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Computation of a Multivariate F Distribution*

By D. E. Amos and W. G. Bulgren

Abstract. Methods for evaluating the joint cumulative probability integral associated

with random variables Fk = {Xk/rk)/{Y/s), k = 1, 2, • • ■ , n, are considered where the Xk

and Y are independently x2(rt) and x2M, respectively. For n = 2, series representations in

terms of incomplete beta distributions are given, while a quadrature with efficient procedures

for the integrand is presented for n & 2. The results for n = 2 are applied to the evaluation

of the correlated bivariate F distribution.

Introduction. If Xk, k = 1, • • • , n, and Fare independent x2 random variables

with rk, k = 1, • • • , n, and s degrees of freedom, respectively, then the random varia-

bles

have a joint cumulative distribution P(0 ^ Fi :£ /,, • • • , 0 g F„ ^ /„ | s, rk, k =

1, •• • , n) given by

(1) I„(ä,c,ß) = f n%^*.      -3 > 0,at > 0,
Jo    TOS)  f-.i l(at)

where

c* = /*a*//3,      k = 1, • • • , «,      at = r*/2   and   /3 = i/2

and the incomplete gamma function is defined by

a, x) = I  e~'ta 1 dt,      a > 0, x =i 0.
Jo

7(<

This distribution arises in many applications, most of which are special cases of (1).

Among these are the inverted Dirichlet distribution, the maximum F distribution or

multivariate t2 distribution [25, p. 159] and an important class where ak = a for all

k. References [5], [6], [7], [10], [15], [16], [18], [20] contain recent results which utilize

this multivariate F.

The analysis below forms the basis for a procedure by which /„ can be evaluated

numerically over a wide range of parameters.

Analysis.  We first take the case where p = ß + «* > 1 and show that

the integrand

-

Received June 25, 1970, revised April 23, 1971.

AMS 1969 subject classifications. Primary 6525; Secondary 6231.

Key words and phrases. Dirichlet distribution, maximum F distribution, multivariate r2 distribu-

tion, F with correlation, ranking and selection.

* This work was supported in part by the United States Atomic Energy Commission.

Copyright © 1972, American Mathematical Society

255

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



256 D. E. AMOS AND W. G. BULGREN

is bell-shaped with a single maximum at za > 0. The integration then proceeds from

z0 to the left and right in the form

(3) /„ = Ri + E / S(z) dz + £ / SO) dz + R2,

where z< = z0 — (j + l)o- and Äi are replaced by zero if z< is negative. This formula

sums quadratures over lengths a which approximate the "spread" of g(z). This step

is necessary in order to include a large, but not excessive, portion of the area when

parameters vary widely. i?j and R2 are truncation errors given by

Ri = /    g(z) dz,      R2 = /   g(z) dz

which can be bounded in the form

Ri < 5i = 0 ifzL = 0,

(4) R   < B = T(ß' Zv)

where z£ = max {0, z0 — (jVj 4- l)o-} and z^ = z0 4- (iVj 4- l)<r. With these bounds, a

relative error test (which can be made after each quadrature addition) is appropriate

for the truncation error since

Ri or R2  <       Ri or R2 gt or B2

exact sum = accumulated sum     accumulated sum

The length a over which each quadrature is taken is estimated by the Laplace method

for an asymptotic form. That is, we write y{z) = In g(z), /(z0) = 0,

(5) /„ = dz ~e""°' |+J exp{-i \y"(z0)\ (z - z0f] dz = ^'"{ly^T

and

(6) o- = (|/'(z0)|r1/2 .

Now, we show that there is only one maxima of g(z), give an equation for z0 and

compute /'(z0) for (6). Logarithmic differentiation of (2) together with the confluent

series form of y(a, x),

(7) *) = —*(!. 1 +«;*),    #(«,<:;*)= £7^77,   e HO,

yield

y'f>(.) = ^Cz) = r   ,  , ft - 1  ,   -y ctk_1
W     &)      L z     T &z$(l, 1 + at;ctz)J

Since ft > 1 guarantees that g(0) = 0, the nonzero extrema occur at the roots of

f-i *(1, 1 4- ak; CkZ)
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COMPUTATION OF A MULTIVA RI ATE F DISTRIBUTION 257

The relations

. $'(1, 1 + a; x) = —— $(2, 2 + a; x) > 0,      x ^ 0, a > 0,
(?) 1 + a

$(1,1+ a; x) ~ r(l + a)ex'a,   for x -> od ,

establish the monotone decreasing behavior of the right side of (8) and hence the

uniqueness of the root z0 > max{0, ß — 1} for p > 1.

Since

g(0) = 0,      g(z) > 0   for z > 0,   and    lim g(z) = 0,

g(z0) is a maximum of g(z) and

nm 1 «tCt     $(2, 2 + at; c^zq)

z0      tTi (1 + ak)z0 & (1, 1 + ak; ckz0)

If 1 > u > 0, the integral Jn exists but (8) has no solution and g' < 0. The integrand

is therefore monotone decreasing from <» to 0 and the integration scheme must

account for the infinite singularity at z = 0 when z = 0 is in the interval of integration.

If 2 > p > 1, g(0) = 0 but the infinite derivative of g(z) at z = 0 causes polynomial

type integration schemes to converge very slowly. For p. ^ 2 this problem is less

severe. In many cases, the truncation on the left completely eliminates the problem

of singular behavior. If p = 1, no singularity at z = 0 is encountered, and the integrand

decreases monotonically to zero.

Computational Considerations. Due to the wide range of numbers which can

be generated, the integrand g(z) is conveniently evaluated in the form

nil „(„\ — *<»> TT 7(a*' c*z)

to prevent underflow or overflow during a direct evaluation. Here

h(z) = -z + (ß - 1) In z - In T03)

and the ratios 7/r are generated by the following scheme. If x < 1 + a, we use[(7)

for $ in the form

$(1, c; x) = ^ Ak + R/r,      RN 5; j _ ^/(c^ /y) '      x < c,

4i - 1,      A+1 = A*/(c + * - 1),      A: = 1, 2, • • • , N,

with c = 1 + a and compute 7(0, x)/r(a) from (7),

? = $(1. 1 + a; *) expj-* + a In * - In T(a + 1)J.
1 (a)

On the other hand, if x ^ 1 + a, we compute A!" so that c = 1 + a + K > x, gen-

erate $ as above and recur backward with

yK = S$(l, 1 + «+ K;x),

yk-i =—^-ry. +S,     k = K, K - 1, • • • , 1,
a + k
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258 D. E. AMOS AND W. G. BULGREN

which is a modification of the two term recurrence relation for 7. Then,

y0 = S$(l, 1 + a; x) where S is a scale factor on the order of the underflow limit

of the machine. Finally,

= (exp{-x + a In x - In T(a + l)}/S)-y0

takes care of the scaling. Refinements to take care of the tails of y/T make the routine

faster and eliminate unnecessary computation when the spread of g(z) is large and

some ratios in (11) are 1 to the word length of the machine. Thus, we seek X(a) such

that, for x > X, y(a, x)/T(a) = 1 to the word length of the machine. This value can

be estimated from the asymptotic expansion

I» T(a + 1)

and solve for c in the rel;

F(c) = -a(c - 1) + (a - 1) In c + E In 10 + J In a = 0

where we take x = ca and solve for c in the relation

after usbg the Stirling approximation for T(a + 1). If we take c = 1 to start Newton's

method, the convergence is from above and the termination at c0 always provides a

conservative estimate of X(a) = caa.

Values of X(a) were generated and an empirical form

vl v Cia3 + c2a2 + c3a + c4
X(a) = -2 , —t-

was fitted to maximum errors of approximately 1% by a linear least squares analysis

for the ranges 1 ̂  a ^ 200, 200 g a ^ 10,000, 10,000 gag 100,000 with E = 14
for a CDC 6600 computer. If a g 1, we increase a by one and proceed for a > 1

entering the backward recursive loop at least one time, even when x < I + a. For

the lower tail, the brackets { } in the exponentials can be tested for underflow. As

described, y/T is a millisecond significant digit routine on the CDC 6600.

z = max{0, (8—11 provides a starting value for Newton's iteration in the solution

of (8) for z0 when p > 1. Then,

,,, . v->     akck • $(2, 2 4- ak; ckz)1 (z) " — jL
t_i (1 + ak) $"(1 ,1 4- at; ckz)

is needed in addition to (8) and

y"(z0) = [/'(z0) — l]/z0.

The convergence criteria for Newton's method need not be severe since z0 is not

needed very accurately.

For the bound Bu the procedure described above is used in computing the ratios

y/T needed in (4). The bound B2 can be computed by

= TC8, x) =    _ 7Q8, x)

T(ß) ros)

when /„ is relatively large (say s: 0.1 as measured a priori by (5)) even though several
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COMPUTATION OF A MULTIVARIATE F DISTRIBUTION 259

significant figures will be lost when the relative error test is severe. However, B2 must

be generated another way when I„ is much smaller because all significance will be

lost in this relation and the relative error test cannot be met. In these cases, the con-

tinued fraction
■

St = x 4-. - ,      k = v, v — 1, • • • , 1,

_ x-t- r^°- *> i/r(ft„)

with the forward recurrence scheme for ß = ß0 + N > 1,

Po

7*+, = 7-fjc/CSo + *), IIIS] - 1

r(|3 a:)
~Y^r- = (exp{ -jc + i3„ In x}/S)- AN+1

has proven satisfactory. S is a positive scale factor on the order of the underflow

limit of the machine.

The asymptotic form (5) produced the right order of magnitude for /„ in all cases

tested with one to three significant digits quite common.

In the case that ak — a and ck = c for all k, the computer time required is much

less since the product in (1) reduces to a simple power and only one gamma ratio

need be evaluated for each z. In this case, the sums (8), (10), and (11) as well as the

product in (4) collapse to one term. In [13], Gupta obtained (1) for this case and gave

percent point tables for c with a = ß = integer for 1 g a g 25 and 1 g n g 10.

Samples from these tables were checked using this procedure on a CDC 6600 com-

puter with a Romberg integration routine. The functional relationships were ex-

tended in tabular form in [2] to values of n up to 1000 for various-values of c in

1.1 g eg 3.0. Values of ß = a up to 4700 appear in the body of the tables.

Special Cases. If one writes the gamma functions as integrals and exchanges

the order of integration, the result is an n-fold integral

TOO fl       /"Pi""' ••• o"'"' <toi ••• dv*

/„    Cl  •   c, ro3)r(ai) ... r(aJ Jg ■■■ Jo (1 + m + ... + cjaj

which can be identified as an n-fold Lauricella sum FA of n variables [4, pp. 114, 115].

Although special manipulative formulae exist for this function, the results do not

appear numerically advantageous for n > 1. However, this integral is also an in-

verted Dirichlet distribution and some recursive results are given in [27] for ak even.

For n = 1, we have very simple results in terms of the incomplete beta distribution
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260 D. E. AMOS AND W. G. BULGREN

fm 6      1 y(cxt cz)

,„> Jo    T(ß) T(a)
(12) a > 0, ß > 0,

' e~'z*~' r(a, cz) ,       .    .« ,
"W r(«) *" a)'

* = c/(l + c),      1 - X = 1/(1 + c).

r
For n = 2, the Lauricella function reduces to the Appell F2 function of two variables

[4, p. 28], [8, p. 230]. This function also has special manipulative properties, but some

additional formulae in terms of readily computable functions can be derived. We

start with

g-y-Sfa.c.z) 7(«2,c2z)
h<£,c,ß)= f

Jo T(ß)   r(ai) r(«.)

and use various representations of 7(01, cxz) and y(a2, c2z) to derive sums in terms

of incomplete beta distributions. Note the symmetry in (au ct) and (a2, c2). The

representations presented below are obtained by applying (7) in addition to

y(a, x) =     _ T(a, x) T(n, x) _  _x yJ x^

to one or both gamma functions followed by reduction with (12). The results are

(13)        h =-vtawt   x 2^ 77~r—VM     /„(a2, ^ 4-P 4-a,),
«i      Y<&)Y(a{) t_o (1 4- «i)t

M = Cl/(1 + Cl),    1 — u — 1/(1 4" Cj),

y = c2/(l + Cl + c2),   1 - y     (1 + Cl)/(1 4- c, + c2),

man  r        r /     o\       (1 — uf fQ3 4- «i) v1 O3 + "0*   *+«. r   /fc _L fl _L \
«i      r03)r(al) *-o (1 4- ajt

(15) 72 = /.(«„ ß) ~ (1 - «/ £ * +
4-0

0 = c2/(l 4- c2),   1 - i? = 1/(1 4- Ca),  «i a positive integer,

(16) 72 = 1 - /i_u03, «i) - /i-.03, a2)

+ (1 - uf £ TT   W* + 13. "i a Positive integer.
t-o Kl

(15) was obtained by Tiao and Guttman in [27]. Sequences of incomplete beta func-

tions Ix(p 4- k, q) or It(p, q + k), k = 0, 1, 2, • • • , can easily be generated by the

methods described in [1], [3], [11], and [12]. The series in (13) and (14) will be slowly

convergent if ß is large and cx is large. On the other hand, (15) and (16) are computa-

tionally appealing if either or a2 is an integer due to the symmetry in (au cO and

(a2, c2). The series (13) has all positive terms and one expects significant digit results.

The incomplete beta function in (14) helps convergence since Ix(p + k, q) decreases

monotonically to zero for k —► » while IJj>, q + k) increases monotonically to 1

for k —* od .
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COMPUTATION OF A MULTIVARIATE F DISTRIBUTION 261

If Pai(ßi g Fx g bi, ■ • ■ , an t% Fn g bn \ ß, <xk, k = 1, • • • , n) is desired, expansion

of the product in

f " e 'zß    yr y(ak, ckbz) — y(ak, ckaz)

Jo    T(ß)  t\ Z'

with

ckb = akbk/ß,      cka = akak/ß,

gives results in terms of /„. The special case, where ak = a, ak = a, bk = b, is

(17) p.» = E (-!)*(l)ln(<x,ck,ß),

where

<■*>  <**•*> -r^^n^i*
and c6 = ab/ß, c„ = aa/p\ In this form, only two gamma ratios need to be evaluated

for each value of z in (11). On the CDC 6600, with the relative error requirements on

the order of 5 X 10"6 and n = 20, one can expect each integral of (17) to take on

the order of 0.5 to 5 seconds with Romberg integration, the longer times occurring

for larger k values. It is possible that an adaptive Romberg routine could reduce the

computer time.

The Correlated Bivariate F Distribution. The bivariate x2 distribution with

correlation p2 for random variables Xu X2, each with m degrees of freedom, can be

represented as [22]

<       ^ - n _   »V»/' V (™/2).   « fc^r^''-1 exp{-fa + *2)/[2(l - p2)]}
g{.Xl, x2) - (.1     p) ,.,    P [2"/2+<(l - p2r/2+'T(/n/2 + of

If Y is x2 with n degrees of freedom

. 1_ n/2-l -v/2

and Y is independent of Xy and X2, then the variables2,

F  _ M^L , _ , 2

have a joint cumulative distribution given by

P(0 & Fi' £ flt 0 S'F2 ä /2 I p, m, «)

1Q Jo

In series form,

/   /00/ / g(xlt x2) dxx dx2 dy.
Jo Jo Jo

(19) p = (1 — p )    2^ —^— p Wi> c' p)>
i-o I'

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



262 D. E. AMOS AND W. G. BULGREN

where /,(<$,, c, ß) is given by (3), (13), (14), (15) or (16), and

There is symmetry in the pairs (a,, cO, (a2, c2). For use in (1), aj = a2 = m/2 4- »

and there is complete symmetry in Ci and c2. Equations (13) and (14), together with

the quadrature in (3), do not require either at or a2 to be integers. One always ex-

pects significant digits from the positive series (13) and the quadrature of (3). In these

cases, (19) also yields significant digits.

When m is even the formula

(1 — p )     =2^ —7,— p •     0 = p < i.
i-o •!

with (19) and (16) gives

(20) p = l - (l - Pr/2 t       p' W« e, ß). .
i-o I-

where ß = n/2, at = a2 = in/2 + i in

Ud, c, ß) = h-u(ß,«,) + y.-.cs,«,)■

- 0 - «/ it TT "*7i-»03 + *. «2),     «i a positive integer.
4-0 K\

At first glance, one might expect faster convergence for p close to 1. However the

experiments detailed below indicate otherwise. Other series representations can be

obtained by exchanging the order of summation in (19) and (20).

Computations with (19) and (20) were done for the first quadrant of the /„ /a

plane for m, n = 2, 10, 50 and p = 0.1, 0.5, 0.9. No extensive testing of (19) with

(13) or (14) was done because of the slow convergence when ß and cx are large. Al-

though (19) with the quadrature in (3) worked for small p, the speed of (19) (with

(15)) and (20) ruled out the quadrature as a satisfactory procedure for m even. The

series (19) and (20) were truncated when a term was less than 5 X 10-6 of the ac-

cumulated sum (always less than 225 terms). The agreement was generally four signifi-

cant figures with slight discrepancies in the fifth digit for some p = 0.9 cases. When

P < 0.1 in (20), only absolute accuracy was obtained.

The comparisons were made on a CDC 6600 computer with incomplete beta

sequences generated according to the method described in [1] and [2]. 675 comparisons

inside the radii listed in Table 1 showed (19) to be approximately three times faster

than (20) with running times of 2 and 6 minutes respectively. The corresponding

time for the quadrature in (3) for the 450 cases associated with p = 0.1 and p = 0.5

was on the order of 30 minutes with comparable relative error requirements. The

accuracy with which za was isolated in (8) seemed to have a strong influence on the

overall speed of computation in (3).
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computation OF a multivariate F distribution 263

Table 1

Radii in the fu /„ Plane where P = 0.95 on the 45° Ray for p = 0.1, 0.5, 0.9

m\n                2 10 50

2             40.70 7.52 5.58
38.90 7.34 5.49
32.91 6.64 5.07

10             34.22 4.97 3.25

33.33 4.88 3.21
30.39 4.58 3.07

50             30.63 4.09 2.44
30.23 4.05 2.42
28.89 3.90 2.35
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