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Computation of Best One-Sided Lx Approximation*

By James T. Lewis

Abstract. A computational procedure based on linear programming is presented for

finding the best one-sided Li approximation to a given function. A theorem which ensures

that the computational procedure yields approximations which converge to the best

approximation is proved. Some numerical examples are discussed.

1. Introduction. Recently there has been an interest in the problem of finding a

best one-sided approximation to a given function ; that is, an approximation which is

everywhere below (or everywhere above) the function. In [6], [7], [8] the measure

of approximation is the uniform norm; in [1], [3], [8] the integral L, norm. A com-

putational procedure for the latter problem is presented and analyzed in this paper.

Let /(jc) be a real-valued continuous function on [a, b], a(x) a positive continuous

weight function on [a, b]. Assume the set \<t>i, • • • , #„} of continuous functions on

[a, b] is a Chebyshev system; that is, any nontrivial linear combination has at most

7i — 1 zeros in [a, b]. Of course the most commonly used Chebyshev system is the

set of powers {1, x, ■ ■ ■ , x"_l \. Let £(/) denote the set of approximations to / from

below; i.e., the set of all real linear combinations X"-i ai<t>Ax) such that ^,"_¡ a,0,(X)

^ fix) for all x G [a, b]. Then p^ G £(/) is a best weighted L, approximation to f

from below on [a, b] if

^  a(x)(f(x) - p^x)) dx =  inf |£  a(x)(f(x) - p{x)) dx: p E £(/)

Best approximation from above is defined analogously.

Existence of a best approximation is straightforward ; the uniqueness question is

more involved. It has been shown [3] that if / is differentiable on [a, b] and

{<pi, • • • , <t>„\ is a differentiable Chebyshev system (each <>< is differentiable and any

nontrivial linear combination of the derivatives has at most ?i — 2 zeros in [a, b]),

then the best approximation from below is unique. The following elegant theorem

from [1] shows that in certain circumstances the best approximation from below by

ordinary algebraic polynomials may be found by interpolation of / and /' at suitable

points.

Theorem 1. Let n = 2k, j continuous on [a, b], f"\x) ^ Ofor all x in ia, b). Then

the algebraic polynomial p^ of best weighted L, approximation of j from below on

[a, b] of degree ¡ess than or equal to n — 1 is the unique polynomial defined by the equa-

tions :

(l.l) P,0\) = 1<y{).       P*(y,) = f0\).       i = 1, ••• >*,
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530 JAMES T. LEWIS

where the j, are the zeros of the polynomial of degree k orthogonal to 1, x, • ■ ■ , x*~l with

inner product

ig, h) =   f aix)gix)hix) dx.

Proof.   [1, p. 152].
Analogous theorems hold for n odd, for approximation from above, and also if

f"\x) ^ 0 for all x in (a, b). The polynomial satisfying (1.1) is given explicitly by

(cf. [2, p. 37])

(1.2)       Pjtix) = ¿ fiyj 1 - Kj2^ ix - *)W) + ¿ /'0\)(* - y Unix)
i-l \ T 0\) / i-i

where *-(*) = (x -}>,)••• (x - j>t), /<(x) = ir(x)/((x - j\)ir'0\))-

If /'"'(x:) is not one-signed on (a, è), the problem of computing the best one-sided

approximation remains. In Section 2 a computational procedure based on linear

programming is presented and analyzed. This method is analogous to one way of com-

puting the best unconstrained Lx approximation. In Section 3 numerical experience

with the method is discussed.

2. The Computational Procedure. We again consider the problem of approxima-

tion from below from a Chebyshev system {<£,, • • • , <pn\. The basic idea of the com-

putational procedure is to obtain the best weighted L, approximation to / from

below on [a, b] as a limit of best weighted (with a different weight function) LY ap-

proximations to / on finite point subsets of [a, b]. Let Xm = [x¡; j = 1, • • • ,777} be

a subset of [a, b] with a = x0 < *i < • • • < xm = b and mesh size

p„ = max1£is„ ¡Xi — x,_i|. The appropriate weighted problem on Xm to consider is

m

(2.1) min X) <*(*,)(/(*,) - PixùXxi - *,_,)
p    i-i

(2.2) subject to   p(*,.) ^ /(*,),       j = I, ... , m.

The existence of a solution to this problem can be easily established ; however, in

general the solution will not be unique, as in the following example.

Example inonuniqueness). Let Xm = { — 1, 0, lj, xQ = —2; /(— 1) = 1, /(0) = 0,

/(l) = 1; ai-l) = a(0) = a(l) = 1. It can be verified that for any ß £ [-1, 1]

the polynomial ßx is a best weighted L¡ approximation to / from below on Xm of

the form ax + a2x.

For a given set Xm a solution of the problem (2.1), (2.2) can be obtained by linear

programming techniques; this will be discussed in more detail in Section 3. Now let

Xm, m = 1, 2, • • -, be a sequence of subsets of [a, b] such that ¡xm —> 0 as m —* <»

and let pm be a solution of the problem (2.1), (2.2) on Xm. We wish to analyze the

behavior of pm as m —» °o. The following lemma dealing with the approximation of

an integral by a Riemann sum will be useful. Let

co(A; p.) = sup \\hix) — Af»|: x, y G [a, b], \x — y\ < /¿}

be the modulus of continuity of the function h on [a, b].

Lemma 1.  Let a(x), g(x) be continuous on [a, b] and Xm as described above. Then
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I   aix)gix) dx —  £ a(x,)g(x ,)(*,■ — x,-i)
•la i-1

g ib — a)oiiag; pm).

Proof.   Cf. [11, p. 79].
Notice that since o¡(ag; pm) —> 0 as m —> °° the difference between the integral

and the sum tends to zero as m —* œ. The main result of this paper, which is the ana-

logue of a theorem due to Motzkin and Walsh [9, p. 394] on unconstrained approxi-

mation, is now stated and proved. The proof is patterned after that of [11, p. 80].

Theorem 2. Let j be a continuous function on [a, b]; Xm = {x,-: j = 1, • ■ ■ ,m},m =

1, 2, • • • , a sequence of discrete subsets of [a, b] with a = x0 < Xi < • • • < xm = b

for each m. Suppose p„ = maxlsíSm \x¡ — x,_i| —> 0 as m —> oo. Let pm be a best

L, approximation from below to / on Xm with weights afoX*, — X/_i). Then there

exists a subsequence of {pm} which converges uniformly to a best weighted Lx approxi-

mation to f from below on [a, b]. If the latter best approximation is unique, then p„

converges to this best approximation as m —» «>.

Proof. First it will be shown that {pm\ is uniformly bounded on [a, b\. Let p% be

a best weighted Lx approximation from below to / on [a, b]. Set

r„ =   /   aix)iiix) - p*ix)) dx,
J a

crm =   2 "(*í)(/C*í) — P*iXi))(Xj — *,-i).
>-i

By the definition of pm and the fact that pjixi) Si /(*,■) for all x¡ G Xm we have

m

O"™   =    2 «(•*>)(/(■*>■)   -   PmiXj))iXi   -   *,_,)
1-1

S    Z <*(*,)(/(*,)   -   />,(*,))(.*,   -   *,_,)
1-1

^ <r„, + 1    for all m S; some Mi by Lemma 1.

Hence

m

H <*iXj) \PmiXj)\ ix,- — x,-l) ^ <r„ + 1 + (ft — a)  max   |a(x)/(x)| = C
1-1 xSla.bi

some constant.

Now let L., • • • ,L be n closed disjoint subintervals of [a,/3], each of length (6 — a)/2n

say. Choose M2 so that pm ̂  (¿> — a)/6« for all m ^ Af2. Set ¿,- = {_/: [jc,_„ x¡\ CL},

i* =  1, • • •  ,7i. Then

X«C*i) l/>»(*i)l (*> — */-i) è ( min  aix))[min |pM(jc,)|)  2 (*í - *í-i)

è  ¿(min b-C*,)|)(^).

where

¿ =    min aix) > 0    since a(x) > 0 for all x G [a. ¿>1-
»eis.u

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Hence there exists some constant, say E, such that min)gäi [pm(;c,)| ̂  is for /'= 1, • • • , n

and all m. Now let r, G Xm F\ I, be a point such that rnin,6<( \p,„iXj)\ = |/7«(/,)|,

; =   1,  •■•  , 77. Set

01 (Zl)

ÖU. --») =

*l(Z.)

*«(z.)

«.(z.)

Then the generalized Lagrange interpolation polynomial which assumes the value y¡

at z, (/ =  1, • • • , ti) is

i-i

D(z, X, Zu zn)

0(2,

Hence

Pm(.X)   =     X)  P»(í¿)
0(7,

Zn)

Í.-1, *,  ti + ] 7,.)

£>(ii, ,7„)

Since 7, G L (i = 1, • • • , «) and the L are closed and disjoint, {#j, • • • , <pn\ being

a Chebyshev system implies there exists D such that \Ditu • • • , tn)\ ^ D > 0 inde-

pendent of m. Hence

max   \pm(x)\ ^ — X   max   l°(ii, ••• , Í.--1, x, ti+

<  F some constant, independent of m.

OI

Thus jp„¡ is uniformly bounded.

Now let {pmt | be a uniformly convergent subsequence with limit, say, p0. We wish

to show p0 is an approximation from below to / on [a, b]. Suppose not, that is,

assume there exists x* G [a, b] with fix*) — Poix*) = —7 < 0. By the continuity

of / at x* we can find M3 so that \x* — y\ < pM, implies |/(x*) — fiy)\ < y¡4.

By the uniform convergence of p„,k to p0 we can find AL, so that mk 5: Af4 implies

maxie[at61 !/>„,,(*) — M*)l < 7/4. By the continuity of p0 at x* we can find AL, so

that \y — x*| < pMh implies \p0iy) — Poix*)\ < 7/4. Now let M be an index from

the subsequence {mk\ such that M S: AL,, m.,, í£ Pm„ Pm ^ "«.- Let j> G A\„

with ].y* — j>| < pu- Then

-7 = fix*) - Poix*)

=  (fix*) - f(y)) + (/OO - p,,(y)) + (p^OO - PoCf)) + OoO)

^ -|/C**) - /GOI + 0 - IpmO) - poGOI - \Po(y) - Po(x*)\

a;  —37/4    a contradiction, since   7 > 0.

Hence fix) — p0(x) ¡t 0 for ail x G [a, b).

Next set ¡r0 = J'a(*)(/(x) — p0ix))dx. To show o-0

Since /?„,, converges to p0 we can find A/6 such that wt ^ Mt implies

pax*))

<r+. Let é > 0 be given.

(2.3) r„ —   J    a(x) \f(x) — pmt(x)\ dx < e/3.
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By Lemma 1 there exists M7 such that mk ^ M7 implies

(2.4)

(2.5) a(x) \fix) - pNix)\ dx - aN

0* —   ]C a(xi)(jixi) — p±(x,))(Xj — *,•_,)   < e/3.
i-i I

Again by Lemma 1 we can find N with N ^ A/6, N ^ M- such that

<e/3.

Hence |<r„ - aN\ < 2e/3 by (2.3), (2.5). Now

A"

<?n Ú   X <*(•*,)(/(•*.) — p^OOX*, — *í-i) ú c* + e/3
í-i

from (2.4). Thus o¡. ^. oo ík <rN + 2 e/3 S[ o^ + t. Since e was arbitrary we have

<T0 = o^ and Po is a best approximation to / from below on [a, b]. If p# is unique

then p0 = p^. Since any convergent subsequence of the uniformly bounded sequence

pm converges to pt, the sequence p„ converges to p#.

3. Numerical Examples. In this section numerical experience with the com-

putational procedure is discussed. We consider the special case of approximation by

ordinary polynomials ifaix) = x''1) with weight function aix) = 1. We will take

sets X„ of the form

X„ =  {*,: j = 1, • • ■ , m} = {a + (J/m)(b — a): j = 1, • • • , m\,

i.e. evenly spaced partitions of [a, b]. The problem (2.1), (2.2) is then the linear pro-

gramming problem:

min    - X) (/(*/) —  IZ a,(*,),_1)

subject to

2 a.i^i)'"1 ^ /(*;)> ./' =   1, • • •  , in.
• —1

This is equivalent to the problem :

(3.1) max    ¿ a/¿ C*/)'"1
ai, .".o»    i-l M-l

(3.2) subject to     ¿ «<(*>)<_' á /(*;).        ;' = 1, ■   -, m.
• -i

The techniques for solving linear programming problems are well developed, cf. [4]

or [5]. In the problem (3.1), (3.2) n is the number of variables and m the number of

constraints. Since m will be much larger than n and since the amount of computation

depends primarily on the number of constraints, it is better to solve the dual problem

of (3.1), (3.2), cf. [5, Chapter 8]. This is the problem:

m

(3.3) min     J^ u¡f(x¡)
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(3.4) subject to    X «íí*»)'-' =  23 (*<)* *•        » = 1, ••• ,n
i-l i-1

and «, è 0, ; = 1, • • • , m.
This problem is in standard form for the application of the simplex method.

For various reasons, including the amount of storage space required, it is advan-

tageous to use the revised simplex method on a computer. The revised simplex method

was programmed as a subroutine and used to solve the above linear programming

problem (3.3), (3.4). Although degeneracy was present, that is the objective function

did not change during some iterations, no cycling was encountered in the examples

run. AU computations were in double precision on the IBM System 360/50. A tol-

erance of 10~10 was used in deciding whether a basic feasible solution had been

reached and in deciding if the optimal solution had been obtained. In the following

examples the problem is to find the best Lj approximation from below on [— 1, 1]

to the given function by a cubic polynomial a, + a2x + o3x2 + o4x3.

Example 1. /(x) = exp ix).

Since fu\x) ^ 0 on [—1, 1] an explicit solution is available using Theorem 1.

This solution is obtained by interpolating / and /' at the zeros ± \/3/3 of the quad-

ratic polynomial (here the Legendre polynomial) orthogonal to 1, x on [—1, 1].

After some algebraic manipulation we obtain from (1.2) (setting R = -\/3/3):

,#w . fiLzJB, + V±®e-* + x(t±±me» _ (M_M)^)

Table 1 gives the results (rounded to five decimal places) of solving the problem

on the finite point subset Xm of [—1, 1] by the revised simplex method. According

to the theory in Section 2 the solution on Xm tends to the solution on [—1, 1] as

m —> ». Observe that with a mesh size of .002 (ttj = 1000) each parameter of the

solution on Xm agrees with the corresponding parameter of the solution on [—1, 1]

to four decimal places.

Table 1

m 20 80 200 1000 Exact Solution

m/b-a .1 .025 .01 .002

.99493 .99501 .99527 .99527

.99900 .99901 .99906 .99906

.52926 .59901 .52821 .52824

.17247 .17244 .17228 .17229
10              13              19

Example 2. /(x) = x*.
Since f*\x) è 0 on [— 1, 1] the exact solution can be obtained as in Example 1.

It isp^x) = —1/9 + 2x2/3. Convergence is not as rapid as in Example 1.

a, .99244

a2 .99850

a3 .53619

a4 .17386
4 iterations 6
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777

m/b — a

20
.1

Table II

80 200
.025 .01

1000
.002

Exact Solution

a2

a3

a*

iterations

.17634
0

.85000
0
6

.11902
0

.69062
0
10

-.11710

0
.68450

0
13

.11084
0

.66586
0
18

-.11111

0
.66667

0

Example 3.

fix) = exp (x),

= l + x,

-1 g x < 0,

Ogxál.

/ is differentiable so the best approximation from below is unique. However, /"

does not exist at zero ; hence no explicit solution is available.

m

m/b — a

20

.1

Table III

80
.025

200
.01

1000
.002

«i
a2

a4

iterations

.99569

.92841

.18705

.11355
4

.99588

.93212

.18588

.11824
7

.99584

.93188

.18598

.11794

.99586

.93207

.18590

.11818
13

Example 4.

fix) = exp i-x2),       -1 | jt < 0,

= 1 + x2, 0 g x <  1.

Again, /' exists but/" does not.

m

m/b — a

Table IV

20      80    200     1000
.1      .025    .01     .002

a,

a2

a3

a4

iterations

.94370

.38473

.20238

.46919
6

.95465

.35291

.17109

.52135
9

.95464

.35298

.17098

.52140

.95463

.35299

.17100

.52139
14
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536 JAMES T. LEWIS

This procedure demonstrates the utility of linear programming in solving prob-

lems in approximation theory, see also [10]. Since the constraint matrix is "thin",

one dimension being the number of parameters in the approximating function,

storage problems were not encountered. Computing time for m = 1000 was about

30-40 seconds.
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