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Abstract 
Four problems of proximity between two convex 

polytopes in R' are considered. The convex polytopes 
are represented as convex hulls of finite sets of points. 
Let the total number of points in the two finite sets 
be n. W e  show that three of the proximity problems, 
viz., checking intersection, checking whether the poly- 
topes are just  touching and finding the distance be- 
tween them, can be solved in O(n) time fo r  fixed s and 
in polynomial t ime f o r  va y i n g  s .  We  also show that 
the fourth proximity problem of finding the intensity 
of collision f o r  varying s is NP-complete. 

1 Introduction 
In applications such as robot motion planning and 

VLSI layout, which involve the relative motion or 
placement of several objects, the quantification of 
proximity between a pair of objects plays an impor- 
tant role. Let A and B be two objects (compact, con- 
nected sets in R'). There are four important proxim 
ity problems whose solutions adequately describe the 
proximity between A and B. They are: 

PI: check whether A and B intersect; 

Pz: check i fA and B are just touching; 

P3: if A and B are non-intersecting, compute the min- 
imum distance between them; and, 

P4: if A and B are intersecting, compute the intensity 
of collision between them. 

The problems will be formally defined in the next sec- 
tion. 

Let us briefly mention the usefulness of these prob- 
lems in Robotics. Gilbert and Johnson [ll], and, 
Gilbert and Hong [lo] use the euclidean distance be- 
tween the obstacle and the robot parts in collision- 
avoidance path planning and collision detection. Dis- 
tance is used as a measure of how far a robot part 
is from collision with an obstacle. When the two ob- 
jects intersect the distance between them is zero. This 
gives no information about the intensity of collision. 
The negative of the minimum euclidean distance by 
which the two objects must be relatively translated so 
as to separate is defined as the intensity of collision. 
Buckley [l] uses this measure in a penalty approach to 

collision-avoidance robot motion planning. Problems 
PI and P3 are directly related to the distance and the 
intensity of collision. Hence they are also useful. 

In this paper we discuss the complexity of solving 
the four problems. The representation for the objects, 
A and B plays an important role in deciding the com- 
plexities. In the literature the two objects are usually 
taken to be convex. If an object is non-convex it can 
be usually expressed as the union of a finite number 
of convex parts. Then, given two objects, the solution 
of the four problems for each pair of convex parts of 
the two objects usually yields a solution of the prob- 
lems for the given pair of objects. If A and B have a 
smooth boundary then the problems may not be solv- 
able using a finite amount of computation [13]. In this 
paper we take A and B to be convex polytopes, a rep- 
resentation popularly used in Robotics. A polytope 
can be described in two ways: (1) the point descrip- 
tion, in which the polytope is given to be the convex 
hull of a finite number of points; and (2) the facial de- 
scription, in which the polytope is given as the set of 
points satisfying a finite number of linear inequalities. 
Most of the results in this paper concern the point de- 
scription. (A few comments will be made at the end 
of the paper about complexities associated with the 
facial description.) Let m and n be integers satisfying 
1 < m < n <  00, 

A = Co(Ap) and B = Co(Bp), (1.1) 

where card(Ap)=m, card(Bp)=n - m, and, given X c 
R', Co(X) and card(X) denote the convex hull of X 
and the cardinality of XI  respectively. 

We will analyze algorithms for the four problems in 
terms of two complexity types, described as follows. 

n p e  1 Complexity: s is assumed to be fixed and, 
complexity is viewed as a function of n and is 
measured in terms of the number of arithmetic 
operations required. 

Qpe 2 Complexity: s is taken as a variable, all 
data (Le., Ap and Bp) are assumed to be rational 
and, complexity is viewed as a function of L, the 
total data size in number of bits, and measured in 
terms of the number of bit operations required. 

Type 1 complexity is appropriate in applications such 
as Robotics where s is small, say s 5 3. Type 2 com- 
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plexity is useful in other applications which involve 
larger values for s. 

There is a wealth of literature on the problems, PI 
and P3. There are two different approaches. The first 
approach, with its roots in Computational Geometry, 
aims to design algorithms with a low type 1 complex- 
ity. For s = 2, with Ap and Bp given such that their 
members are the vertices of A and B given in order, 
Chazelle and Dobkin [4] have given an O(1ogn) alge 
rithm for PI and, Chin and Wang [5] and Edelsbrunner 
181 h ave independently proposed an O(1og n) algorithm 
or Ps. For s = 3, with the com lete vertex-edge-face 

descriptions of A and B given gate that Euler's for- 
mula for three dimensional olytopes implies that the 
size of this description is Ok)), Chazelle and Dobkin 
[4] have given an 0 n) algorithm for P I ,  and, Dobkin 
and Kirkpatrick [7] 6 ave proposed an 
for Pa. Megiddo [17, 91 has 
for PI assuming only point 
His algorithm does not restrict itself to s = 3. Thus 
Megiddo's result on the complexity of PI is a clear 
improvement of Chazelle and Dobkin's result. Fur- 
thermore, Megiddo's ideas can be used to show that 
PI has a polynomial type 2 complexity. 

The second approach to the solution of PI and 
4, considered by Gilbert et.al., [12], has its roots in 
Mathematical Programming. The main aim of this 
approach is to design practically efficient algorithms. 
The algorithm su ested in 121 solves PI and P3 si- 

complexity, detailed computational tests have shown 
that its average type 1 complexity is O(n). 

Let us now come to the main contributions of this 
paper. We propose a new approach to the solution of 
P2 and P3 which can be viewed as a nontrivial exten- 
sion of Megiddo's approach to PI .  Let A and B be 
given by (1.1). We first reduce P3 to a nice quadratic 
programming problem. This reduction is combined 
with two recent quadratic programming algorithms 
[16, 17, 191 to give: 1 an algorithm for P3 whose 
type 1 complexity is b(!n); and (2) an algorithm for 
P3 whose type 2 complexity is polynomial. The former 
algorithm implies a complexity result which is a clear 
improvement of Dobkin and Kirkpatrick's result for P3 
since: (1) our algorithm is not restricted to s = 3; and 
(2) even for s = 3, our algorithm does not require the 
vertex-edge-face descriptions of A and B. (Note that, 
for s = 3, the determination of the vertex-edge-face 
descriptions of A and B from the point descriptions of 
A and B requires 0 n logn effort.) These improve- 

rithm over Chazelle and Dobkin's algorithm for solv- 
ing PI.  

Reducing Pz to a problem of checking ,the feasibil- 
ity of linear inequalities, we also derive two algorithms 
for Pz similar to those mentioned above for P3. It ap- 
pears that, for PI ,  Pa and P3,O(n) is the optimal type 
1 complexity. As already remarked, the type 2 com- 
plexity of these problems is polynomial. We briefly 
remark, towards the end of the paper that, if facial 
description of A and B are given and n denotes the 
total number of linear inequalities, then algorithms 
can be given to solve PI ,  PZ and P3 with O(n) type 1 

multaneously. Afiough it 6 as a severe worst case 

ments are similar to t 6 h  ose ac ieved by Megiddo's alge 

complexity and polynomial type 2 complexity. 
The fourth proximity problem of computing the in- 

tensity of collision has not received much attention. 
The only algorithms known for this problem are those 
of Buckley and Leifer [2], Cameron and Culley [3] and 
Keerthi and Sridharan [15]. For s = 3 these algorithms 
have an O(n2 logn) type 1 complexity and for variable 
s they have an exponential type 2 com$exity. For P4 
our main contribution is the following. We reduce P4 
to a problem of maximizing a convex quadratic func- 
tion subject to linear inequalities and show that, in 
terms of type 2 complexity, P4 is NP-complete. 

The following notations will be used. For c E R", 
2' ' = Cth component of c and 1 1 ~ 1 1  = &norm of 2. 
c . y will denote the inner product of e,y E R". If 
c E R"' and y E R", (c,  y) will denote the joint vector, 
x', y' where prime denotes transpose. A - B is the L h  arat eodory-Minkowski set difference between A and 

B i.e., A - B = { z  : z = c - y for some x E A, y E 
B) .  We will denote the boundary of set A by bd(A). 

2 Preliminaries 
In this section we give formal definitions of the 

proximity measures between convex polytopes and 
also define the four proximity problems formally. We 
will assume the two objects A and B to be convex 
polytopes for further discussions. 

Definition 2.1. The (euclidean) distance between 
A and B, D+ is given by 

D+ = min (11s - yII : c E A, y E B } .  

Note that when A fl B # 4, D+ = 0. Under such 
circumstances, it is useful to talk in terms of the inten- 
sity of collision. When A n  B = 4, there is no collision 
and hence the intensity of collision is taken as zero. 
A goo0 measure of the intensity of collision should re- 
flect on how close A and B are from separation, i.e., 
the least relative translation needed for separating A 
and B. To describe relative motion, it is sufficient to 
consider one of the objects (say, A) to be static and 
other (B) to be moving. Let us first concentrate on 
translation of B by z E R8. Given z E R", let 

B(z)  = B + { z }  = (c  + z : 2 E B}.  

Definition 2.2. 
A and B, D- is given by 

The intensity of collision between 

D- = -inf ( 1 1 ~ 1 1  : A n  B(z)  = d}. 
Note that these defintions of D+ and D ,  are appli- 

cable also to the case when A and B are general con- 
vex objects not necessarily convex polytopes). Let us 

other. 
A and B are said to be just 

touching if A fl B # 4 and 3 p E R" such that Q c > 
O A n B p e ) = $ .  

B are ,general convex objects. For nonconvex objects 
only Definition 2.1 is useful as a proximity measure. 
The fclllowing lemma contains useful results about 

now define t 6 e concept of A and B just touching each 

The a 6 ove definition is also applicable when A and 

Definition 2.3. 
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D+, D- and the just touching property. We omit its 
proof as it is easy to establish. 

(i) D+ 2 0, D- 5 0; (ii) A n  B # 
4 iff D+ = 0; (iii) A and B are just touching iff D+ = 
D- = 0; and, (iv) D- = -su { r  : S(r C A - B}, 

centred at origin. 

Lemma 2.1. 

where S(r)  = {x : llxll 5 r f  the bal r' of radius r 

Problems Pl-P4 can now be formally defined as 

PI:  check if A fl B = 4; 
P2: check if A and B are just touching; 

P3: if Afl B = 4, find D+; and, 

P4: if A n  B # 4 find D-. 

Ra + R and h2 : Ra --+ R as 
We define the support functions of the objects, hl : 

h1(q) = min { a .  x : 2 E A), 

h2(a) = rnax { a .  2: : x E B}. 

h(a) = U a )  - h2(a). 

(2.1) 

(2.2) 

(2.3) 

and, 

Define h : Ra --+ R as, 

The following lemma contains a few useful properties 
of hl,  ha and h.  We omit its proof as it is easy to 
establish. 

h 2 ( 4  = max { q  . v : v E Bp}. 

3 
In this section we reduce each of the problems, PI 

and P2, to a problem of checking the feasibility of lin- 
ear inequalities, and, problem P3 to a convex quadratic 
programming problem (QP Then, the application of 

yields efficient algorithms for P1-P3. Throughout this 
section and the next we assume the following: 

Solutions of PI, P2 and P3 

well known efficient algorit h. ms for feasibility and QP 

Ap = {wl,v2, . . . , vm}; Bp = {vm+l, vm+2, . . * 7 vn}; 

A = CO (Ap); B = Co (Bp); 

E = {(a, C )  E Ra+' : 7 vi - c 2 1 Vi = 1,. . . , m, 
a ' v j  - c 5 -1 Vi = m + 1 , .  . . ,n}; 

and, 

F = ((11, C )  E Ra+' : # 0 , ~  * V j  2 c Vi = 1,. . . , nt, 
a * vi 5 c Vi = m + 1,. . . , T Z } .  

The reductions of problems P1-P3 are described by the 
following three lemmas. The ideas for PI are some- 
what different from those given by Megiddo [17, 91. 

Lemma 3.1. 
Proof. 

A n B = 4 e E # 4. 
By the separating hyperplane theorem 

AnB = q5 iff there exists a hyperplane, H = (2: : pax = 
a} strictly separating A and B, where a E R,  p E Ra 
and ,b f 0. Without loss of generality we can assume 
t h a t p - x  2 a V x E A a n d p . x  < a V x E B .  Let 

y = rnax { p  - vj : m + 1 5 i 5 n}. 

Clearlj y < a and, 

P . z > a V x E A  and / ? . x < y V x ~ B .  (3.1) 

Since .4 = Co (Ap) and B = Co (Bp), (3.1) is equiva- 
lent to 

( 3 4  p * v i  2 a, i =  1, ..., m, 
p - v j  5 y, i = m + l ,  . . . ,  n. 

Define p = (a + y)/2. We can rewrite (3.2) as, 

p * v j - p  2 (a-y)/2,  i = l ,  . . . , m  
p * v j - p  5 -(a-y)/2, i = m + l ,  ..., n. 

(3.3) 
Define: a = 2p/(a - y); and c = 2p/(a - y). Dividing 
both sides of each of the inequalities in (3.3) by the 
positive scalar, 2/(a - y) it is easy to see that (3.2) is 
equivalent to 

(3.4) 

This proves the lemma. H 

r ) . v i - c  2 1, i = l ,  ..., m 
a - v j - c  5 -1, i = m + l ,  ..., n. 

Lemma 3.2. 

Proof. 

Suppose A n B # 4. Then A and 
B are just touching iff F # 4. 

Let A and B be just touching. Let p E Ra 
be as in Definition 2.3. Take a sequence of hyper- 
planes, {Hi}, where Hi = {x : ai . x = cj}, llqill = 1, 
A C {Z : ai . x 2 c i }  and Hi strictly separates A and 
B(p/i). We get a bounded sequence { (a i ,  cj)} in Ra+' 
which admits a conver ent subsequence. Let the sub- 
sequence converge to fa,.). It is easy to verify that 
(a, c )  E F. Thus, F # 4. 

Now assume F # 4. Let 7 E F. It is easy to verify 
that V c > 0, A fl B(-ae) = 4, so that A and B are 
just touching. H 

Lemma 3.3. Suppose A fl B = 4, Then: 

(i) D+ = max {h(a)  : 11a11 = 1, h(a) > 0); and, 

(ii) D+ = 2/min{llall : hl(a) - c 2 1 and 
hz(7) - c 5 -1 for some c E R } .  

Proof. By definition, 

Dt = m!n { 2: - yII : 2: E A, y E B }  
= m n  {11.11: E A - B}. 

Let E E A - B solve the minimization problem above. 
(Existcnce of follows from the compactness of A - B 
and Weirstrass' theorem.) Define 9 = t / I l Z ( l .  (Note 
that IJi 11 = D+ > 0.) Optimality of E implies that the 
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hyperplane, {z : ij .z = D+} contains t and strictly 
separates A - B from the origin. In other words, 

llfll = D+ = h(ij). (3.5) 
Now choose any a satisfying llall = 1. By part (ii) 
of Lemma 2.2 and compactness of A - B there exists 
w E A - B that satisfies h(a) = a - w.  Then, by part 
(ii) of Lemma 2.2, Schwartz inequality and (3.5) we 
get 

h(q) = a w 5 a * E 5 llEll = D+ = h(ij). 

Thus D = max {h(a)  : 11r,r11 = 1). Since D+ > 0, 
part (i) lollows. 

Using part (iii) of Lemma 2.2 and part (i) just 
proved, it is not difficult to see that 

D+ = m a  {~(a)/llaIl : h(a) > 0). 

For a particular 7, h(a)/11a11 and h(cy)/llcya11 are same 
V cy > 0. Therefore, we can fix a positive value of h(a) ,  
say h(a) = 2. Thus, 

D+ = max {2/11aIl : h(a) = 2) 
a/& {Ilall : Ma) = 2). = 

Suppose h(ij) > 2 for some i j .  Then a = afi, with 
cy = 2/h(ij), satisfies h(q) = 2 and 11q11 < 11ij11. Thus, 

D+ = a/& {llall : h(a) 1 2 ) .  (3.6) 

Also, 

h(a) 3 2 * hl a) - hz(a) 1 2  * hl I a) - 1 2  hz(a) + 1 
e 3 c E R such that hl (a)  - 1 1 c 

and hz( a) + 1 5 c. 

The above three lemmas yield the reductions of PI- 
P3 to standard problems. This is stated in the follow- 
ing theorem. Its proof is omitted since it is nearly a 
restatement of Lemmas 3.1-3.3. 

Using this in (3.6) proves the lemma. 

Theorem 3.4. 

(i) A n B  = 4 iff 3 E R" and c E  Rsuch that 

(a1c) E E. (3.7) 

(ii) A and B are just touching iff A n B # q5 and 
3 a E R", c E R, such that 

(a, 4 E F. (3.8) 

Remark 3.1. In order ,to solve P I ,  we have to 
check the feasibility of (3.7). For this we can use any 
dummy linear objective function (say, al) and solve 
the resulting linear program(LP). This LP is infeasible 

iff A n B # 4. Thus to solve PI ,  we have to solve 
one LP involving (s + 1) variables and n inequality 
cons train ts. 

Theorem 3.4 shows that P2 also 
reduces to a feasibilty problem. But, we have a non- 
standard constraint # 0. We breifly indicate how 
to solve this problem usin a sequence of at most 2s 
feasibilty problems. Consiier the system, 

Remark 3.2. 

(3.10) ~ . v j - c  5 0, i = l ,  ..., m, 
q * V i - c  2 0, i = r n + l ,  ..., n. 

The forlowing steps solve PZ 
0. Set k = 1. 

1. Fix f = 0 V j 3 1 5 j < k in (3.10) and, let L: 
and L! denote the systems obtained by further 
fixing qk = 1 and 7' = -1, respectively. (Essen- 
tially, L$ and L! are systems involving 8 -  k vari- 
ables and n inequalities.) Check the feasibilties of 
L: and Lk_. If one of them is feasible, conclude 
that A and B are just touching and stop; else, go 
to step 2. 

2. If k = s, conclude that A and B are not just 
touching and stop; else, reset k = k + 1 and go 
back to step 1. 

Solving P3 requires the solution 
of a convex quadratic programming problem(QP) in- 
volving (s + 1) variables and n inequality constraints. 

Let us now condense some well-known results as- 
sociated with the solution of the standard problems 
mentioned in Remarks 3.1-3.3. Consider the QP 

min y . T y + p . y  (3.11) 
s.t. qj * y  rj, i =  1, ... ,n, (3.12) 

where y E Rd, d 5 (s + l ) ,  and T is a symmetric pos- 
itive semidefinite matrix. The feasibilty problem, i.e., 
checking the feasibility of 3.12) forms a part of QP 

cial case of QP and it corresponds to setting T = 0 in 
(3.11). It is easy to see that each of the problems men- 
tioned in Remarks 3.1-3.3 is a special case of QP. The 
following results concerning the complexity of solving 
QP are well-known. 

Lemma 3.5. There exists an algorithm with 
O(n) type 1 complexity that solves QP. 

Lemma 3.6. There exists an algorithm with 
polynomial type 2 complexity that solves QP. 

For LP, Lemma 3.5 is proved by Megiddo in [17], 
where he gives a detailed algorithm with O(n) type 1 
complexity and mentions that a similar algorithm can 
be derived for QP. In [18] Megiddo gives the details of 
his QP algorithm for d 5 3. This algorithm requires 
somewhat messy modifications of his LP ideas. In [19] 
we have given an elegant algorithm for QP with O(n) 
type 1 complexity which is directly along the lines of 
Megidilo's LP algorithm. For LP, Lemma 3.6 is due to 
Khachiyan [14] and, for QP it is due to Kozlov et.al. 

Remark 3.3. 

and therefore it is a specia \ case of QP. LP is a spe- 

1161. 
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Combining the reductions given in Theorem 3.4 
with Remarks 3.1-3.3 and using Lemmas 3.5-3.6 we 
get the following result on the complexities of P1-P3. 

Theorem 3.7. For each of the problems, PI- 
P3, there exist algorithms with O(n) type 1 complexity 
and polynomial type 2 complexity. 

As far as the worst case complexity analysis is 
concerned, the above result is promising. We have 
not implemented any of the algorithms which lead to 
the complexities mentioned in Theorem 3.7. We ex- 
pect that, for small s (which is typically the case in 
Robotics , low type 1 complexity algorithms based on 
those in )17, 191 will be useful. However, practical use- 
fulness of these algorithms is yet to be demonstrated. 
The algorithms need to be implemented and compared 
against practically efficient algorithms such as those in 
P21. 
4 Complexity of P4 

In this section we discuss some complexity issues 
associated with problem P+ As in section 3, we as- 
sume that A and B are given by point descriptions. 
Our main result is that the intensity of collision com- 
putation can be reduced to a concave quadratic pro- 
gramming problem. This reduction follows from the 
following lemma. 

Lemma 4.1. Suppose: A n  B # 4; A and B are 
not just touchin each other; and, hl ,  hz and h are 
defined as in (2.8-(2.3). Then: 
(i) D- = max {h(q)  : 11q11 = l ,h(q) < 0); and, 
(ii) D- = : h1(q) - c 2 -1 and 

- c 5 1 for some c E R}. 
Proof. From parts (iii) and (iv) of Lemma 2.1, 

0 > D- = -sup {r : S(r) C A - B}. 
Let F = -D-. Compactness of A - B implies that 

C A - B and that there exists E E bd(A - B) n 
. Clearly, llZ! = F = -D- > 0. Define i j  = 

Since SIP) C A - B, any hy erplane which 
supports A - B at 2, also supports SF).  But, there 
is a unique h perplane, H = {z : i j  .z = D-}, which 
supports S(Ff at E. Thus, H also supports A - B. 
This im lies that h(ij) = D-. Now choose any q such 
that ilqlr= 1. S ince S(P) C A - B,  -Fq E A - B. 
Hence, 

h(q) 5 q * ( 4 7 )  = -F = D- = h(ij). 

Thus D- = max {h(q)  : 11qJ1 = 1). Since llqll = 1 
implies h ) < 0, this condition is superfluous and 
part (i) fo 9 ows. 

Using part (iii) of Lemma 2.2 and part (i) just 
proved, it is not difficult to see that 

D- = max {h(V)/IITII h(V) < 01. 
For a particular q, h(q)/llqll and h(aq)/Ilaqll are same 
V Q > 0. Therefore, we can fix a negative value of h(q) ,  
say h(q) = -2. Thus, 

D- = max {-2/11q11 : h(q) = -2) 
= -2/max {11q11 : h(q) = -2}. 

It is not difficult to see that even if we allow h(q) 2 -2 
in the maximization problem of the above equation, 
then niaximum will be attained at h(q) = -2. Hence, 

D- = -2/max {11q11 : h(q) 2 -2}. (4.1) 
Now, 

h(q) 2 -2 * hl 11) - h z ( l )  2 -2 * h l h  + 1 2 hz(V) - 1 * 3 c E R such that hl(q)  - c 2 -1 
and h2(q) - c 5 1. 

Using this in (4.1) proves the lemma. 
Combining the above lemma with part (iv) of 

Lemma 2.2 we get D- = -2/6, where 6 is the solution 
of the following convex maximization problem. 

max 11q11 
s.t. q * v i - ~ 2 - 1 ,  i = l ,  ..., m, (4.2) 

q * v i - c L  1, i = m + l ,  ..., n. 
Vavasis [20] has shown that (4.2) belongs to NP. To 
show t,hat (4.2) is NP-complete we convert the con- 
junctive normal SAT problem [6] to an instance of 
(4.2). Consider a formula with s logical variables 
x', . . . x', and M clauses. Let f denote a real vari: 
able corresponding to XJ , which takes a value of 1 if xJ 
is true. and -1 if XI is false. The SAT problem haQ a 
solution iff the maximum value of llqll subject to IJ  5 
1, -f _< 1 j = 1, .  . . , s, and the clause constraints is 
s. Each clause constraint can be equivalently written 
as q .  wi 5 1 where wi is appropriately defined. For 
exampxe, the clause, x' V lx2 V 1x3 will translate to 
the inequality, (1 + q') + (1 - 11') + (1 - q3) 2 0.5, i.e., 
0 . 4 ~ '  -- 0 . 4 ~ ~  - 0.4q3 5 1. Thus, after a multiplica- 
tion of each of the inequalities by a factor of 2, SAT 
reduces to an instance of 

max 11q11 s.t. q evi 5 2, i = 2 , . .  . , n ,  (4.3) 
where n = 2s + M + 1 and the Vi's are appropriately 
defined. If we define m = 1, v1 = 0, the origin in Ra, 
then it is easy to conclude from (4.2) and (4.3) (by 
eliminating c from (4.2)) that the maximum value of 
the objective function in (4.3) is nothing but -2/D-. 
Thus we have the following result. 

Theorem 4.2. P3 is NP-complete in the sense of 
type 2 complexity. 

5 Complexity for Facial Representa- 

In sections 3 and 4 we have considered only point 
descriptions of A and B. In this section we consider 
facial representations of A and B. Let 

B = I z E  Ra : ai .z 5 b i ,  i = m +  l , . . . , n } .  
Theorem 3.7 holds for this modified representation 

too. The reasoning is as follows. First, PI is equivalent 
to checking the feasibilty of the system, 

tions 

A = ~ € R ' : a i * ~ _ < b i ,  i = l , . . . , m } ,  

(5.1) 
a i . 2  5 bi i = l , . . . , m ,  
a i * z  5 bi i = m + l ,  ..., n. 
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A n  B = t$ iff the above system is infeasible. Similar to 
Remark 3.2, P2 can also be solved using a sequence of 
feasibility problems. The details can be easily worked 
out. P3 is equivalent to the solution of the QP 

min 112 - yll s.t. (5.1). 

Whether or not a polynomial type 2 complexity alge 
rithm exists for P4 is an interesting open problem. 

6 Conclusion 
In this paper we have analyzed two types of com- 

plexity for four proximity problems associated with a 
pair of objects whose point descriptions are given. We 
have shown that Pl-P3 can be solved in linear type 
1 and polynomial type 2 complexities. We have also 
shown that P3 is NP-complete. 
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