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Abstract 

Voltage collapse and blackout can occur in an electric 
power system when load powers vary so that the sys- 
tem loses stability in a saddle node bifurcation. This 
paper computes load powers at  which bifurcation oc- 
curs and which are locally closest to given operating 
load powers. The distance in load power parameter 
space to this locally closest bifurcation is an index of 
voltage collapse and a minimum load power margin. 
The computations are illustrated for several power sys- 
tems. Monte-Carlo optimization techniques are applied 
to obtain multiple minimum load power margins. The 
use of load power margin sensitivities to select system 
controls is discussed. Keywords: voltage collapse, sad- 
dle node bifurcation, load power margin, Monte-Carlo 
optimization. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P2 
1 Introduction 

Consider the representation of active and reactive de- 
mands of an electric power system independently vary- 
ing in a high dimensional load power parameter space. 
A given set of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm demands is represented by a point A0 

in a parameter space of dimension m. Of importance is 
the set of critical loadings C at which voltage collapse 
occurs because the operating equilibrium of the power 
system disappears in a saddle node bifurcation [18, 191. 
The set of critical loadings C is composed of hypersur- 
faces in the parameter space (hypersurfaces are curved 
surfaces of dimension one less than the number of di- 
mensions of the space). The dimension of the critical 
load hypersurface C is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArn - 1. 

The 5 bus example power system from [4] has three 
loads, thus its parameter space is of dimension rn = 6. 
If we restrict our attention to the active powers, then 
m = 3. Figure 1 illustrates the critical loading hyper- 
surface C for this system. An operating point A0 is also 
illustrated. To operate the power system securely with 
respect to voltage collapse, the distance from the oper- 
ating point to C must exceed some minimum threshold, 
otherwise corrective action should be taken to increase 
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Fig. 1: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAActive load power parameter space for l l o a d  
system indicating given direction and closest bifurcation 
load increase directions from a given load. 

this distance. The point A, on C which is locally closest 
to A0 in a Euclidean sense is called a closest bifurcation 
and is illustrated. The line joining A0 to A* is normal to 
C. The load increase from A0 to A, is a worst case load 
increase and the closest distance [A, - A01 is a power 
margin which measures the proximity of A0 to saddle 
node bifurcation and voltage collapse. 

If a load forecast specifying the direction of load in- 
crease in load parameter space is available, a load power 
margin index e assuming a direction of load increase can 
be computed [4, 91. The minimum load power margin 
index lA* - A01 supplements the index 1 to give a more 
complete description of the relation in parameter space 
of the base load powers A0 to the critical load powers 
C. If e is sufficiently large but lA*  - A01 is small, a 
minor perturbation could precipitate voltage collapse. 
This paper computes a closest distance !A* - A01 from 
A0 to C for practical power systems using the itera- 
tive method from [14]. The method works by repeating 
the computation of e for successive directions of load 
increase obtained from vectors normal to C. 

We review previous work on closest bifurcations in 
power systems. Galiana and Jarjis [20] consider real 
power flow equations with constant voltage magnitudes, 
define a feasibility region in a real power injection pa- 
rameter space, and present the idea of computing a 
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models are assumed but are not necessary for computa- 
tions [12, 141. At a saddle node bifurcation specified by 
load powers A1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE C the corresponding operating equi- 
librium z 1  is degenerate and the Jacobian f,l(zl,xl) has 
a zero eigenvalue with corresponding left eigenvector w1 

of dimension zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, the number of states. Under standard 
generic assumptions, C is a smooth hypersurface near 
A1 and a normal vector to the hypersurface at A1 is 
[8, 121 

N(A1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= W l f X  (2) 
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfx is the Jacobian of f with respect to A (fx is 
an n x m matrix). For the case where A corresponds to 
demands and these appear as unscaled linear entries in 
f ,  the product w l  fx amounts to the selection of certain 
entries of w1 and the discarding of the rest. The vector 
w l  is written as a row vector and its sign is chosen so 
that an increase of load in the direction N(A1) leads to 
disappearance of the operating equilibrium. 

Suppose we specify a particular direction of future 
load increase from a demand Ao. That is, we specify a 
ray in parameter space based at A0 with a unit vector 
no so that the load powers A along the ray are given by 

as the loading factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1’ assumes positive real values. We 
can compute the closest saddle node bifurcation along 
this ray of load increase (and the corresponding critical 
loading factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl‘) by requiring that AI = Ao + lno E C. 
Since no is a unit vector, 1 = lA1- Aol.  1 is a voltage col- 
lapse index measuring the load power margin assuming 
the direction of load increase. This computation is done 
either by continuation methods [21, 7, 11 or by direct 
or optimization methods [4, 24, 91. Seydel [27] g’ Ives an 
entry to the extensive numerical analysis literature on 
both continuation and direct -methods. 

For this paper we use a variant of the direct method 
[15, 5, 91 in which solution of the following equations 
by Newton’s method yields the bifurcating equilibrium 
21, load power margin 1 and left eigenvector w l :  

A = A0 +l’no (3) 

8 

f(z1,Xo+l‘no) = 0 (4) 
~ l f ~ l ( ~ l , X o + f n o )  = 0 (5) 

(6) W1C-1 = 0 

Equation (4) states that z1 is an equilibrium at param- 
eter A1 = A0 + lno and equation (5) states that the 
Jacobian fz evaluated at (21, A,) is singular with left 
eigenvector w1. c E Rp is a fixed vector and (6) en- 
sures that the left eigenvector w1 is nonzero. Equations 
(4)-(6) use a left eigenvector w l  in place of the right 
eigenvector used in some earlier formulations. The left 
eigenvector formulation is preferred over the right eigen- 
vector formulation due to its more direct interpretation 
in terms of a direction normal to the boundary. 

The use of Newton’s method for the direct solution 
of these equations requires the simultaneous solution 
of equations (4)-(6). One computational difficulty with 
this approach is that the dimension of the Jacobian ma- 
trix required to solve this problem is about twice the 
dimension of fi, although it remains very sparse. The 
convergence of the direct method is excellent provided 
a sufficiently close initial guess is provided. References 
[5, 61 give guidelines for the choice of initial guesses. 

closest instability in this parameter space. Using a con- 
jecture that the feasibility region boundary C is con- 
vex, Galiana and Jarjis parameterize C and define a 
real power margin D which is the perpendicular dis- 
tance from the operating real power injections A0 to the 
tangent hyperplane of C with normal N .  Minimizing 
D with conjugate gradient methods yields a minimum 
real power margin. This computation is illustrated us- 
ing a 6 bus system. In a subsequent paper [22] they 
define a feasibility region in real and reactive power 
injection parameter space augmented with the voltage 
magnitudes of PV buses. A non-Euclidean minimum 
parameter space margin is defined and computed using 
constrained Fletcher-Powell minimization. 

Jung et al. [24] suggest a gradient projection opti- 
mization method to compute a minimum load power 
margin IA, - Aol .  Sekine et al. [26] approximate a min- 
imum load power margin by gradient descent on the 
determinant of the Jacobian. 

Kumano et al. [28] suggest computing (A, - A01 by 
optimization methods in state space. Let S be the set 
of critical equilibria in state space at which the Jaco- 
bian is singular. The necessary condition for the critical 
equilibrium corresponding to A, is that the gradient of 
IA, - A0l2 with respect to the state vector z is parallel 
to the normal vector to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. The correct formula for the 
normal vector to S in state space is wf,,v, where w 
and v are the left and right eigenvectors corresponding 
to the zero eigenvalue of the Jacobian f ,  and f,, is the 
Hessian of f .  Reference [28] uses v as the normal vec- 
tor of f .  This appears to be valid only for the case of a 
single line and infinite bus in rectangular coordinates. 

The use of IA, - A01 and other indices in determining 
the costs of secure power system operation is explained 
in Alvarado et al. [3]. 

Dobson et al. propose a direct method to compute 
IA, - A01 in [ll, 141. Dobson and Lu propose an itera- 
tive method to compute IA, - A01 in [14] and [lo, 131. 
However, [14] tests the method only in a 5 bus system. 

The main objective of this paper is to demonstrate 
the iterative method on larger systems, to present some 
numerical experiments, and to provide additional in- 
sight into the method. Practical computation of closest 
bifurcations requires sparse matrix techniques [2]. 

2 Preliminaries 
The iterative method to compute a closest saddle 

node bifurcation has two components: a formula for the 
normal vector to C and a method for finding the load 
power margin l‘ assuming a direction of load increase. 

The static model for the power system has the form: 

0 = f W )  (1) 
where x is a state vector which includes bus voltage 
phasors, and A is a vector of active (and possibly also 
reactive) power demands of dimension m. Loads rep- 
resenting fixed injections or zero-injection nodes should 
be omitted from A,  as well as any other loads not of 
direct interest. This formulation represents fixed injec- 
tion or zero injection nodes accurately. Intelligent selec- 
tion of a few representative loads (as elements of A) is 
useful in many studies. Underlying differential equation 
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As an alternative to direct methods, it is possible to 

use continuation methods to  determine the bifurcation 
point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21. In this approach, the bifurcation point z1 

is determined from equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) alone, augmented by 
a continuation variable parameter. Continuation meth- 
ods for power flow applications are reported in a number 
of papers, including [l, 5, 71. Other techniques of avoid- 
ing singularities in the vicinity of bifurcation points in- 
clude those of [23]. When the Jacobian zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi becomes 
singular during the continuation process, this is an in- 
dication of having attained C. At this point, equations 
(5) and (6) can be solved simultaneously to obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw1. 
This method never requires a matrix larger than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1 
and is non-iterative. 

Our software implements both the direct and the con- 
tinuation method [5, 61. The continuation method fol- 
lowed by the subsequent computation of w1 is the rec- 
ommended implementation variant for larger problems. 
However, in many of the tests that follow it was con- 
venient to use the direct method because in our exper- 
iments we were interested more in high accuracy than 
in speed. Although no exact timings were obtained, 
our evidence from numerous experiments suggests that 
the determination of the boundary in a given direction 
was on the average comparable to about 10 power flows 
for systems of up to about 2000 buses, slightly more 
for the direct method. With the direct method there 
appeared to be significant degradation in performance 
relative to  a single power flow for larger system sizes. 
This behavior was not apparent for the continuation 
based method, thus our recommendation. 

Reactive power and other limits in the power flow 
equations often result in added complexity and in- 
creased iteration counts in most methods. The normal 
vectors at the boundary are those that are applicable 
to the situation with the limits active at the given solu- 
tion point. In some cases encountering limits can create 
an immediate instability before the saddle node bifur- 
cation is reached [16] and the load power margin com- 
putation is misleading. We neglect this phenomenon, 
but Caiiizares [5] observed a range of practical cases 
in which the error introduced by neglecting this phe- 
nomenon was very small. 

3 Iterative Method 
The load power margin .t and the computation of the 

normal vector of C may be iterated to compute the 
direction n, and parameter value A, of a locally closest 
saddle node bifurcation and hence the minimum power 
margin [A,  - Xol. The procedure is as follows [14]: 

(0) Let no be an initial guess for the direction n,.  

(1) Given ni-1, compute the saddle node bifurcation 
along the ray given by nj-1; that is, compute .t i , 

(2) Compute the left eigenvector wj of fil(r,,x,) corre- 

(3) Set ni = N(Xj )  = wifx. 

(4) Iterate steps 1,2,3 until convergence within a tol- 

Xil  xi SO that Xj  = Xo + ni-lli E C. 

sponding to the.zero eigenvalue. 

erance of ni to a value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn,. Then A, = XO + ten,. 

The computationally critical step is ( l ) ,  which is solved 
by the methods outlined in the previous section. The 
direction n, of a locally closest bifurcation is parallel to 
the normal vector N(X,) of C at A,, and n, is a fixed 
point of the iteration. The iteration converges in one 
step in the hypothetical case of C being a hyperplane. 

The iteration minimizes IX, - Xol on a series of tan- 
gent hyperplane approximations to C. At each itera- 
tion, ni = N(Xi )  indicates the direction of the point 
closest to XO on the tangent hyperplane TCx, to C at 
X i .  Supporting theory for the iterative method is pre- 
sented in [lo, 131. 

A direct method for computing a closest bifurcation 
[ll, 141 is not considered in this paper because it re- 
quires the curvature of C at A,. The curvature is diffi- 
cult to compute directly [lo, 141. An important advan- 
tage of the iterative method is that its convergence to 
a solution ensures that the solution is a locally closest 
bifurcation and no check on the curvature is required. 

4 Computational Results and Discussion 

The computational methods described above are ap- 
plied to several power systems ranging from 3 to 173 
buses. The iterates IXi - XC,~ and the final minimum 
load power margins IX, - A01 are summarized in Ta- 
ble l .  A “reasonable” initial loading direction vector 
no for the iterative method was arbitrarily chosen by 
assigning unity to all generators and real power loads, 
and 0.2 to all reactive power loads. An exception is the 
173-bus system for which a demand growth direction 
was available. 

Caiiizares [5] established the computational perfor- 
mance of our software for the determination of a bi- 
furcation point along a given ray. Solution times were 
roughly equivalent to 10 power flows each. Since the 
iterative method of this paper requires the bifurcation 
point along a given ray to be determined between 3 
to 15 times, the total solution time for the iterative 
method to compute the minimum load power margin is 
roughly equivalent to 100 power flows. 

Based on these 6 sets of experiments, it is observed 
that few iterations (sometimes only two or three) are 
sufficient to converge to the closest bifurcation. This 
suggests that the portions of C encountered during the 
iterations are relatively flat. 

The implications of knowing minimum load power 
margins are significant. These margins represent the 
true worse case load increases for system loadability 
with respect to voltage collapse (see, however, the dis- 
cussion on multiple minima in the next section). While 
in some cases it is obvious after the fact what loading 
patterns are critical, in other cases these are not obvi- 
ous a priori. In some of the cases tested, the direction of 
load increase to a closest bifurcation corresponds to an 
increase of loads throughout the system. However, in 
other cases the direction of load increase corresponds 
to the loading of primarily one or two buses. These 
studies give, in precise terms, the worse loadabilities 
and margins and can therefore serve as useful indica- 
tors for security dispatch and other means to monitor 
and enhance system security. This type of information 
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In both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7) and (8), fp is the Jacobian of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf with 

respect to the vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp and w is the left eigenvector 
corresponding to the zero eigenvalue of the Jacobian 
fi evaluated at the bifurcation. The vector n, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (A, - 
Ao)/lA, --A01 is the worst case directionof load increase. 
wfp can be interpreted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a normal to the hypersurface 
in the loading and parameter space of critical p yielding 
bifurcation. fp is usually easy to calculate. 

We discuss the use of the sensitivity formula (7) to 
control ]A, - A,]. Equation (8) may similarly be used 
to adjust the index e as illustrated below. If the worst 
case load power margin [A, -A01 is too small, less than a 
preselected safety margin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL ,  we may seek to control the 
system to restore IA, -A01 to at least L.  If the left eigen- 
vector w is computed at the bifurcation corresponding 
to A,, then the sensitivity !A, - A0lp can be computed 
with (7) where the vector p includes all available power 
system controls. (Adding extra controls to p affects 
only fp and is computationally cheap.) Then a sub- 
set of controls which have relatively large components 
in (A, - AoIp and are appropriate to the severity of the 
risk of voltage collapse should be selected. For example, 
load shedding controls could be avoided unless indexes 
show that voltage collapse is probable. Once the choice 
and relative proportion of controls is selected, then the 
amount of control action to restore the system to the 
safety margin can be computed from (7). 

17-bus 

1 371.6 
2 356.7 
3 355.5 
* 355.4 
0 671.1 
1 283.0 
2 268.7 
3 262.3 
4 258.6 

253.4 

Reliability 470.7 
442.2 

39-bus 
New England 

173-bus 
Areaload 

173-bus 
Entire load 

3 398.5 
4 380.9 
* 378.3 
0 1783.8 
1 1163.9 
2 1008.2 
3 734.9 
4 716.0 
* 714.8 
0 474.4 
1 274.3 
* 274.3 
0 2409.9 
1 268.2 
2 267.5 
* 267.5 

is particularly valuable in unusual operating regimes or 
in planning when the pattern of load increase is not 
known. 

5 Load power margin sensitivities 

The sensitivities of load power margins to power sys- 
tem controls can be used to select system controls that 
best increase the load power margin. Once the system 
controls have been selected, the approximate amount of 
control required to achieve the required increase in load 
power margin can be computed. The first order sensi- 
tivities of the worst case load power margin IA, - A01 

and the given direction load power margin e =  1x1 - A01 

are both easy to compute [13, 14, 151. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc be a vec- 
tor of any power system controls or parameters and let 
p = (A, c) be an augmented vector containing both load 
powers and the parameters c. Then according to [15] 
the sensitivity of IA, - A01 with respect to p is 

-wfp p, - Aolp = - 
wfp.n* 

and the sensitivity of e with respect to p is 

-wfp e -- - wfp.no 

(7) 

Fig. 2: One-line diagram for the 2 4 - b ~  system 

As a specific example of the usefulness of sensitivity 
calculations, we predict the effect on the given-direction 
voltage collapse margin 1 of a decrease in demand at bus 
4 for the 24 bus system illustrated in figure 2. To make 
the example more interesting, we first obtained a new 
operating point close to the boundary by moving along 
the given direction of demand increase. The sensitivity 
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factor for bus 4 at this point is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.4443. The given- 
direction distance is 53.5 MW with no load shedding. 
A decrease in load at bus 4 increases the margin by a 
predicted amount: 

lA* - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAOlne“‘ = IA, - A0Ioid + tp4 AAp, (9) 

Table 2 illustrates the predicted and calculated new dis- 
tances for different amounts of shed load ranging from 
1 MW to 59 MW (the total active load at the bus). 
The sensitivity prediction is excellent for small pertur- 
bations and adequate for full load shedding. We con- 
clude for this case that attaining a given security margin 
L using the sensitivity formulas to adjust the reactive 
injection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor active power demand is a simple matter. 

Table 2: Effect of load shedding on load power margin 
1 (computed versus sensitivity-iredicted calculation;). 

Load shed (MW) I Computed I Predicted 
0 I 53.5 I 53.5 

57.3 
59 73.3 79.6 

6 Finding Multiple Closest Bifurcations 
When the iterative method converges, it converges to 

a locally closest bifurcation A* which is not nec,essarily 
the globally closest bifurcation. Multiple locally cIdsest 
bifurcations may exist and hence multiple minima of 
the load power margin. While the closest bifurcation 
in a direction of “reasonable” demand increase is prob- 
ably most important from a practical point of view, it 
is also of interest to investigate other closest bifurca- 
tions. In particular, a heavily stressed system might 
be close to several hypersurfaces of C and monitoring 
and corrective action might need to take into account 
a minimum load power margin to each of the hyper- 
surfaces. Reference [14] gives a simple power system 
example with multiple hypersurfaces corresponding to 
voltage collapse in decoupled areas of the power system. 
Limits and other types of system discontinuities might 
also produce multiple closest bifurcation points. 

It is possible for a single hypersurface to have multi- 
ple locally closest bifurcations if the hypersurface were 
“corrugated” and this could limit the usefulness of the 
closest bifurcation computation. However, a conjecture 
of [22] implies that C is convex and convexity precludes 
corrugation. We have not detected any non-convex por- 
tions of C in our computations to date. (Moderate or 
small amounts of non-convexity of C would produce os- 
cillatory convergence to A*.) However, proving or dis- 
proving the convexity of C for, say, the load flow equa- 
tions remains an open problem. 

We compute multiple minimum load power margins 
using Monte Carlo optimization [25]. Initial directions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
no for the iterative method are randomly generated by 
choosing vectors from a uniform distribution on an m 
dimensional hypercube corresponding to the m distinct 
demands. Both active and reactive power are treated as 
independent variables. The iterative method is run for 

J I 

(a) Bus ;umber {hree is &tical 6us in direction 1. 

I I 

(b) Bus ;umber kour is &tical bhs in diiection 2. 

I < -  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I I 

(c) Bus’number’six is critical bus in direction 3. 

Fig.‘ 3: Normal t o  critical loading hypersurface at three 
distinct closest bifurcation poinis for the 24 bus system. 
Active power components in arbitrary units along each 
vertical axis, buses from 1 i o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA24 along ihe horizontal 
ates.  

I 

each of these initial load increase directions. All distinct 
closest bifurcations and their corresponding minimum 
load power margins are shown in Table 3. Boldface 
numbers correspond to the distances obtained using 
the prespecified “reasonable” initial direction vector. 
150 initial directions are used for the 173 bus systems 
and larger numbers of initial directions are used for the 
smaller systems. Only one closest bifurcation is found 
for the 3-bus, 17-bus and 173-bus systems, three dis- 
tances are identified for the 24-bus system, and 4 dis- 
tances are found for the 39-bus system. 

For the 24-bus system one of the directions (itali- 
cized) results in a shorter distance to the boundary than 
the initial direction provided. Figure 3 illustrates the 
active power component of the three distinct directions 
identified for the 24 bus system. Since the eigenvec- 
tors can be scaled arbitrarily, the vertical axis is in ar- 
bitrary units, indicating only the relative importance 
of each location. Table 4 illustrates in detail the ac- 
tive and reactive base case load, the load at the given- 
direction boundary, and the three closest bifurcation 
loads. F’rom this table (and from the figures) it is seen 
that collapse is easiest to attain by either increases pri- 



Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3: Multiple minimum load power margins 
ce directions, 

Base 
load zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA0 

P Q  
108 22 
97 20 

180 37 
74 15 
71 14 

125 25 
171 35 
175 36 
195 40 
265 54 
194 39 
31764 
100 20 
333 68 
181 37 
128 26 

136 28 

2850 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 1074 887 I 

Loa1 
give 

P 
340 
329 
412 
306 
303 

357 
403 
407 
427 
497 
426 
549 
332 
565 
413 
360 

6794 

368 
3-bus (areal I 

#1 
PI Q 

1111 22 

marily in the reactive and active powers at bus 4, or by 
increases primarily at bus 3, or by increases primarily 
at bus 6. These three buses are thus identified zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the 
critical buses from the perspective of voltage collapse. 
The minimum distance(s) to the boundary (and conse- 
quently the security of the system) can be improved by 
increasing reactive power support at these buses, or by 
reducing active power demand, or both. 

There are situations (not illustrated due to space lim- 
itations) where a number of buses all having more or 
less the same effect on the minimum distance are found. 
In these cases, the minimum distance algorithm identi- 
fies weak areas in the system. The minimum distance 
algorithm can be used to study both active and reactive 
power variations, or it can be used for reactive powers 
alone or for active powers alone. Depending on the 
application, these different types of studies provide dif- 
ferent insights into the needs of a specific system. Only 
further experimentation with these variants on larger 
systems will establish which variant is most appropri- 
ate to a specific system study. 

This paper has not considered the efficient implemen- 
tation of globally minimum load power margins. We 
expect this computation to be difficult because recent 
work by Coxson [17] strongly suggests that the global 
minimum problem is NP-hard. 
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Conclusions 

The ability to determine closest bifurcations and min- 
imum load power margins for large systems is important 
from the perspective of security and remedial actions af- 
ter contingencies. The minimum load power margin is 
a useful index of proximity to voltage collapse. This 
margin does not require an assumption of the pattern 
of load increase, but if the pattern of load increase is 
available, then the minimum load power margin com- 
plements the given-direction load power margin. This 
paper demonstrates the feasibility of practical compu- 
tation of closest saddle node bifurcations and the as- 
sociated minimum load power margins. The iterative 
method outlined in this paper requires only repeated 
load power margin computations and use of the Jaco- 
bian at the bifurcation. The paper also illustrates the 
practical use of margin sensitivity formulas. 

The security boundary C defines a fundamental limit 
on power system performance and must be avoided to 
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prevent voltage collapse. Despite the importance of C, 
little is established about its geometry in practice, sim- 
ulation or theory. This paper contributes to the under- 
standing of the geometry of the set of critical loads by 
computing minimum load power margins and address- 
ing the issue of multiple minimum load power margins. 
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Discussion 

M. A. Pai (University of Illinois, Urbana-Champaign): This is a 
well written and practically oriented paper with good theoretical 
support. The authors have moved away from the traditional P-V 
curve and have made computations directly in the parameter 
space. Given an operating point A, in the parameter space, it 
computes a point on the surface C. closest to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,,. In some sense 
it is a worse case scenario for voltage collapse. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI: is the bifurca- 
tion boundary. The point A, is structurally stable, i.e., for minor 
perturbations in the parameters, the new operating point re- 
mains close to A,. Thus points on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS also represent the structural 
stability limit (SSL) which is also the bifurcation boundary [A]. 
As the authors point out there are many ways to approach Z 
from A, and they have provided a measure of the minimum 
distance. The authors' comments are requested for the follow- 
ing. 

1. Is the algorithm flexible to include tie line powers in A or will 

2. Given the flexibility of the algorithm, how best they propose 

3. Will the inclusion of system and or load dynamics shrink the 

they need some distribution factors? 

to present the results to the operator in real time? 

SSL? 

Reference 

[A] Practical Numerical Algorithms For Chaotic Systems, T. S. 
Parker and L. 0. Chua, Springer-Verlag, New York, 1989. 

Manuscript received June 30, 1993. 

M. K. Pal: This paper describes a method to compute the load 
power margin to a locally closest bifurcation point. In addition to 
the direction of load increase (n,) which the authors compute, the 
direction of the change in generation to meet that load increase 
will also determine the minimum load power margin. There could 
be a number of valid options for increasing the generation to match 
the increased load and losses. Have the authors used any specific 
scheme, or looked for the worst case generation increase? The 
question of selecting the generation pattern needs to be settled 
before the computed minimum power margins can be said to 
represent the "true worst case load increases for system 
loadability. " 

The purpose of computing a minimum load power margin is 
not quite clear to us. The authors say that if I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, - h I is small, a 
minor perturbation could precipitate voltage collapse. This is not 
true - it all depends on load characteristics. If in a specific 
situation (dictated by load characteristics) it is not desirable to 
operate close to a bifurcation point ((A. - A 1 small), sensitivity 
information (or, the eigenvalues) obtained from the power flow 
Jacobian may be a better guide to use. 

In most situations, however, it is not necessary to operate a 
system with a generous "worst case" load power margin, since the 
load increase may not follow that direction as indicated by 
operating experience. In the unlikely event of the worst case load 
increase some sort of emergency measures may be taken. This will 
avoid the economic penalty of allowing for margins that may 
hardly be justified except in certain specific situations. As an 
example, consider the results shown in Table 2 of the paper. In 
order to increase the load power margin for the system by 20 
MW, 60 MW of load is needed to be shed at bus 4 of the system 
of Figure 2 of the paper. 

Our main concern is, however, the basic premise of the paper 
that "voltage collapse occurs in an electric power system when 
load powers vary so that the system loses stability in a saddle node 

bifurcation." It has been clearly demonstrated that, in general, a 
saddle node bifurcation has nothing to do with voltage instability 
and collapse [A]. It merely represents a network limit for a given 
load-generation distribution. We recognize that this limit has 
impomnt implications in system planning. Voltage instability is, 
however, determined by load characteristics and the type of 
voltage control in effect at the time of the instability [B-C] . Certain 
load characteristics - voltage control combinations can precipitate 
voltage collapse well before a saddle node bifurcation. On the 
other hand, for many different load types, one can continue 
loading the system after the bifurcation point is reached, without 
any danger of voltage instability and collapse, although the 
demanded load will not be served. Only when a number of 
conditions are satisfied simultaneously, a network limit will also 
be a voltage stability limit [B-C]. 

The above point was raised in discussing the authors' earlier 
work [D-E]. In their closure they included a simple power system 
and left its solution to this discusser. UnfOrtUMtelY, that is not the 
right system to settle this issue. In the problem formulation of that 
particular example no explicit load model was used, although a 
constant MVA and a constant impedance load were depicted on the 
system diagram. In that example, since the load delivered was 
identically equal to the generator electrical output, (there being 
only one generator and one load) the lack of a load model probably 
went unnoticed by the authors. As such, the limit obtained would 
be the network limit. Incidentally, since there is only one generator 
and no (synchronous) reference bus to measure the angle from, the 
swing equation has no real significance. Also, in that particular 
formulation, inclusion of a load model (any load model) would 
introduce a discontinuity in the state variables whenever there is a 
disturbance that results in a change in the line impedance. Had the 
authors included one or more additional buses in the system, the 
lack of a load model would have been obvious. Alternatively, the 
authors may want to reformulate that problem for a zero power 
factor (purely reactive) load. The fallacy of the situation would 
then become apparent. 

Note that a constant MVA static load model implies that AP = 
AQ = 0. It is not a valid load model to address stability issues 
[C]. It may be used in static analyses after the stability issues have 
been satisfactorily resolved and provided that the load model does 
not interfere with proper conclusions. 

M.K. Pal, Discussion of "An Investigation of Voltage 
Instability Problem," by N, Yorino, et al. IEEE Trans. on 
Power Systems, Vo1.7, No.2, pp.600-611, May 1992. 
M.K. Pal, "Voltage Stability Conditions Considering Load 
Characteristics,'' IEEE Trans. on Power Systems, Vo1.7, 
No.1, pp.243-249, Feb. 1992. 
M.K. Pal, "Voltage Stability: Analysis Needs, Modelling 
Requirement and Modelling Adequacy," IEE Proc. C, 

M.K. Pal, Discussion of reference [6] of the paper, and 
authors' closure. 
M.K. Pal, Discussion of "Point of Collapse Method 
Applied to AC/DC Power Systems," by C.A. Canizares, 
F.L. Alvarado, C.L. DeMarco, I. Dobson and W.F. Long, 
and authors' closure, IEEE Trans. on Power Systems, 
Vo1.7, No.2, pp.673-683, Feb. 1993. 

Vol. 140, No.4, pp.279-286, July 1993. 

Manuscript received August 27, 1993. 

Ian Dobson and Fernando Alvarado: We thank 
Professor Pai and Dr. Pal for their discussions and reply 
to their points in order: 
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Professor Pai zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1. We expect that tie line powers can be included 

in the parameter vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX with no difficulty. In general, 
there is no restriction on the parameters in A, but cer- 
tain parameter choices could lead to a C whose shape 
is such that the performance of the algorithm might de- 
grade. There is also more uncertainty in interpreting the 
meaning of the closest bifurcation to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC if the quantities 
in the parameter vector are in unrelated units because 
the closest bifurcation will change if some of the entries 
in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX are scaled differently. Extension of our formulation 
to consider the case of inter-area transfers is straight- 
forward. One simply substitutes one of the generator 
equations with an explicit equation to calculate the flow 
into the desired area, where the total power imported 
is now unspecified. (Instead of leaving zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAone generator 
unspecified, one can instead introduce an extra variable 
for all the area generators.) The procedure is otherwise 
identical. 

2. Our suggestion is that both the worst case load 
power margin of the paper and the load power margin 
assuming a predicted pattern of load increase be avail- 
able to the operator. If either of these voltage collapse 
indexes falls below their safe threshold values, the screen 
should alert the operator and provide control options for 
restoring the index to its safe value. Each control option 
could specify the amount of control action needed to re- 
store safety if that control was selected. The amount 
of control action needed is simple to estimate from the 
first order sensitivity of either index to  controls as de- 
scribed in the paper. If there is more than one worst 
case load power margin of concern or both of the in- 
dexes are of concern then control actions effective for 
all indexes of concern should be recommended. Perhaps 
the best method for visualizing distance to collapse is 
entirely graphic. Reference [Cl] illustrates various dis- 
tances to collapse for the 24 bus system. For example, 
the given-direction normal at  collapse can be visualized 
as shown in the accompanying Figure. 

The parts of the structural stability limit in 
parameter space which occur generically are the sad- 
dle node bifurcation set C studied in this paper and 
the Hopf bifurcation set Chopf. C corresponds to volt- 
age collapse (monotonic decrease of system voltages at  
bifurcation) and Chopf corresponds to oscillatory insta- 
bility (either stable oscillations or oscillatory instabil- 
ity at  bifurcation). Some details of the dynamics of 
the differential equations governing the power system 
do not affect C as explained in [12]. However, we think 
that the dynamics must be fully known to determine 
Chopf .  This point can be illustrated simply: Suppose 
we are given 2000 differential equations to describe the 
power system, and that the first of these differential 
equations is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk~ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf1(21,z2, ..., 22000, A). If the dy- 
namics of the first differential equation is changed to 
i1 = 2fi(z1,z2, ..., 2200o,A), then this change does not 
affect C because multiplying the first row of the Jacobian 

3. 

by 2 does not affect the vanishing of its determinant and 
C is given by loadings at  which the determinant of the 
Jacobian at the equilibrium vanishes. That is, the zero 
eigenvalue of the Jacobian is not affected by doubling the 
first row of the Jacobian. However, nonzero eigenvalues 
of the Jacobian are usually affected by doubling the first 
row and, in particular, the imaginary pair eigenvalues 
signalling a Hopf bifurcation will usually change and the 
position of Chopf will usually be affected. In our opinion, 
the influence of the unmodelled parts of the power s y s  
tem dynamics on Hopf bifurcation computations needs 
more careful attention in the literature. 

Dr. Pal 
Paragraph 1: We used a specific distribution of gen- 

eration to match any increase in load when computing 
the worst case load increase. Since the generators are 
usually under the control of utilities we assumed that the 
distribution of the generation increase would be known. 
However, it is also possible to take into consideration the 
impact of changes in generation pattern in the compu- 
tation of load power margins [C2]. 

Paragraph 2: I t  is true that if IX -A, I is small, then 
a minor perturbation could precipitate voltage collapse. 
In our approach the load characteristics (including dy- 
namics) are to be specified in the differential equations 
describing the system. While the load characteristics do 
affect the system differential equations and its bifurca- 
tions, once the load characteristics are agreed upon, the 
system differential equations are fixed and if those dif- 
ferential equations have IX - A, I small, then the system 
is near saddle node bifurcation and instability. 

Sensitivity information or eigenvalues can indicate 
closeness to bifurcation but our opinion is that load 
power margins are much better. One reason is that 
eigenvalues and sensitivities vary nonlinearly as the load 
is linearly increased, making prediction difficult. (The 
eigenvalues and sensitivities are properties of the lin- 
earization of the system and the linearization varies 
quickly near bifurcation whereas the load power mar- 
gin takes account of the system nonlinearities.) Another 
reason is that power systems operation is often thought 
of in terms of power and it is more straightforward to 
work directly in terms of load powers. 

Paragraph 4: We strongly disagree with Dr Pal’s 
statement that “I t  has been clearly demonstrated that, 
in general, saddle node bifurcation has nothing to do 
with voltage collapse [A].” 

First of all, we observe that the following statements 
are consistent: 

(1)  Some network loadability limits can be thought 
of as saddle node bifurcations of static equations. 

(2) Voltage collapse is associated with saddle node 
bifurcation of differential equations. 

Dr. Pal seems to use the term saddle node bifurca- 
tion exclusively in reference to network limits and then 
argues that since voltage stability limits often differ from 
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simple power system with a dynamic load model. We 
emphasize that the theory is generic and applies to power 
system models with a variety of dynamic load models. 
The theory assumes a differential equation model for the 
power system and quasistatic variation of load parame- 
ters (not necessarily powers). Thus the theory addresses 
small disturbance voltage stability or voltage collapse 
due to slowly changing parameters. The theory states 
that the system state will track a stable equilibrium un- 
til zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa saddle node bifurcation is encountered and then 
the system state will approximately follow the unstable 
part of the center manifold of the bifurcating equilib- 
rium. This explains why the voltages fall in a voltage 
collapse. In particular, it applies to Dr. Pal’s model as 
stated above. 

Fourthly, contrary to Dr. Pal’s apparent impres 
sion, the paper assumes dynamic load models so that 
saddle node bifurcation corresponds to voltage collapse 
according to the theory of [C3]. The paper states in sec- 
tion 2 that “Underlying differential equation models are 
assumed but are not necessary for computations [12,14].” 
Section IV of Reference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 121 and the first two paragraphs 
of section 2 of Reference [14] explain the class of dynamic 
load models we assume and why we can work with static 
equations corresponding to the dynamic equations and 
compute the same answers. Briefly, the dynamics of the 
load model are a general function of frequency and the 
real and reactive power balance at the load. We assert 
that (a) the paper does assume dynamic load models 
and (b) the computational methods for the closest bi- 
furcation are appropriate to a variety of dynamic load 
models and (c) once the load dynamics are specified in 
the system differential equations, the computed saddle 
node bifurcations will correspond to voltage collapses. 
Of course the voltage collapse in the model will be more 
realistic if the dynamic load models can be improved. 
However, there is not yet consensus on the form and 
parameters of dynamic load models for voltage collapse 
studies. 

As explained above, load characteristics should be 
included in the system differential equations because 
they do influence the voltage collapse bifurcations. We 
agree that generator reactive power limits can precip 
itate a voltage collapse as suggested by Dr. Pal in [C] 
but, as noted in our paper and Dr. Pal’s previous discus- 
sion [D], this phenomenon had already been rigorously 
described in [16] (this first appeared in [19]) and some 
large system cases computed in [5]. 

Paragraph 5: Dr. Pal’s doubts about saddle node 
bifurcations, network limits and voltage collapse were 
also indicated in his previous discussion [E] and were 
answered in the closure [E] by giving references such as 
[C3]. The power system example used in the closure [E] 
did not address these doubts; instead, it addressed Dr. 
Pal’s claim in his discussions [A] and [E] that singularity 
of the power flow Jacobian implied the singularity of the 
algebraic constraint. Indeed, the power system example 

network limits, saddle node bifurcations are not related 
to voltage collapse. In fact, saddle node bifurcations ex- 
plain and predict voltage stability limits in differential 
equation models of power systems. 

Secondly, a power system model suggested by Dr. 
Pal in [C, section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA41 has a saddle node bifurcation at 
which voltage collapse occurs. (This is not surprising 
or exceptional because nonlinear differential equation 
models of power systems generically exhibit saddle node 
bifurcations.) Dr . Pal’s power system model consists 
of simplified equations for a generator, a single lossless 
line of reactance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj X  and a purely reactive dynamic load 
whose reactive admittance BL varies to maintain con- 
stant reactive power QO with a first order lag. We ob- 
tained the nonlinear differential equations of Dr. Pal’s 
model by combining from [C] equations (4,5,10), the 
equations between (7) and (8) and the equation equating 
the load current to the load voltage times BL: 

(We set the reactive compensation B used in [C] to zero 
for convenience.) The generator quantities are in stan- 
dard notation and xd = x + X d ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx: = x + x;. we 
choose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQO as a quasistatically varying load parameter. 
The Jacobian is 

which agrees with the linearization computed in [C]. 
The differential equations (DE) have a saddle node bi- 
furcation at e; = (1 + X:/Xd)efd/2,  BL = 1/xd  and 
&o = &/(4Xd).  The saddle node bifurcation occurs 
just as the stability condition BL < I/& derived in 
[C] is violated. At bifurcation, the right eigenvector 
of the Jacobian corresponding to the zero eigenvalue is 

v* = ( - e f d ( q  - 2&)/4, l)T and dynamic voltage col- 
lapse will occur along the center manifold tangent to w* 
as described in ((331. 

Thirdly, Dr. Pal’s statement that saddle node bifur- 
cation has nothing to do with voltage collapse is not s u p  
ported by his discussion [A]. The discussion [A] consid- 
ers a simple diflerential/algebraic power system model 
arising from a dynamic generator swing equation and 
algebraic equations for a static load model. Dr. Pal d i s  
cusses singularities of several Jacobians in this particular 
model, including singularities of the algebraic equations. 
This discussion does not refer to and is not relevant to 
the theory of saddle node bifurcations and voltage col- 
lapse in differential equation models of power systems. 
This theory is proposed in [C3] and illustrated with a 
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Figure: Spatial visualization of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnormal vector 

in [E] is a counterexample showing that this claim is false 
in general. The text for the power system example in [E] 
specified a constant power load and this load model is 
adequate for the purpose of disproving Dr. Pal’s claim. 

We correct the date of reference [E] of Dr. Pal’s 
discussion below. 
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