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Abstract. We give a combinatorial formula for the Betti numbers which appear in a 
minimal free resolution of the Stanley-Reisner ring k[A(T~)] = A/IAt7~) of the boundary 
complex A(79) of an odd-dimensional cyclic polytope T ~ over a field k. A corollary to the 
formula is that the Betti number sequence of k[A(79)] is unim.odal and does not depend on 
the base field k. 

Introduction 

Let A = k[Xl, x2 . . . . .  xv] denote the polynomial ring in v variables over a field k, which 
will be considered to be the graded algebra A = ~)n>__0 An over k with the standard 
grading, i.e., each deg xi = 1. Let Z (resp. Q) denote the set of  integers (resp. rational 
numbers). We write A ( j ) ,  j e Z, for the graded module A ( j )  = ~ n ~ z  [A(j)]n over A 
with [A(j)]n : =  An+j. Let 1 be an ideal of  A generated by homogeneous  polynomials  
and let R be the quotient algebra A/1 .  When R is regarded as a graded module over A 
with the quotient grading, it has a graded finite free  resolution 

0--+ ~ A ( - - j )  ~hj ~oh . . .  ~ ~ A ( _ j ) / 3 b  ~,> A ~o R ~ O ,  (1) 
j~Z j~Z 

where each ~ ) j e z  A ( - J )  ~'j, 1 < i < h, is a graded free module of  rank 0 # )"~-jez flij < 
oo, and where every ~0i is degree-preserving. Moreover,  there is a unique such reso- 
lution which minimizes each flit; such a resolution is called minimal. I f  a finite free 
resolution (1) is minimal, then the homological dimension hda (R) of  R over  A is the 
nonnegative integer h and fli =/3/~ (R) :=  )--~-jez fib is called the ith Betti number of  R 
over A. 
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When R is a Stanley-Reisner ring, i.e., R = A l l  where I is generated by square-free 
monomials, its Betti numbers can be studied not only from an algebraic viewpoint but also 
from a topological and combinatorial one. It is an interesting problem to determine all 
the Betti numbers of the Stanley-Reisner rings for a good class of simplicial complexes. 

In this paper, we give a combinatorial formula for the Betti numbers of the Stanley- 
Reisner ring of the boundary complex of an odd-dimensional cyclic polytope. Cyclic 
polytopes are important in combinatorics and have many good properties. For an even- 
dimensional cyclic polytope, its associated Stanley-Reisner ring has a pure minimal free 
resolution. Thus its Betti numbers can be easily computed from its Hilbert function. See 
[Sc]. On the other hand, when a cyclic polytope has an odd dimension, its associated 
Stanley-Reisner ring does not have a pure minimal free resolution. We need much deeper 
analysis to calculate the Betti numbers. 

1. Simplicial Complexes and Hochster's Formula 

We first recall some notation on simplicial complexes and Hochster's topological formula 
on Betti numbers of  Stanley-Reisner rings. We refer the reader to, e.g., [BHe], [H1], 
[Ho], and [St] for detailed information about combinatorial and algebraic background. 

(1.1) A simplicial complex A on the vertex set V = {xl, x2 . . . . .  X v )  is a collection of 
subsets of V such that 

(i) { x i } � 9  < i < v a n d  
(ii) tr �9 A , r  C tr =r r e A. 

Each element tr of A is called a face  of A. Let #(or) denote the cardinality of a finite set 
cr. We set d = max{#(cr) I tr �9 A} and define the dimension of A to be dim A = d - 1. 

Given a subset W of V, the restriction of A to W is the subcomplex 

Aw = {a �9 A I cr c W] 

of A. In particular, Av = A and A z  = {0}. 
Let Hi(A; k) denote the ith reduced simplicial homology group of A with the coef- 

ficient field k. Note tha t / -~ -1  ( A ;  k)  = 0 if A 5~ {0} and 

/-)i({O}; k) = {~ (i _> 0), 
(i = --1). 

(1.2) Let A = k[xl ,  x 2 . . . . .  X v ]  be the polynomial ring in v variables over a field k. 
Here, we identify each xi �9 V with the indeterminate xi of A. Define IA to be the ideal 
of A which is generated by square-free monomials XilXi2 �9 �9 �9 Xir , 1 < il < i2 < " "  �9 < 
ir < V, with {Xil, Xi2 . . . . .  Xir} ~ A. We say that the quotient algebra k[A] := A / I A  is 
the Stanley-Reisner ring of A over k. In what follows we consider A to be the graded 
algebra A = ~n>O An with the standard grading, i.e., each d e g x i  = 1, and may regard 
k[A] = ~)n_>0 (k[A])n as a graded module over A with the quotient grading. 
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(1.3) Let h = hdA(k[A]) denote the homological dimension of  k[A] over A and 
consider a graded minimal free resolution 

0 , ~ A ( - - j )  #hj Y'~ . . .  ~ ~ A ( - j ) ~ ' J  ~'> A ~-~ k[A] ) 0 
jcZ jEZ 

o f k [ A ]  over A. It is known that v - d _< h __< v. 
We say that a simplicial complex A (or a Stanley-Reisner ring k[A])  is Cohen- 

Macaulay (resp. Gorenstein) over a field k i fh  = v - d (resp. h = v - d and ~v-d = 1). 
Hochster 's formula [Ho, Theorem (5.1)] guarantees that 

/~ij = E dimk ~Ij-i-l(mW'~ k). 
wcv,#(w)=j 

Thus, in particular, 

~/A(k[A]) = E dimk ffl#r k). 
WcV 

Some combinatorial and algebraic applications of  Hochster 's  formula have been 
studied. See, e.g., [Ba], [BH l l, [BH2], [?], [H2]-[H4],  [TH1 ], and [TH2]. 

2. Cyclic Polytopes 

In this section we briefly summarize the definition and basic facts of  cyclic polytopes 
according to [BL] and [Br]. See those references for detailed information. 

(2.1) Let R denote the set of  real numbers. For any subset M of  the d-dimensional 
Euclidean space R a, there is a smallest convex set containing M. We call this convex set 
the convex hull of M and denote it by conv M. For d > 2 the moment curve in R a is the 
curve parametrized by 

t ~ X(t) :=  (t, t 2 . . . . .  td), t E R. 

By a cyclic polytope C(v, d), where v > d -{- 1 and d > 2, we mean a polytope 7 9 of  
the form 79 = conv{x(tl) . . . . .  x(tv)}, where tl . . . . .  to are distinct real numbers. It is 
well known that C(v, d) is a simplicial d-polytope with the vertex set {x (tl) . . . . .  x (tv)}, 
and its face lattice is independent of  the particular values of  t. Therefore its boundary 
complex is a simplicial complex and has the same combinatorial structure for any choices 
of  vertices. We denote it by A(C(v ,  d)). 

Let V = {xl . . . . .  xv} be the vertex set of  C(v, d). Let W be a proper subset of  V. A 
subset X of  W of the form X = {xi, xi+l . . . . .  xj} is said to be a contiguous subset of  
W if i > 1, j < v, xi- i  f[ W, and xj+l f[ W. The set X is a left end-set of  W if i = 1 
and xj+t f[ W, and a right end-set of  W if j = v and xi-1 r W. We say that X is a 
component of W if X is a contiguous subset or an end-set o f  W. A subset X of  W is said 
to be even (resp. odd) if the number of  elements in X is even (resp. odd). The set W can 
be written uniquely in the form W = Y1 U X1 U --- U Xn U Y2, where Xi, 1 < i < n, 
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is a contiguous subset of W, and Yi, i = 1, 2, is an end-set of  W or an empty set. We 
quote two facts which are necessary later. We may abuse notation and call a subset W 
of V itself a face of C(v, d) if  conv W is a face of C(v, d). 

L e m m a  2.1 [Br, Theorem 13.7]. Let W be an m-element subset o f  V, where m < d. 
Then W is an (m - 1)-face of  C (v, d) i f  and only i f  the number of  odd contiguous subsets 
of W is at most d - m. 

Lernma 2.2 [Br, Corollary 13.8]. Let m be an integer such that 1 < m < [d/2]. Then 
all m-element subsets of  V are (m - D-faces of C(v, d). 

3. Betti Numbers of Stanley-Reisner Rings Associated with Cyclic 
Polytopes 

In this section we compute the Betti numbers of  a minimal free resolution of the Stanley- 
Reisner ring k [A (C (v, d))] of the boundary complex A (C (v, d)) of  the cyclic polytope 
C(v, d). 

We fix a field k. I f  the dimension d is even, a minimal free resolution of  k[A] 
is pure and the Betti numbers can be easily computed from the Hilbert function of 
k[A]. 

Proposition 3.1 [Sch]. Let A be the boundary complex A(C(v,  d)) of  the cylic poly- 
tope C (v, d), where d > 2 is even. Then a minimal free resolution of  k[ A ] over A is o f  
the form 

d 
0---> A(--v)--* A - v  + ~ 

---> A --+ k[A] ---> 0, 

I 
~ v - d - I  

+ 1  ~ . . - ~ A  

where, for  1 < i < v - d - 1, 

~i=(v-d/2-1)(d/2+i-l)+( , d/2 -id_/21 -l)(o-d/2-i-l).d/2 

Our formula on fli in Proposition 3.1 is, in fact, a little bit different from the one in 
[Sc]. However, it is easy to show that they are coincident. 

I f  the dimension d is odd, the minimal free resolution of k[A] is not pure, and the 
situation is much more complicated. 

Now we state the main theorem in this paper. 

Theorem 3.2. Let A be the boundary complex A(C0:,  d)) of the cyclic polytope 
C(v ,d ) ,  where d >_ 3 is odd. Then a minimal free resolution of  k[A] over A is o f  
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the form 

0---~ A ( - v ) - - - > A ( - v + [ d ] + 2 ) b v - a - l ~ A ( - v + [ d ] + l )  bl--->... 

---> a ( - [  d ] - 2 )  b z ~ a ( - [  d ] - 3 )  b~ 

a ( - [  d ]  1 ) b ' ~ a ( - - [  d ]  2)  b~ 
-~ - -  - -  - - ~  A - - ~  k [ A ]  - - ~  0 ,  

where, for 1 < i < v - d - 1, 

bi_ (v-[d~2]-2) ~ [d/2]+i-1) 
[d/2] -I- i ~, [d/2] " 

Even if the geometric realization I A I of a simplicial complex A is a sphere, a Betti 
number of the Stanley-Reisner ring k[A] may depend on the base field k in general. See 
Example 3.3 of [TH1]. However, as for the boundary complexes of cyclic polytopes we 
have the following result: 

Corollary 3.3. Let A be the boundary complex A(C(v, d)) of the cyclic polytope 
C(v, d), where d > 2. Then all the Betti numbers of the Stanley-Reisner ring k[A] are 
independent of the base field k. 

We prepare several lemmas to prove the theorem. We put A = A(C(v, d)) and 
V ----- {1, 2 . . . . .  v} for simplicity, and fix an odd integer d > 3. 

Lennna 3.4. If v is odd and W = { 1, 3, 5 . . . . .  v}, then 

H[d/2]_I( Aw; k) -~ O. 

Proof We have ffl[d/2]_l(Aw;k) -~ ffl[d/2](Av-w;k) by the Alexander duality 
theorem (see, e.g., p. 76 of [St]). Since V - W = {2, 4 . . . . .  o - 1}, if tr is a subset 
of V - W with #(tr) > [d/2], then tr does not belong to A by Lemma 2.1. Thus 
we have ffl[d/2](Av_w; k) = O. [] 

Lemma 3.5. If  v is even and W = { 1, 3, 5 . . . . .  v - 1 }, then 

HFd/21-~ (Aw; k) = 0. 

Proof 
cr C W, #(a) = [d/2]. Thus Aw is a cone with 
I?1td/21-1 (Aw; k) = 0. 

Lemma 3.6. Ifv is even and W = {2, 4~ 6 . . . . .  v}, then 

/-][d/2]-I (~W,  k) = 0. 

All the maximal faces of Aw are of the form {1} U tr, where 1 r or, 
apex {1}. Hence we have 

[] 
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Proof  
--~-0. 

Lemma 3.7. 
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As in Lemma 3.5, Aw is a cone with apex {v}. Hence we have I71ta/2]_1 (Aw; k) 
[]  

I f v  is o d d a n d  W = {2, 4, 6 . . . . .  v - 1}, then 

dimk Hta/2]-i (Aw;  k) = ([v /21 - 1)  
[d/21 " 

Proof. Let 

0 - " ~  Cd  ""~ C d -  1 -"> " ' '  "-> C 1 --> C o - - ~  C _  1 ----~ 0 

be the augmented chain complex of  the simplicial complex A w over k. Then we have 
C[a/2] = 0 and, for j < [d/2], all the ( j  + 1)-subsets of  W form a basis of  Cj as a vector 

space by Lemmas 2.1 and 2.2. Thus we h a v e / 4 j ( A w ;  k) = 0 for all j < [d /2]  - 1. 
Hence, the Euler-Poincar6 formula (see, e.g., p. 223 of  [BHe]) gives 

dimk/-][d/2]-1 (Aw; k) 

= (Iv~21- 1). 
\ [d/2] 

[]  

the lemma holds. 
Next let v > d -I- 1. Let 

! ! 

V -- W = X 1 U X2 ( . J . . .  U Xn+ 1 

L e m m a  3.8. Let  W be a nonempty proper subset o f  V with a unique decomposition 

W = Y 1 U X 1 U  X 2 U - - - U X n  UY2 

f o r  some n > O, where Xi,  1 < i < n, is a contiguous subset and Yi, i = 1, 2, is an 
end-set or an empty set. Then 

dimk/4ta/21-1 (Aw; k) = [d/21 /f  Y1 = O and Y2 = 0 ,  

otherwise, 

where we define [d/21 = 0 / f n  - 1 < [d/2].  

Proof. We prove the lemma by induction on the number v of  vertices. First let v = d +  1. 
Then C(v,  d) is a d-simplex. Thus Hfa/21-1 (Aw; k) = 0 for every subset W C V. Since 
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be a unique decomposition, where X~, 1 < i < n + 1, is a component of  V - W. Suppose 
X~(1 < i < n + 1) with #(X~) > 2 exists. Let j be an element of  X~. Put V'  = V - {j}. 
Note that W C V'.  We consider the simplicial complex A'  = A(C(v  -- 1, d))  on the 
vertex set V'. Then we have A~v = Aw by Lemma 2.1. Thus we have Hj (Aw;  k) = 

" ! . 
H i (A w, k). By the induction hypothesis, we are done in this case. 

We put X0 :=  Y1, Xn+l :=  Y2. Next suppose Xi (0 < i < n + 1) with # ( X i )  > 2 
exists. Let j be an element o f  Xi.  Put V '  = V - {j}. We consider the simplicial complex 
A '  :=  A ( C ( v - 1 ,  d)) on the vertex set V'. Then we have A~,_ w = A v - w  by Lemma 2.1. 
By Alexander duality, we have 

H[d/2]_I(AW, k)  -~- lYt[d/2](Av_w; k)  ~- a [ d / 2 ] ( A v _ w ,  k)  = H[d/2]_I(Aw; k) .  

Thus we are done in this case. 
In the remaining case we may assume # ( X i )  = 1 for 1 < i < n, #(X~) = 1 for 

1 < i < n + 1 and #(Yi)  <_ 1 for i = 1, 2. However, in this case we have the desired 
result by Lemmas 3.4-3.7. []  

Proo f  o f  Theorem 3.2. Since k[/x] is Gorenstein (see, e.g., Corollary 5.5.6 of  [BHe]), 
we have hda k[A] = v - d. Let 

0--+ F~-d---~ . . . - *  F2---~ F1 ~ A--+ k [ A ] - +  0 

be a minimal free resolution of  k[A] = A / I A  over A. By Lemma 2.2, we have rain{or 
Z; (IA)~ r 0} = [d/2]  + 1. Then F1 has a direct summand of  the form A ( - [ d / 2 ]  - 1) b~ 
with bl > 0 and Fi, 1 _< i < v - d - 1, may have A ( - - [ d / 2 ]  - i)b, with bi >_ 0 as 
a direct summand. We have Fv-a = A ( - v )  and Fi, 1 < i < v - d - 1, may have 
A ( - v  + [d/2]  + (v - d - i))b,_a_, _ A ( - [ d / 2 ]  - i - 1) b~ as a direct summand by the 
self-duality of  the minimal free resolution (see, e.g., p. 59 of  [St]). By Proposition 1.1 of  
[BH2] we can easily check that other shiftings do not appear, since k[A] is Gorenstein. 
Thus we obtain the desired form of  the minimal free resolution of  k[A]. 

We now determine the graded Betti numbers bi, 1 < i < v - d - 1. By Hochster 's  
formula we have 

bi = t~iid/21+i = E dimk /~[d/2]-I ( A w ;  k) .  
wcv,#(w)=[d/2]+i 

Let ci(n ) denote the number of  ([d/2]  + / ) - subse t s  W of  V such that W has a unique 
decomposition W = X1 td X2 . - -  U Xn where Xi,  1 < i < n, is a contiguous subset of  
W. Then ci (n) is the number of  positive integer solutions o f  the system of  the equations 

Y l + Y 2 - t -  " + Y n + l = V  - "~ - - i .  

Thus we have 

1)(v / 1 ) 



294 N. Terai and T. Hibi 

By Lemma 3.8 and combinatorial identities in Appendix 3 of  [Br] we have 

( n - l )  
bi = Z ci(n) [d/21 

_ n - -  [ d / 2 ]  - \ [d /2 ]  

= ( [ d / 2 ] + i - - 1 ) ( v - [ d / 2 ] - - 2 )  
\ [d/2]  i + [d/2]  " 

[] 

4 .  U n i m o d a l i t y  o f  B e t t i  N u m b e r  S e q u e n c e s  

In this section we show unimodality of  the Betti number sequence (/~0, ~61 . . . . .  /~o-d) 
of  the Stanley-Reisner ring k[A (C (v, d))]  associated with the cyclic polytope C (v, d). 
Since this sequence is symmetric, i.e., /ffi = ~ - d - i  for every 0 < i < v -- d, the 
unimodality means ~0 < fll < "" �9 < ~(~-d)/21. 

L e m m a  4.1. Suppose d is odd. With the same situation as in Theorem 3.2 we have the 
f o l l o w i n g :  

(1) I f  v - d is even, then 

b l  < b2 < " ' "  < b ( v - d ) / 2  > b (v -d+2) /2  > " ' "  > b v - d - l .  

(2) I f  v - d is odd, then 

bl  < b2 < "-"  < b ( v - d - 1 ) / 2  > b ( v - d + l ) / 2  > " ' "  > b v - d - l .  

Proof  This lemma is clear from the following observation. 

b i i( i  + 1 + [d/2])  
- -  > 1  

b/+l ( [d/Z]  + i ) ( v  - 2 [ d / 2 ]  - 2 - i) 

- 2 - i  < i \   557 

r V - - 2 [  d ] - 2 - i < i  

V -- 2[d/2]  - 2 
r < i  

2 

v - - d - 1  
r < i .  

2 - 
[] 
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C o r o l l a r y  4.2. Let  A be the boundary complex A ( C ( v ,  d) )  o f  the cyclic polytope 

C ( v, d). Then, the Betti number sequence (f i0(k[A]),  fll (k [A])  . . . . .  t~v_d(k[ A ]) ) o f  the 
Stanley-Reisner ring k[A]  over A is unimodal. 

Proof. Suppose  d is odd. T h e n  fli = bi + bv-d- i  for 1 < i < v -- d - 1. N o w  the 

corol lary  is c lear  f rom the above  l e m m a .  

Suppose  d is even. By  Propos i t ion  3.1 and T h e o r e m  3.2, we  see ]~i(k[A]) = 

f l i ( k [ A ( C ( v  + 1, d + 1))]) for  0 < i < v - d. Thus we  can reduce  this case  to the 

odd-d imens iona l  case. []  
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Note added in proof. Afte r  submi t t ing  this article,  we obta ined  the "s tacked  p o l y t o p e "  

vers ion o f  our  results. See  [TH3].  


