region (or subdivided further).

4.1.5 Calibration - Local and Tabu Search For Convex Minimization. For our
experiments of Heuristic 1 (LS) and Heuristic 2 (TS) on the calibration set we
minimized over the convex function (x − x̂)2. First we choose x̂ ∈ We(BM) such
that it is an interior point of WPM. Second we consider x̂ to be a rational non-
integer point which is an interior point of WPM. For the integral case, we can
easily detect if we are at the minimum because our objective will evaluate to zero if
so. For the rational case, we verify the global minimum by evaluating our objective
on all projected spanning trees. For all tests we perform 1000 minimizations with
random starts and record the number of successes.

—Table X show Heuristic 1 (LS) where the minimum is the integer point described
above minimizing (x− x̂)2.

Journal of the ACM, Vol. , No. , 20.

18 · De Loera, Haws, Lee and O’Hair

Fig. 4. Green Pareto optima and blue test regions of gn11e41d2w0w100 using Heuristic 5
(BTRPT)

—Table XII show Heuristic 1 (LS) where the minimum is the rational point de-
scribed above minimizing (x− x̂)2.

—Table XI show Heuristic 2 (TS) where the minimum is the integer point described
above minimizing (x− x̂)2.

—Table XIII show Heuristic 2 (TS) where the minimum is the rational point de-
scribed above minimizing (x− x̂)2.

We first observe that the success of Heuristic 1 (LS) and Heuristic 2 (TS) de-
creases as the proportion of projected spanning trees to all spanning trees increases.
Second, for Heuristic 2 (TS) we see a noticeable increase in the number of successes
as the Tabu Limit ranges from 1 to 100 indicating that in many cases, a low Tabu
Limit is sufficient to reach the global minimum.

4.1.6 Calibration Set - Non-convex Optimization. We emphasize that Heuristic
6 (DFBFS) and Heuristic 3 (Pivot Test) do not rely on any particular objective
being optimized and we propose that their effectiveness be gauged by how many
projected bases they find. For completeness though, we minimize the following
Journal of the ACM, Vol. , No. , 20.

Computation in Multicriteria Matroid Optimization · 19

three non-convex functions:

f(x, y) = x sin(3y2 + x3) + x2y3 +
1

(xy − 3)2 + 1
,

g(x, y, z) = xy2 cos2(xy − z3) + 3x− 2y + z2 +
1

(2x3 − 3y − z)2 + 1
,

h(u, v, x, y, z) = uv sin(x) cos(y2) cos(
1

z2 + 1
)− x3z2 − u2y + 2vx.

Table VII shows the minimal value of the three functions f , h, g, (applied to the
problems of appropriate dimension) over all projected bases and those found by
Heuristic 6 (DFBFS), Heuristic 3 (Pivot Test) using Local Search, and Heuristic 3
(Pivot Test) using Tabu Search. Table VII only shows minimal values for Heuristic
3 for the data computed in Table V and VI (which was limited due to running
times).

4.2 Pushing the Limits

4.2.1 Sparse Graphs - Solids. We now compare sparse graphs versus the dense
graphs presented in the calibration set. We chose fifteen planar graphs of the 1-
skeleton of three-dimensional polytopes. Table XIV shows the result of Heuristic 6
(DFBFS) on these examples. For some of these graphs, the number of spanning
trees can be explicitly enumerated, hence we give the exact number of projected
spanning trees. When the weights take value from 0 − 1000 we omit the last five
graphs as DFBFS exceeded over a day of computation or the machines (Fuzzy,
Truth) ran out of memory.

4.2.2 Experimental Design. In [Berstein et al. 2008], the authors first proposed
using nonlinear matroid optimization to solve the statistical experimental design
problem (also see [Fries and Hunter 1980]). The experimental design problem can
be briefly described as attempting to learn an unknown system whose output y is
an unknown function Φ with input x = (x1, . . . , xk) ∈ Rk. To learn the system,
experiments are performed using input pi = (pi,1, . . . , pi,k) and the output yi =
Φ(pi) is measured. Then, based on the experiments we wish to fit a model for the
system, that is, determine an estimation Φ̂ of the function Φ such that it: lies in
a prescribed class of functions, is consistent with the outcomes of the experiments,
and minimizes the aberration (some suitable criteria) among models in the class.

A deterministic polynomial time algorithm was established in [Berstein et al.
2008] which solves nonlinear matroid optimization over arbitrary matroids (pre-
sented by an independence oracle) when the number of weightings d is fixed and
the weights, though binary encoded input, take on only a fixed number p of dis-
tinct values. For matroids on n elements, their algorithm uses the ordinary matroid
intersection algorithm npd

times, which is polynomial in the input.
For vectorial matroids, they provide a different algorithm, which has polynomial

complexity when the weights are encoded in unary. If ω is the size of the maxi-
mum unary encoded element of the weights, then this algorithm requires solving
a (rank(M)ω + 1)d × (rank(M)ω + 1)d Vandemonde system of linear equations.
This nonlinear vectorial-matroid optimization algorithm has been implemented on
IBM’s Blue Gene/P supercomputer (see [Gunnels et al. 2008]). We present now two

Journal of the ACM, Vol. , No. , 20.

20 · De Loera, Haws, Lee and O’Hair

instances P20 and P28 which were solved using the deterministic vectorial-matroid
algorithm on said supercomputer. Each is an instance of an experimental design
problem encoded as a nonlinear vectorial-matroid optimization program. Both their
exact algorithm and our heuristics (Heuristic 6 and Heuristic 3) do not optimize
a particular objective function, but instead list the projected bases (note that our
heuristic is not guaranteed to find all projected bases).

Table XV shows the size of the instances P20 and P28, the true number of pro-
jected bases and the number of seconds required by the exact algorithm (on the
Blue Gene/P supercomputer) to find the projected bases. We also show two runs
of Heuristic 6 (DFBFS) using Fuzzy with the number of projected bases found
and seconds required. What is noteworthy is that Heuristic 6 found all the pro-
jected bases in at least one of the two runs. Moreover, the other runs of Heuristic
6 found nearly all the projected bases. This demonstrates that our heuristics are
useful when solving these difficult problems, especially in light of the fact that they
were computed using a modest computer system. An additional point is that the
deterministic vectorial-matroid algorithm requires extremely-high precision in or-
der to solve the large Vandemonde systems derived from the matroid optimization
problem. On the other hand, our heuristics only depend numerically on solving at
most rank(M) × rank(M) linear systems. In fact, our software has an option to
use exact arithmetic, albeit with a slow down in solution times. We emphasize the
drastic difference in running times and computational power between Blue Gene/P
and Fuzzy.

In Table XVI we show the result of Heuristic 3 (PT) on P20. We divided the re-
gion of feasible projected bases into twelve disjoint regions and ran twelve instances
of Heuristic 3 (PT) concurrently. We report the times and the number of projected
bases found for each region. We also give the total number of projected bases
found, which is the exact number of projected bases. For the search in Heuristic 3
(PT) we used Heuristic 2 (TS) 10 times on each point with a retry limit of 20. We
performed this experiment to exhibit the effectiveness and ease by which Heuristic
3 can be distributed.

4.3 Discussion

Nonlinear matroid optimization problems are very difficult. They are NP-complete
in general and provably exponential in some cases (see [Berstein et al. 2008]). Our
goal was to present and explore the practicality of new heuristics and algorithms
for solving these problems. The effectiveness of our new techniques rely on two
important properties: (i) the nice local adjacency structure of matroids, and that
(ii) although a matroid may have exponentially many bases, under suitable as-
sumptions on the encoding of the weightings, the number of projected bases can be
manageable.

The fact that many of our heuristics are not guaranteed to find the optimal
solution or list all the projected bases is countered by the fact that they are not
overly complex and very fast. For instance, Heuristic 6 (DFBFS) is not guaranteed
to find all of the projected bases, but in many of the tests it found a very large
portion of them. In practice, as seen in Subsection 4.2.2, because Heuristic 6
(DFBFS) finds a very large portion of the projected bases, simply running the
heuristic several times and unioning the results is extremely effective.
Journal of the ACM, Vol. , No. , 20.

Computation in Multicriteria Matroid Optimization · 21

Most all of our heuristics and algorithms complement each other. For example,
we can start by finding the vertices using Algorithm 4 (PB) then enumerate as
many projected bases as possible using Heuristic 6 (DFBFS). Next we can run
Heuristic 3 (PT) on any regions we suspect there to be more projected bases.

Although we do not formally establish it, our heuristics and algorithms use min-
imal memory. In particular, all of our heuristics and algorithms enumerate neigh-
boring bases, which is quadratic in the number of elements of the matroid. The
biggest memory usage is Heuristic 6 (DFBFS), which at worst stores all the pro-
jected bases found thus far.

This leads to the ease by which Heuristic 3 (PT) could be distributed. In fact, the
only overhead would be combining the solutions, which would be a simple union.
Ideally, if we had X machines with Y processors, we could first find a box containing
the potential projected bases using 2n linear programs via Heuristic 1 (LS). Next,
we could partition the region of potential projected bases into XY regions and run
an instance of Heuristic 3 (PT) for each.

4.4 Tables

Journal of the ACM, Vol. , No. , 20.

22 · De Loera, Haws, Lee and O’Hair

Table III. Calibration test set: Exact #spanning trees vs. #projected spanning trees in 2, 3, and
5 criteria.

N
a
m

e

D
im

en
si

o
n

W
ei

g
h
t

R
a
n
g
e

#
P

ro
je

ct
ed

T
re

es

P
er

ce
n
ta

g
e

o
f

#
P

ro
je

ct
ed

T
re

es
o
u
t

o
f

#
S
p
a
n
n
in

g
T
re

es

gn10e22d2w0w20 2 0− 20 3, 957 07.42%
gn10e28d2w0w20 2 0− 20 7, 131 00.89%
gn10e33d2w0w20 2 0− 20 10, 833 00.30%
gn11e41d2w0w20 2 0− 20 16, 457 00.02%
gn13e39d2w0w20 2 0− 20 18, 468 00.01%

gn10e22d2w0w100 2 0− 100 37, 204 69.73%
gn10e28d2w0w100 2 0− 100 101, 334 12.65%
gn10e33d2w0w100 2 0− 100 166, 427 04.64%
gn11e41d2w0w100 2 0− 100 309, 961 00.34%
gn13e39d2w0w100 2 0− 100 315, 881 00.24%

gn10e22d2w0w1000 2 0− 1000 52, 990 99.31%
gn10e28d2w0w1000 2 0− 1000 756, 013 94.39%
gn10e33d2w0w1000 2 0− 1000 2, 726, 287 76.07%
gn11e41d2w0w1000 2 0− 1000 13, 884, 793 15.27%
gn13e39d2w0w1000 2 0− 1000 15, 037, 589 11.41%

gn10e22d3w0w20 3 0− 20 42, 887 80.38%
gn10e28d3w0w20 3 0− 20 238, 529 29.78%
gn10e33d3w0w20 3 0− 20 411, 730 11.49%
gn11e41d3w0w20 3 0− 20 959, 469 01.06%
gn13e39d3w0w20 3 0− 20 930, 322 00.71%

gn10e22d3w0w100 3 0− 100 53, 289 99.87%
gn10e28d3w0w100 3 0− 100 786, 781 98.23%
gn10e33d3w0w100 3 0− 100 3, 351, 096 93.01%
gn11e41d3w0w100 3 0− 100 35, 943, 327 39.53%
gn13e39d3w0w100 3 0− 100 44, 757, 592 33.96%

gn10e22d3w0w1000 3 0− 1000 53, 357 100.00%
gn10e28d3w0w1000 3 0− 1000 800, 946 99.99%
gn10e33d3w0w1000 3 0− 1000 3, 583, 757 99.99%
gn11e41d3w0w1000 3 0− 1000 90, 699, 181 99.75%
gn13e39d3w0w1000 3 0− 1000 131, 464, 478 99.74%

gn10e22d5w0w1 5 0− 1 4, 746 8.89%
gn10e28d5w0w1 5 0− 1 10, 898 1.36%
gn10e33d5w0w1 5 0− 1 15, 482 0.43%
gn11e41d5w0w1 5 0− 1 36, 847 0.04%
gn13e39d5w0w1 5 0− 1 34, 392 0.03%

gn10e22d5w0w2 5 0− 2 14, 623 27.41%
gn10e28d5w0w2 5 0− 2 66, 190 8.26%
gn10e33d5w0w2 5 0− 2 105, 309 2.94%
gn11e41d5w0w2 5 0− 2 290, 555 0.32%
gn13e39d5w0w2 5 0− 2 348, 703 0.26%

gn10e22d5w0w5 5 0− 5 49, 463 92.70%
gn10e28d5w0w5 5 0− 5 493, 565 61.62%
gn10e33d5w0w5 5 0− 5 1, 294, 875 36.13%
gn11e41d5w0w5 5 0− 5 4, 711, 354 5.18%
gn13e39d5w0w5 5 0− 5 7, 737, 684 5.87%

Journal of the ACM, Vol. , No. , 20.

Computation in Multicriteria Matroid Optimization · 23

Table IV. Calibration test set: Heuristic 6 (DFBFS) vs. exact # of projected spanning trees in
2, 3, and 5 criteria. We tried 100 searches, depth 4, boundary retry limit 100 and interior retry
limit of 10000.

N
a
m

e

D
im

en
si

o
n

W
ei

g
h
t

R
a
n
g
e

C
o
m

p
u
te

r

S
ec

o
n
d
s

#
T
re

es
F
o
u
n
d

b
y

D
F
B

F
S

P
er

ce
n
ta

g
e

o
f

#
T
re

es
F
o
u
n
d

o
u
t

o
f

#
P

ro
je

ct
ed

T
re

es

gn10e22d2w0w20 2 0− 20 Fuzzy 0 3, 852 97.34%
gn10e28d2w0w20 2 0− 20 Fuzzy 2 7, 074 99.20%
gn10e33d2w0w20 2 0− 20 Fuzzy 2 10, 734 99.08%
gn11e41d2w0w20 2 0− 20 Fuzzy 4 16, 262 98.81%
gn13e39d2w0w20 2 0− 20 Fuzzy 5 18, 330 99.25%

gn10e22d2w0w100 2 0− 100 Fuzzy 3 35, 581 95.63%
gn10e28d2w0w100 2 0− 100 Fuzzy 8 95, 313 94.05%
gn10e33d2w0w100 2 0− 100 Fuzzy 14 157, 685 94.74%
gn11e41d2w0w100 2 0− 100 Fuzzy 32 298, 150 96.18%
gn13e39d2w0w100 2 0− 100 Fuzzy 37 301, 567 95.46%

gn10e22d2w0w1000 2 0− 1000 Fuzzy 5 51, 782 97.72%
gn10e28d2w0w1000 2 0− 1000 Fuzzy 46 659, 761 87.26%
gn10e33d2w0w1000 2 0− 1000 Fuzzy 90 1, 628, 981 59.75%
gn11e41d2w0w1000 2 0− 1000 Fuzzy 455 7092, 823 51.08%
gn13e39d2w0w1000 2 0− 1000 Fuzzy 825 10, 260, 810 68.23%

gn10e22d3w0w20 3 0− 20 Fuzzy 4 41, 649 97.11%
gn10e28d3w0w20 3 0− 20 Fuzzy 19 217, 444 91.16%
gn10e33d3w0w20 3 0− 20 Fuzzy 36 374, 110 90.86%
gn11e41d3w0w20 3 0− 20 Fuzzy 97 876, 488 91.35%
gn13e39d3w0w20 3 0− 20 Fuzzy 106 872, 397 93.77%

gn10e22d3w0w100 3 0− 100 Fuzzy 4 52, 296 98.13%
gn10e28d3w0w100 3 0− 100 Fuzzy 50 699, 399 88.89%
gn10e33d3w0w100 3 0− 100 Fuzzy 133 2, 095, 143 66.66%
gn11e41d3w0w100 3 0− 100 Fuzzy 801 13, 527, 453 37.14%
gn13e39d3w0w100 3 0− 100 Fuzzy 1777 23, 502, 664 52.27%

gn10e22d3w0w1000 3 0− 1000 Fuzzy 4 51, 592 96.69%
gn10e28d3w0w1000 3 0− 1000 Fuzzy 52 721, 587 90.09%
gn10e33d3w0w1000 3 0− 1000 Fuzzy 135 2, 313, 881 64.56%
gn11e41d3w0w1000 3 0− 1000 Fuzzy 1021 16, 919, 561 18.65%
gn13e39d3w0w1000 3 0− 1000 Fuzzy 2315 34, 603, 989 26.32%

gn10e22d5w0w1 5 0− 1 Fuzzy 1 4, 704 99.12%
gn10e28d5w0w1 5 0− 1 Fuzzy 3 10, 655 97.77%
gn10e33d5w0w1 5 0− 1 Fuzzy 4 15, 235 98.40%
gn11e41d5w0w1 5 0− 1 Fuzzy 14 36, 457 98.94%
gn13e39d5w0w1 5 0− 1 Fuzzy 16 34, 076 99.08%

gn10e22d5w0w2 5 0− 2 Fuzzy 2 14, 205 97.14%
gn10e28d5w0w2 5 0− 2 Fuzzy 8 63, 992 96.68%
gn10e33d5w0w2 5 0− 2 Fuzzy 16 103, 221 98.02%
gn11e41d5w0w2 5 0− 2 Fuzzy 49 281, 519 96.89%
gn13e39d5w0w2 5 0− 2 Fuzzy 64 339, 179 97.27%

gn10e22d5w0w5 5 0− 5 Fuzzy 5 48, 569 98.19%
gn10e28d5w0w5 5 0− 5 Fuzzy 44 460, 744 93.35%
gn10e33d5w0w5 5 0− 5 Fuzzy 114 1, 145, 396 88.46%
gn11e41d5w0w5 5 0− 5 Fuzzy 561 4, 247, 218 90.15%
gn13e39d5w0w5 5 0− 5 Fuzzy 907 6, 800, 052 87.88%

Journal of the ACM, Vol. , No. , 20.

24 · De Loera, Haws, Lee and O’Hair

Table V. Calibration test set: Heuristic 3 (Pivot Test) using Heuristic 1 (Local Search), 10 searches
per point.

N
a
m

e

D
im

en
si

o
n

W
ei

g
h
t

R
a
n
g
e

C
o
m

p
u
te

r

S
ec

o
n
d
s

#
T
re

es
F
o
u
n
d

b
y

P
T

P
er

ce
n
ta

g
e

o
f

#
T
re

es
F
o
u
n
d

o
u
t

o
f

#
P

ro
je

ct
ed

T
re

es

gn10e22d2w0w20 2 0− 20 mocr01 101 3, 318 83.85%
gn10e28d2w0w20 2 0− 20 mocr01 207 6, 163 86.43%
gn10e33d2w0w20 2 0− 20 mocr01 356 8, 842 81.62%
gn11e41d2w0w20 2 0− 20 mocr01 806 14, 747 89.61%
gn13e39d2w0w20 2 0− 20 mocr01 1, 160 15, 082 81.67%

gn10e22d2w0w100 2 0− 100 mocr02 4, 315 5, 249 14.11%
gn10e28d2w0w100 2 0− 100 mocr02 6, 224 8, 236 08.13%
gn10e33d2w0w100 2 0− 100 mocr02 11, 925 19, 247 11.56%
gn11e41d2w0w100 2 0− 100 mocr02 26, 144 29, 373 09.48%
gn13e39d2w0w100 2 0− 100 mocr02 32, 958 38, 530 12.20%

gn10e22d3w0w20 3 0− 20 mocr01 18, 141 8, 564 19.97%
gn10e28d3w0w20 3 0− 20 mocr01 50, 429 39, 819 16.69%
gn10e33d3w0w20 3 0− 20 mocr01 76, 051 47, 606 11.56%
gn11e41d3w0w20 3 0− 20 mocr01 216, 987 120, 142 12.52%
gn13e39d3w0w20 3 0− 20 mocr01 232, 975 126, 044 13.55%

Table VI. Calibration test set: Heuristic 3 (Pivot Test) using Heuristic 2 (Tabu Search), 10 searches
per point, 20 search limit.

N
a
m

e

D
im

en
si

o
n

W
ei

g
h
t

R
a
n
g
e

C
o
m

p
u
te

r

S
ec

o
n
d
s

#
T
re

es
F
o
u
n
d

b
y

D
F
B

F
S

P
er

ce
n
ta

g
e

o
f

#
T
re

es
F
o
u
n
d

o
u
t

o
f

#
P

ro
je

ct
ed

T
re

es

gn10e22d2w0w20 2 0− 20 mocr04 394 3, 878 98.00%
gn10e28d2w0w20 2 0− 20 mocr04 712 7, 085 99.35%
gn10e33d2w0w20 2 0− 20 mocr04 1, 146 10, 739 99.13%
gn11e41d2w0w20 2 0− 20 mocr04 2, 484 16, 379 99.53%
gn13e39d2w0w20 2 0− 20 mocr04 3, 233 18, 316 99.18%

gn10e22d2w0w100 2 0− 100 mocr04 25, 007 20, 976 56.38%
gn10e28d2w0w100 2 0− 100 mocr04 33, 342 50, 722 50.05%
gn10e33d2w0w100 2 0− 100 mocr04 56, 517 82, 275 49.44%
gn11e41d2w0w100 2 0− 100 mocr04 120, 393 188, 619 60.85%
gn13e39d2w0w100 2 0− 100 mocr04 138, 832 197, 263 62.45%

Journal of the ACM, Vol. , No. , 20.

Computation in Multicriteria Matroid Optimization · 25

Table VII. Calibration test set: Minimizing non-convex functions f ,g,h over all feasible points, and
points found by Heuristic 6 (DFBFS), Heuristic 3 (Pivot Test) using Local Search, and Heuristic
3 (Pivot Test) using Tabu Search. Presented are the optimal values (when data is available).

N
a
m

e

F
u
n
ct

io
n

T
ru

e
O

p
ti

m
u
m

H
eu

ri
st

ic
6

(D
F
B

F
S
)

H
eu

ri
st

ic
3

(P
iv

o
t

T
es

t,
L
S
)

H
eu

ri
st

ic
3

(P
iv

o
t
T
es

t,
T

S
)

gn10e22d2w0w20 f 1.82892× 109 1.82892× 109 1.82892× 109 1.82892× 109

gn10e28d2w0w20 f 2.56901× 107 2.56901× 107 2.56901× 107 2.56901× 107

gn10e33d2w0w20 f 2.47646× 108 2.47646× 108 2.47646× 108 2.47646× 108

gn11e41d2w0w20 f 9.11141× 107 9.11141× 107 9.11141× 107 9.11141× 107

gn13e39d2w0w20 f 1.67772× 107 1.67772× 107 1.67772× 107 1.67772× 107

gn10e22d2w0w100 f 2.35746× 1012 2.35746× 1012 2.35746× 1012 2.35746× 1012

gn10e28d2w0w100 f 2.63506× 1012 2.63506× 1012 2.63506× 1012 2.63506× 1012

gn10e33d2w0w100 f 3.98419× 1011 3.98419× 1011 3.98419× 1011 3.98419× 1011

gn11e41d2w0w100 f 1.00562× 1011 1.00562× 1011 1.00562× 1011 1.00562× 1011

gn13e39d2w0w100 f 1.69141× 1012 1.69141× 1012 1.69141× 1012 1.69141× 1012

gn10e22d2w0w1000 f 8.07213× 1016 8.07213× 1016

gn10e28d2w0w1000 f 1.18485× 1016 1.18485× 1016

gn10e33d2w0w1000 f 3.0741× 1016 3.0741× 1016

gn11e41d2w0w1000 f 6.42209× 1016 6.42209× 1016

gn13e39d2w0w1000 f 1.71265× 1017 1.71265× 1017

gn10e22d3w0w20 g 4091.69 4091.69 4091.69
gn10e28d3w0w20 g 3860.38 3860.38 3860.38
gn10e33d3w0w20 g 1817.41 1817.41 1817.41
gn11e41d3w0w20 g 2277.52 2277.52 2277.52
gn13e39d3w0w20 g 1179.44 1179.44 1179.44

gn10e22d3w0w100 g 40100.8 40100.8
gn10e28d3w0w100 g 30284.8 30284.8
gn10e33d3w0w100 g 50521.1 50521.1
gn11e41d3w0w100 g 38975.5 38975.5
gn13e39d3w0w100 g 87875.4 98396.4

gn10e22d3w0w1000 g 4.04314× 106 4.04314× 106

gn10e28d3w0w1000 g 5.63403× 106 5.63403× 106

gn10e33d3w0w1000 g 4.32731× 106 4.32731× 106

gn11e41d3w0w1000 g 6.93761× 106 7.17085× 106

gn13e39d3w0w1000 g 8.96618× 106 8.96618× 106

gn10e22d5w0w1 h −12783.4 −12783.4
gn10e28d5w0w1 h −46634.3 −46634.3
gn10e33d5w0w1 h −41585.1 −41585.1
gn11e41d5w0w1 h −36117.7 −36117.7
gn13e39d5w0w1 h −49281 −49281

gn10e22d5w0w2 h −562722 −562722
gn10e28d5w0w2 h −618422 −618422
gn10e33d5w0w2 h −693793 −693793
gn11e41d5w0w2 h −2.59324× 106 −2.59324× 106

gn13e39d5w0w2 h −3.45193× 106 −3.45193× 106

gn10e22d5w0w5 h −2.47039× 107 −2.47039× 107

gn10e28d5w0w5 h −4.65803× 107 −4.65803× 107

gn10e33d5w0w5 h −4.56097× 107 −4.56097× 107

gn11e41d5w0w5 h −1.07001× 108 −1.07001× 108

gn13e39d5w0w5 h −1.95109× 108 −1.95109× 108

Journal of the ACM, Vol. , No. , 20.

26 · De Loera, Haws, Lee and O’Hair

Table VIII. Calibration test set: Algorithm 4 (Boundary Calculation) with 2 criteria. All times
under 1 second.

N
a
m

e

W
ei

g
h
t

R
a
n
g
e

C
o
m

p
u
te

r

E
x
tr

em
a
l

P
o
in

ts

gn10e22d2w0w20 0− 20 mocr02 35
gn10e28d2w0w20 0− 20 mocr02 33
gn10e33d2w0w20 0− 20 mocr02 10
gn11e41d2w0w20 0− 20 mocr02 38
gn13e39d2w0w20 0− 20 mocr02 52

gn10e22d2w0w100 0− 100 mocr02 26
gn10e28d2w0w100 0− 100 mocr02 31
gn10e33d2w0w100 0− 100 mocr02 37
gn11e41d2w0w100 0− 100 mocr02 41
gn13e39d2w0w100 0− 100 mocr02 42

gn10e22d2w0w1000 0− 1000 mocr02 37
gn10e28d2w0w1000 0− 1000 mocr02 9
gn10e33d2w0w1000 0− 1000 mocr02 21
gn11e41d2w0w1000 0− 1000 mocr02 31
gn13e39d2w0w1000 0− 1000 mocr02 26

Table IX. Calibration test set: Heuristic 5 (Boundary and Triangular Region Pareto Test) with 2
criteria. Internally, Heuristic 3 (PT) used 10 searches per point, 100 pivot limit.

N
a
m

e

W
ei

g
h
t

R
a
n
g
e

C
o
m

p
u
te

r

S
ec

o
n
d
s

#
P
a
re

to
O

p
ti

m
u
m

#
C

o
m

p
u
te

d
P
a
re

to
O

p
ti

m
u
m

P
er

ce
n
t

gn10e22d2w0w20 0− 20 Fuzzy 29 19 19 100.00%
gn10e28d2w0w20 0− 20 Fuzzy 9 10 10 100.00%
gn10e33d2w0w20 0− 20 Fuzzy 59 21 21 100.00%
gn11e41d2w0w20 0− 20 Fuzzy 96 17 17 100.00%
gn13e39d2w0w20 0− 20 Fuzzy 33 19 19 100.00%

gn10e22d2w0w100 0− 100 Fuzzy 1, 286 21 21 100.00%
gn10e28d2w0w100 0− 100 Fuzzy 1, 251 28 28 100.00%
gn10e33d2w0w100 0− 100 Fuzzy 1, 625 23 23 100.00%
gn11e41d2w0w100 0− 100 Fuzzy 2, 472 28 28 100.00%
gn13e39d2w0w100 0− 100 Fuzzy 3, 328 33 33 100.00%

Journal of the ACM, Vol. , No. , 20.

Computation in Multicriteria Matroid Optimization · 27

Table X. Calibration test set: Local Search Heuristic 1 minimizing (x − bx)2, where for each instance,bx is an interior integer point that is the image of some base. Here d = 2, 3, and 5 and all tests run on
Fuzzy. Shown are the number of spanning trees and projected bases of each instance and the number
of successes out of 1000 Local Searches and seconds to perform the 1000 searches.

N
a
m

e

D
im

en
si

o
n

W
ei

g
h
t

R
a
n
g
e

#
S
u
cc

es
se

s
o
u
t

o
f
1
0
0
0

S
ec

o
n
d
s

gn10e22d2w0w20 2 0− 20 316 1
gn10e28d2w0w20 2 0− 20 252 2
gn10e33d2w0w20 2 0− 20 172 1
gn11e41d2w0w20 2 0− 20 190 5
gn13e39d2w0w20 2 0− 20 244 4

gn10e22d2w0w100 2 0− 100 5 1
gn10e28d2w0w100 2 0− 100 0 2
gn10e33d2w0w100 2 0− 100 12 3
gn11e41d2w0w100 2 0− 100 6 4
gn13e39d2w0w100 2 0− 100 13 5

gn10e22d2w0w1000 2 0− 1000 5 1
gn10e28d2w0w1000 2 0− 1000 0 1
gn10e33d2w0w1000 2 0− 1000 0 2
gn11e41d2w0w1000 2 0− 1000 0 2
gn13e39d2w0w1000 2 0− 1000 0 3

gn10e22d3w0w20 3 0− 20 0 2
gn10e28d3w0w20 3 0− 20 0 3
gn10e33d3w0w20 3 0− 20 0 3
gn11e41d3w0w20 3 0− 20 8 5
gn13e39d3w0w20 3 0− 20 7 4

gn10e22d3w0w100 3 0− 100 29 1
gn10e28d3w0w100 3 0− 100 0 2
gn10e33d3w0w100 3 0− 100 0 3
gn11e41d3w0w100 3 0− 100 0 4
gn13e39d3w0w100 3 0− 100 0 6

gn10e22d3w0w1000 3 0− 1000 12 1
gn10e28d3w0w1000 3 0− 1000 0 2
gn10e33d3w0w1000 3 0− 1000 0 2
gn11e41d3w0w1000 3 0− 1000 0 3
gn13e39d3w0w1000 3 0− 1000 0 3

gn10e22d5w0w1 5 0− 1 197 2
gn10e28d5w0w1 5 0− 1 122 3
gn10e33d5w0w1 5 0− 1 110 4
gn11e41d5w0w1 5 0− 1 195 6
gn13e39d5w0w1 5 0− 1 203 6

gn10e22d5w0w2 5 0− 2 284 2
gn10e28d5w0w2 5 0− 2 112 2
gn10e33d5w0w2 5 0− 2 53 4
gn11e41d5w0w2 5 0− 2 394 4
gn13e39d5w0w2 5 0− 2 352 4

gn10e22d5w0w5 5 0− 5 94 2
gn10e28d5w0w5 5 0− 5 10 2
gn10e33d5w0w5 5 0− 5 16 3
gn11e41d5w0w5 5 0− 5 0 7
gn13e39d5w0w5 5 0− 5 0 6

Journal of the ACM, Vol. , No. , 20.

28 · De Loera, Haws, Lee and O’Hair

Table XI. Calibration test set: Tabu Search Heuristic 2 minimizing (x − bx)2, where for each
instance, bx is an interior integer point that is the image of some base. Here d = 2, 3, and 5 and
all tests run on Fuzzy. Shown are the number of successes out of 1000 Tabu Searches for Tabu
Search limits of 1, 5, 20, 100 and seconds (in parenthesis) to perform the 1000 searches.

N
a
m

e

D
im

en
si

o
n

W
ei

g
h
t

R
a
n
g
e

T
a
b
u

L
im

it
1

T
a
b
u

L
im

it
5

T
a
b
u

L
im

it
2
0

T
a
b
u

L
im

it
1
0
0

gn10e22d2w0w20 2 0− 20 56(0) 503(2) 800(6) 915(27)
gn10e28d2w0w20 2 0− 20 4(0) 331(3) 717(9) 1000(39)
gn10e33d2w0w20 2 0− 20 18(1) 396(2) 765(10) 986(42)
gn11e41d2w0w20 2 0− 20 0(1) 368(5) 807(17) 1000(62)
gn13e39d2w0w20 2 0− 20 5(1) 456(4) 850(16) 1000(66)

gn10e22d2w0w100 2 0− 100 0(0) 7(2) 13(8) 19(38)
gn10e28d2w0w100 2 0− 100 0(1) 2(3) 18(12) 37(53)
gn10e33d2w0w100 2 0− 100 0(0) 30(4) 130(10) 417(52)
gn11e41d2w0w100 2 0− 100 0(0) 0(5) 44(17) 47(74)
gn13e39d2w0w100 2 0− 100 0(1) 29(6) 113(19) 368(94)

gn10e22d2w0w1000 2 0− 1000 0(0) 35(2) 68(10) 58(44)
gn10e28d2w0w1000 2 0− 1000 0(0) 0(3) 8(11) 23(51)
gn10e33d2w0w1000 2 0− 1000 0(1) 0(2) 0(13) 2(67)
gn11e41d2w0w1000 2 0− 1000 0(1) 0(4) 2(17) 15(87)
gn13e39d2w0w1000 2 0− 1000 0(0) 0(5) 0(19) 64(98)

gn10e22d3w0w20 3 0− 20 0(0) 4(3) 19(9) 141(39)
gn10e28d3w0w20 3 0− 20 0(0) 17(4) 44(13) 185(56)
gn10e33d3w0w20 3 0− 20 0(1) 0(4) 2(13) 24(48)
gn11e41d3w0w20 3 0− 20 0(1) 11(6) 43(20) 77(85)
gn13e39d3w0w20 3 0− 20 0(1) 22(6) 89(20) 352(84)

gn10e22d3w0w100 3 0− 100 0(1) 113(2) 272(9) 984(40)
gn10e28d3w0w100 3 0− 100 0(0) 0(3) 0(12) 0(51)
gn10e33d3w0w100 3 0− 100 0(0) 0(4) 29(15) 44(66)
gn11e41d3w0w100 3 0− 100 0(0) 0(5) 0(21) 0(108)
gn13e39d3w0w100 3 0− 100 0(0) 5(8) 79(24) 235(110)

gn10e22d3w0w1000 3 0− 1000 0(0) 42(2) 122(9) 125(36)
gn10e28d3w0w1000 3 0− 1000 0(0) 0(3) 0(12) 0(62)
gn10e33d3w0w1000 3 0− 1000 0(0) 0(4) 2(15) 6(65)
gn11e41d3w0w1000 3 0− 1000 0(0) 0(5) 0(22) 0(103)
gn13e39d3w0w1000 3 0− 1000 0(0) 0(5) 0(21) 0(108)

gn10e22d5w0w1 5 0− 1 0(1) 668(3) 1000(8) 1000(32)
gn10e28d5w0w1 5 0− 1 0(0) 309(3) 756(11) 1000(47)
gn10e33d5w0w1 5 0− 1 0(0) 401(4) 938(13) 995(49)
gn11e41d5w0w1 5 0− 1 0(1) 528(7) 873(20) 1000(79)
gn13e39d5w0w1 5 0− 1 0(1) 461(6) 676(19) 831(84)

gn10e22d5w0w2 5 0− 2 1(0) 432(3) 923(9) 1000(35)
gn10e28d5w0w2 5 0− 2 0(1) 356(4) 688(11) 735(43)
gn10e33d5w0w2 5 0− 2 0(1) 399(4) 407(12) 414(51)
gn11e41d5w0w2 5 0− 2 0(0) 555(5) 828(18) 890(76)
gn13e39d5w0w2 5 0− 2 2(0) 627(6) 966(19) 979(79)

gn10e22d5w0w5 5 0− 5 0(1) 212(3) 563(9) 757(36)
gn10e28d5w0w5 5 0− 5 0(0) 30(4) 89(12) 415(56)
gn10e33d5w0w5 5 0− 5 0(0) 21(4) 83(15) 919(79)
gn11e41d5w0w5 5 0− 5 0(1) 127(7) 229(23) 398(96)
gn13e39d5w0w5 5 0− 5 0(0) 14(8) 65(23) 318(106)

Journal of the ACM, Vol. , No. , 20.

Computation in Multicriteria Matroid Optimization · 29

Table XII. Calibration test set: Local Search Heuristic 1 minimizing (x− bx)2, where for each instance,bx is an interior rational non-integer point. Here d = 2, 3, and 5 and all tests run on Fuzzy. Shown are
the number of spanning trees and projected bases of each instance and the number of successes out of
1000 Local Searches and seconds to perform the 1000 searches.

N
a
m

e

D
im

en
si

o
n

W
ei

g
h
t

R
a
n
g
e

#
S
u
cc

es
se

s
o
u
t

o
f
1
0
0
0

S
ec

o
n
d
s

gn10e22d2w0w20 2 0− 20 203 2
gn10e28d2w0w20 2 0− 20 364 2
gn10e33d2w0w20 2 0− 20 216 2
gn11e41d2w0w20 2 0− 20 318 2
gn13e39d2w0w20 2 0− 20 232 3

gn10e22d2w0w100 2 0− 100 47 2
gn10e28d2w0w100 2 0− 100 0 2
gn10e33d2w0w100 2 0− 100 16 2
gn11e41d2w0w100 2 0− 100 21 3
gn13e39d2w0w100 2 0− 100 34 3

gn10e22d2w0w1000 2 0− 1000 0 1
gn10e28d2w0w1000 2 0− 1000 0 2
gn10e33d2w0w1000 2 0− 1000 0 2
gn11e41d2w0w1000 2 0− 1000 0 2
gn13e39d2w0w1000 2 0− 1000 0 3

gn10e22d3w0w20 3 0− 20 18 2
gn10e28d3w0w20 3 0− 20 0 2
gn10e33d3w0w20 3 0− 20 0 3
gn11e41d3w0w20 3 0− 20 14 2
gn13e39d3w0w20 3 0− 20 14 3

gn10e22d3w0w100 3 0− 100 2 1
gn10e28d3w0w100 3 0− 100 0 2
gn10e33d3w0w100 3 0− 100 0 2
gn11e41d3w0w100 3 0− 100 0 3
gn13e39d3w0w100 3 0− 100 0 4

gn10e22d3w0w1000 3 0− 1000 10 1
gn10e28d3w0w1000 3 0− 1000 0 2
gn10e33d3w0w1000 3 0− 1000 0 2
gn11e41d3w0w1000 3 0− 1000 0 3
gn13e39d3w0w1000 3 0− 1000 0 3

gn10e22d5w0w1 5 0− 1 693 2
gn10e28d5w0w1 5 0− 1 774 2
gn10e33d5w0w1 5 0− 1 956 3
gn11e41d5w0w1 5 0− 1 953 3
gn13e39d5w0w1 5 0− 1 623 5

gn10e22d5w0w2 5 0− 2 97 2
gn10e28d5w0w2 5 0− 2 268 2
gn10e33d5w0w2 5 0− 2 189 3
gn11e41d5w0w2 5 0− 2 430 4
gn13e39d5w0w2 5 0− 2 361 4

gn10e22d5w0w5 5 0− 5 0 1
gn10e28d5w0w5 5 0− 5 9 2
gn10e33d5w0w5 5 0− 5 1 3
gn11e41d5w0w5 5 0− 5 33 4
gn13e39d5w0w5 5 0− 5 16 5

Journal of the ACM, Vol. , No. , 20.

30 · De Loera, Haws, Lee and O’Hair

Table XIII. Calibration test set: Tabu Search Heuristic 2 minimizing (x− bx)2, where for each instance,bx is an interior rational non-integer point that is the image of some base. Here d = 2, 3, and 5 and all
tests run on Fuzzy. Shown are the number of successes out of 1000 Tabu Searches for Tabu Search limits
of 1, 5, 20, 100 and seconds (in parenthesis) to perform the 1000 searches.

N
a
m

e

D
im

en
si

o
n

W
ei

g
h
t

R
a
n
g
e

T
a
b
u

L
im

it
1

T
a
b
u

L
im

it
5

T
a
b
u

L
im

it
2
0

T
a
b
u

L
im

it
1
0
0

gn10e22d2w0w20 2 0− 20 16(1) 491(2) 711(7) 734(27)
gn10e28d2w0w20 2 0− 20 45(0) 680(3) 958(9) 1000(36)
gn10e33d2w0w20 2 0− 20 17(0) 449(2) 934(11) 998(40)
gn11e41d2w0w20 2 0− 20 15(1) 619(3) 970(13) 1000(55)
gn13e39d2w0w20 2 0− 20 20(1) 478(4) 897(16) 1000(65)

gn10e22d2w0w100 2 0− 100 0(0) 50(3) 43(8) 52(34)
gn10e28d2w0w100 2 0− 100 0(0) 13(3) 128(11) 250(52)
gn10e33d2w0w100 2 0− 100 2(1) 6(3) 58(11) 198(51)
gn11e41d2w0w100 2 0− 100 14(0) 34(4) 107(17) 334(92)
gn13e39d2w0w100 2 0− 100 1(1) 22(4) 124(20) 483(97)

gn10e22d2w0w1000 2 0− 1000 0(1) 0(2) 3(9) 98(45)
gn10e28d2w0w1000 2 0− 1000 0(1) 0(3) 0(11) 90(59)
gn10e33d2w0w1000 2 0− 1000 0(0) 0(3) 0(12) 0(61)
gn11e41d2w0w1000 2 0− 1000 0(1) 0(4) 0(18) 16(90)
gn13e39d2w0w1000 2 0− 1000 0(1) 0(5) 7(19) 3(104)

gn10e22d3w0w20 3 0− 20 0(0) 32(2) 54(11) 205(49)
gn10e28d3w0w20 3 0− 20 0(0) 23(4) 34(13) 381(62)
gn10e33d3w0w20 3 0− 20 0(1) 3(3) 47(13) 125(49)
gn11e41d3w0w20 3 0− 20 0(1) 25(5) 213(19) 645(94)
gn13e39d3w0w20 3 0− 20 0(0) 37(5) 148(21) 554(106)

gn10e22d3w0w100 3 0− 100 0(1) 22(2) 25(10) 233(46)
gn10e28d3w0w100 3 0− 100 0(0) 1(3) 12(11) 32(49)
gn10e33d3w0w100 3 0− 100 0(0) 0(4) 0(16) 0(79)
gn11e41d3w0w100 3 0− 100 0(0) 0(5) 0(21) 2(112)
gn13e39d3w0w100 3 0− 100 0(0) 0(5) 0(21) 0(85)

gn10e22d3w0w1000 3 0− 1000 1(0) 12(3) 77(9) 134(34)
gn10e28d3w0w1000 3 0− 1000 0(0) 0(3) 0(13) 0(70)
gn10e33d3w0w1000 3 0− 1000 0(1) 0(3) 0(15) 10(71)
gn11e41d3w0w1000 3 0− 1000 0(0) 0(5) 0(20) 0(103)
gn13e39d3w0w1000 3 0− 1000 0(1) 0(5) 0(23) 0(106)

gn10e22d5w0w1 5 0− 1 91(1) 949(2) 1000(8) 1000(33)
gn10e28d5w0w1 5 0− 1 125(0) 877(3) 1000(9) 1000(43)
gn10e33d5w0w1 5 0− 1 70(0) 1000(3) 1000(10) 1000(47)
gn11e41d5w0w1 5 0− 1 40(0) 994(4) 1000(14) 1000(70)
gn13e39d5w0w1 5 0− 1 19(1) 734(6) 942(18) 1000(80)

gn10e22d5w0w2 5 0− 2 1(0) 157(2) 283(8) 371(33)
gn10e28d5w0w2 5 0− 2 20(0) 492(3) 851(11) 992(45)
gn10e33d5w0w2 5 0− 2 6(1) 629(5) 879(12) 896(48)
gn11e41d5w0w2 5 0− 2 7(0) 643(6) 924(18) 956(74)
gn13e39d5w0w2 5 0− 2 3(1) 616(6) 896(20) 981(83)

gn10e22d5w0w5 5 0− 5 0(0) 0(3) 70(10) 143(37)
gn10e28d5w0w5 5 0− 5 0(1) 39(4) 118(16) 643(80)
gn10e33d5w0w5 5 0− 5 0(0) 20(4) 115(17) 566(78)
gn11e41d5w0w5 5 0− 5 0(0) 47(6) 144(25) 555(127)
gn13e39d5w0w5 5 0− 5 0(1) 45(7) 180(27) 567(118)

Journal of the ACM, Vol. , No. , 20.

Computation in Multicriteria Matroid Optimization · 31

T
ab

le
X

IV
.S

ol
id

s,
H

eu
ri

st
ic

6
(D

F
B

F
S

).
10

0
se

ar
ch

es
,d

ep
th

4,
bo

un
da

ry
re

tr
y

lim
it

10
0

an
d

in
te

ri
or

re
tr

y
lim

it
of

10
00

0.
N

ot
e

th
at

M
at

su
i’s

al
go

ri
th

m
w

as
on

ly
ab

le
to

en
um

er
at

e
th

e
sp

an
ni

ng
tr

ee
s

of
th

e
fir

st
si

x
gr

ap
hs

.

Name

Nodes

Edges

Weight
Range

Computer

Seconds

#Spanning
Trees

#Projected
Trees

#TreesFound
byDFBFS

Percent

S
o
li
d
-t

e
tr

a
h
e
d
ro

n
-d

2
w

0
w

2
0

4
6

0
−

2
0

m
o
c
r0

4
0

1
6

1
6

1
6

1
0
0
.0

0
S
o
li
d
-c

u
b
e
-d

2
w

0
w

2
0

4
6

0
−

2
0

m
o
c
r0

4
0

3
8
4

3
2
1

3
2
0

9
9
.6

9
S
o
li
d
-o

c
a
h
e
d
ro

n
-d

2
w

0
w

2
0

6
1
2

0
−

2
0

m
o
c
r0

4
0

3
8
4

2
9
6

2
9
2

9
8
.6

5
S
o
li
d
-t

ru
n
c
a
te

d
te

tr
a
h
e
d
ro

n
-d

2
w

0
w

2
0

1
2

1
8

0
−

2
0

m
o
c
r0

4
0

6
,0

0
0

1
,9

4
7

1
,9

3
1

9
9
.1

8
S
o
li
d
-c

u
b
o
c
ta

h
e
d
ro

n
-d

2
w

0
w

2
0

1
2

2
4

0
−

2
0

m
o
c
r0

4
2

3
3
1
,7

7
6

6
,2

9
1

6
,2

0
9

9
8
.7

0
S
o
li
d
-i
c
o
sa

h
e
d
ro

n
-d

2
w

0
w

2
0

1
2

3
0

0
−

2
0

m
o
c
r0

4
3

5
,1

8
4
,0

0
0

1
2
,1

9
0

1
1
,9

1
1

9
7
.7

1
S
o
li
d
-d

o
d
e
c
a
h
e
d
ro

n
-d

2
w

0
w

2
0

2
0

3
0

0
−

2
0

m
o
c
r0

4
4

5
,1

8
4
,0

0
0

1
1
,7

0
8

1
1
,6

2
5

9
9
.2

9
S
o
li
d
-t

ru
n
c
a
te

d
o
c
ta

h
e
d
ro

n
-d

2
w

0
w

2
0

2
4

3
6

0
−

2
0

m
o
c
r0

4
1
1

1
0
1
,1

5
4
,8

1
6

1
6
,8

8
2

S
o
li
d
-s

rh
o
m

b
ic

u
b
o
c
ta

h
e
d
ro

n
-d

2
w

0
w

2
0

2
4

4
8

0
−

2
0

m
o
c
r0

4
3
1

3
0
1
×

1
0
9

3
5
,1

3
2

S
o
li
d
-s

n
u
b
c
u
b
e
-d

2
w

0
w

2
0

2
4

6
0

0
−

2
0

m
o
c
r0

4
5
6

8
9
×

1
0
1
2

5
6
,9

9
2

S
o
li
d
-i
c
o
si

d
o
d
e
c
a
h
e
d
ro

n
-d

2
w

0
w

2
0

3
0

6
0

0
−

2
0

m
o
c
r0

4
7
8

2
0
8
×

1
0
1
2

6
1
,9

2
6

S
o
li
d
-g

rh
o
m

b
ic

u
b
o
c
ta

h
e
d
ro

n
-d

2
w

0
w

2
0

4
8

7
2

0
−

2
0

m
o
c
r0

4
2
0
1

1
2
×

1
0
1
5

7
3
,1

6
6

S
o
li
d
-t

ru
n
c
a
te

d
ic

o
sa

h
e
d
ro

n
-d

2
w

0
w

2
0

6
0

9
0

0
−

2
0

m
o
c
r0

4
6
2
3

3
7
5
×

1
0
1
8

1
1
2
,2

9
2

S
o
li
d
-r

h
o
m

ic
o
si

d
o
d
e
c
a
h
e
d
ro

n
-d

2
w

0
w

2
0

6
0

1
2
0

0
−

2
0

m
o
c
r0

4
1
,2

6
6

2
0
1
×

1
0
2
7

1
6
6
,6

2
2

S
o
li
d
-s

n
u
b
d
o
d
e
c
a
h
e
d
ro

n
-d

2
w

0
w

2
0

6
0

1
5
0

0
−

2
0

m
o
c
r0

4
1
,9

5
5

4
3
8
×

1
0
3
3

1
9
9
,7

6
4

S
o
li
d
-t

e
tr

a
h
e
d
ro

n
-d

2
w

0
w

1
0
0

4
6

0
−

1
0
0

m
o
c
r0

4
1

1
6

1
6

1
6

1
0
0
.0

0
S
o
li
d
-o

c
ta

h
e
d
ro

n
-d

2
w

0
w

1
0
0

6
1
2

0
−

1
0
0

m
o
c
r0

4
0

3
8
4

3
8
3

3
8
0

9
9
.2

2
S
o
li
d
-c

u
b
e
-d

2
w

0
w

1
0
0

8
1
2

0
−

1
0
0

m
o
c
r0

4
0

3
8
4

3
8
3

3
8
3

1
0
0
.0

0
S
o
li
d
-t

ru
n
c
a
te

d
te

tr
a
h
e
d
ro

n
-d

2
w

0
w

1
0
0

1
2

1
8

0
−

1
0
0

m
o
c
r0

4
1

6
,0

0
0

5
,8

1
2

5
,7

8
2

9
9
.4

8
S
o
li
d
-c

u
b
o
c
ta

h
e
d
ro

n
-d

2
w

0
w

1
0
0

1
2

2
4

0
−

1
0
0

m
o
c
r0

4
1
3

3
3
1
,7

7
6

9
3
,9

8
2

9
0
,7

8
8

9
6
.6

0
S
o
li
d
-i
c
o
sa

h
e
d
ro

n
-d

2
w

0
w

1
0
0

1
2

3
0

0
−

1
0
0

m
o
c
r0

4
2
7

5
,1

8
4
,0

0
0

2
0
7
,4

4
7

2
0
0
,6

4
1

9
6
.7

2
S
o
li
d
-d

o
d
e
c
a
h
e
d
ro

n
-d

2
w

0
w

1
0
0

2
0

3
0

0
−

1
0
0

m
o
c
r0

4
4
9

5
,1

8
4
,0

0
0

2
1
7
,8

8
2

2
1
1
,1

6
9

9
6
.9

2
S
o
li
d
-t

ru
n
c
a
te

d
o
c
ta

h
e
d
ro

n
-d

2
w

0
w

1
0
0

2
4

3
6

0
−

1
0
0

m
o
c
r0

4
1
0
2

1
0
1
,1

5
4
,8

1
6

3
5
3
,2

6
2

3
3
9
,3

6
9

9
6
.0

7
S
o
li
d
-s

rh
o
m

b
ic

u
b
o
c
ta

h
e
d
ro

n
-d

2
w

0
w

1
0
0

2
4

4
8

0
−

1
0
0

m
o
c
r0

4
2
3
3

3
0
1
×

1
0
9

7
9
3
,8

9
4

S
o
li
d
-s

n
u
b
c
u
b
e
-d

2
w

0
w

1
0
0

2
4

6
0

0
−

1
0
0

m
o
c
r0

4
3
2
2

8
9
×

1
0
1
2

1
,0

1
7
,9

9
8

S
o
li
d
-i
c
o
si

d
o
d
e
c
a
h
e
d
ro

n
-d

2
w

0
w

1
0
0

3
0

6
0

0
−

1
0
0

m
o
c
r0

4
5
1
8

2
0
8
×

1
0
1
2

1
,3

3
5
,5

8
1

S
o
li
d
-g

rh
o
m

b
ic

u
b
o
c
ta

h
e
d
ro

n
-d

2
w

0
w

1
0
0

4
8

7
2

0
−

1
0
0

m
o
c
r0

4
1
4
0
9

1
2
×

1
0
1
5

1
,5

5
4
,0

0
8

S
o
li
d
-t

ru
n
c
a
te

d
ic

o
sa

h
e
d
ro

n
-d

2
w

0
w

1
0
0

6
0

9
0

0
−

1
0
0

m
o
c
r0

4
3
0
0
5

3
7
5
×

1
0
1
8

2
,4

4
0
,0

2
0

S
o
li
d
-r

h
o
m

b
ic

o
si

d
o
d
e
c
a
h
e
d
ro

n
-d

2
w

0
w

1
0
0

6
0

1
2
0

0
−

1
0
0

m
o
c
r0

4
5
7
7
2

2
0
1
×

1
0
2
7

4
,3

2
7
,5

8
6

S
o
li
d
-s

n
u
b
d
o
d
e
c
a
h
e
d
ro

n
-d

2
w

0
w

1
0
0

6
0

1
5
0

0
−

1
0
0

m
o
c
r0

4
7
8
7
8

4
3
8
×

1
0
3
3

5
,2

7
8
,8

2
8

S
o
li
d
-t

e
tr

a
h
e
d
ro

n
-d

2
w

0
w

1
0
0
0

4
6

0
−

1
0
0
0

m
o
c
r0

4
0

1
6

1
6

1
6

1
0
0
.0

0
S
o
li
d
-o

c
ta

h
e
d
ro

n
-d

2
w

0
w

1
0
0
0

6
1
2

0
−

1
0
0
0

m
o
c
r0

4
1

3
8
4

3
8
4

3
7
6

9
7
.9

2
S
o
li
d
-c

u
b
e
-d

2
w

0
w

1
0
0
0

8
1
2

0
−

1
0
0
0

m
o
c
r0

4
0

3
8
4

3
8
4

3
8
3

9
9
.7

4
S
o
li
d
-t

ru
n
c
a
te

d
te

tr
a
h
e
d
ro

n
-d

2
w

0
w

1
0
0
0

1
2

1
8

0
−

1
0
0
0

m
o
c
r0

4
1

6
,0

0
0

6
,0

0
0

5
,6

6
2

9
4
.3

7
S
o
li
d
-c

u
b
o
c
ta

h
e
d
ro

n
-d

2
w

0
w

1
0
0
0

1
2

2
4

0
−

1
0
0
0

m
o
c
r0

4
3
4

3
3
1
,7

7
6

3
3
1
,7

7
6

3
1
8
,1

5
6

9
5
,8

9
S
o
li
d
-i
c
o
sa

h
e
d
ro

n
-d

2
w

0
w

1
0
0
0

1
2

3
0

0
−

1
0
0
0

m
o
c
r0

4
3
2
8

5
,1

8
4
,0

0
0

5
,1

8
4
,0

0
0

3
,2

6
3
,8

0
0

6
2
,9

6
S
o
li
d
-d

o
d
e
c
a
h
e
d
ro

n
-d

2
w

0
w

1
0
0
0

2
0

3
0

0
−

1
0
0
0

m
o
c
r0

4
6
2
8

5
,1

8
4
,0

0
0

5
,1

8
4
,0

0
0

3
,6

0
6
,1

9
4

6
9
.5

6
S
o
li
d
-t

ru
n
c
a
te

d
o
c
ta

h
e
d
ro

n
-d

2
w

0
w

1
0
0
0

2
4

3
6

0
−

1
0
0
0

m
o
c
r0

4
2
,6

3
7

1
0
1
,1

5
4
,8

1
6

1
0
1
,1

5
4
,8

1
6

1
3
,0

2
4
,7

7
4

1
2
.8

8
S
o
li
d
-s

rh
o
m

b
ic

u
b
o
c
ta

h
e
d
ro

n
-d

2
w

0
w

1
0
0
0

2
4

4
8

0
−

1
0
0
0

m
o
c
r0

4
9
,3

5
4

3
0
1
×

1
0
9

4
8
,4

0
7
,5

8
8

S
o
li
d
-s

n
u
b
c
u
b
e
-d

2
w

0
w

1
0
0
0

2
4

6
0

0
−

1
0
0
0

m
o
c
r0

4
3
2
,4

8
1

8
9
×

1
0
1
2

8
3
,6

0
0
,2

6
1

Journal of the ACM, Vol. , No. , 20.

32 · De Loera, Haws, Lee and O’Hair

Table XV. Two experimental design problems P20 and P28 and comparing run times of IBM Blue
Gene/P vs Fuzzy to find all projected bases. We used Heuristic 6 (DFBFS) with 100 searches,
boundary retry limit 100, interior retry limit 10, 000 and truncation depth 8.

Name P20 P28

Columns(#matroid elements) 100 100

Rows(matroid rank) 20 28

Projected bases 13, 816 19, 193

Seconds for IBM Blue Gene/P 23, 773 56, 763

Projected bases found by run 1 of Heuristic 6 13, 757 19, 193

Seconds for run 1 of Heuristic 6 923 2, 557

Projected bases found by run 2 of Heuristic 6 13, 816 19, 191

Seconds for run 2 of Heuristic 6 945 2, 645

Table XVI. Experimental design problem P20 and comparing run times of IBM Blue Gene/P vs
Fuzzy to find all projected bases. We partitioned the region of feasible projected bases into 12
disjoint regions and ran 12 separate concurrently running instances of Heuristic 3 (PT) on Fuzzy
to find as many projected bases as possible. When running Heuristic 3 (PT) we used Heuristic 2
(TS) and tried each point 10 times with a Tabu limit of 20.

R
e
g
io

n

#
P
ro

je
c
te

d
B
a
se

s
F
o
u
n
d

S
e
c
o
n
d
s

Box1 1, 044 9, 544

Box2 1, 122 5, 086

Box3 1, 122 4, 966

Box4 1, 135 8, 066

Box5 1, 122 5, 414

Box6 1, 122 4, 540

Box7 1, 122 4, 528

Box8 1, 188 5, 614

Box9 1, 147 9, 181

Box10 1, 124 5, 232

Box11 1, 124 5, 252

Box12 1, 249 8, 173

TOTAL 13, 816 (Longest time)9, 544

Journal of the ACM, Vol. , No. , 20.

Computation in Multicriteria Matroid Optimization · 33

Table XVII. Machines Used in Experiments.

Name #CPUS Clock Speed Memory

Fuzzy 16 AMD 2400 MHz 64GB

Truth 16 AMD 2400 MHz 64GB

Mathocr01 2 AMD 2000 MHz 4GB

Mathocr02 2 AMD 2000 MHz 4GB

Mathocr03 2 AMD 2000 MHz 4GB

Mathocr04 2 AMD 2000 MHz 12GB

Journal of the ACM, Vol. , No. , 20.

34 · De Loera, Haws, Lee and O’Hair

REFERENCES

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J.,
Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D. 1999. LAPACK Users’
Guide, Third ed. Society for Industrial and Applied Mathematics, Philadelphia, PA.

Barvinok, A. and Samorodnitsky, A. 2007. Random weighting, asymptotic counting, and
inverse isoperimetry. Israel Journal of Mathematics 158, 159–191.

Berstein, Y., Lee, J., Maruri-Aguilar, H., Onn, S., Riccomagno, E., Weismantel, R., and
Wynn, H. 2008. Nonlinear matroid optimization and experimental design. SIAM Journal on
Discrete Mathematics 22, 901–919.

Berstein, Y., Lee, J., Onn, S., and Weismantel, R. 2009. Parametric nonlinear discrete op-
timization over well-described sets and matroid intersections. Mathematical Programming (to
appear).

Berstein, Y. and Onn, S. 2008. Nonlinear bipartite matching. Discrete Optimization 5, 53–65.

Borovik, A. V., Gelfand, I. M., and White, N. 2007. Coxeter matroid polytopes. Annals of
Combinatorics 1, 1 (December), 123–134.

De Loera, J., Haws, D. C., O’Hair, A., and Lee, J. 2009. Matroid Optimization: Combinatorial
Heuristics and Algorithms. Available from URL http://www.coin-or.org/projects/MOCHA.

xml.

Ehrgott, M. 1996. On matroids with multiple objectives. Optimization 38, 1, 73–84. Multicri-
teria optimization and decision theory (Holzhau, 1994).

Ehrgott, M. and Gandibleux, X. 2000. A survey and annotated bibliography of multiobjective
combinatorial optimization. OR Spektrum 22, 4, 425–460.

Fries, A. and Hunter, W. 1980. Minimum aberration 2k−p designs. Techno. 22, 601–608.

Garey, M. and Johnson, D. 1979. Computers and intractability: A guide to the theory of
NP-completeness. W.H. Freeman and Company, San Francisco.

Gelfand, I. M., Goresky, M., MacPherson, R. D., and Serganova, V. V. 1987. Combinatorial
geometries, convex polyhedra, and Schubert cells. Adv. Math. 63, 301–316.

Glover, F. 1986. Future paths for integer programming and links to artificial intelligence. Com-
puters and Operations Research 13, 533–549.

Graham, R., Lawler, E., Lenstra, J., and Rinnooy Kan, A. 1979. Optimization and approxi-
mation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics 5,
287–326.

Granlund, T. and et al. 2009. GNU multiple precision arithmetic library. http://gmplib.org/.

Gunnels, J., Lee, J., and Margulies, S. 2008. Efficient high-precision dense matrix algebra
on parallel architectures for nonlinear discrete optimization. IBM Research Report RC24682
(October, 2008).

Holtzmann, C. and Harary, F. 1972. On the tree graph of a matroid. SIAM Journal of Applied
Math 22, 2, 187–193.

Knowles, J. D. and Corne, D. W. 2002. Enumeration of Pareto optimal multi-criteria spanning
trees - a proof of the incorrectness of Zhou and Gen’s proposed algorithm. European Journal
of Operational Research 143, 3, 543–547.

Lee, J. 2004. A first course in combinatorial optimization. Cambridge Texts in Applied Mathe-
matics. Cambridge University Press.

Matsui, T. 1997. A flexible algorithm for generating all the spanning trees in undirected graphs.
Algorithmica 18, 4, 530–543.

Okamoto, Y. and Uno, T. 2007. A polynomial-time-delay polynomial-space algorithm
for enumeration problems in multi-criteria optimization. Lecture Notes in Computer Sci-
ence 4835/2007, 609–620.

Onn, S. 2003. Convex matroid optimization. SIAM Journal on Discrete Mathematics 17, 249–
253.

Schrijver, A. 2003. Combinatorial Optimization: Polyhedra and Efficiency. Springer.

Warburton, A. 1985. Worse case analysis of greedy and related heuristics for some min-max
combinatorial optimization problems. Mathematical Programming 33, 2 (November), 234–241.

Journal of the ACM, Vol. , No. , 20.

