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Abstract 

This paper treats the  derivation of a two-dimensional  differential  equation,  which  describes the 

phenomenon of combined refraction - diffraction  for simple harmonic waves,  and a method of solving  this 

equation.   The  equation  is  derived with   the aid of a small  parameter development,   and  the method of 

solution  is  based on  the  finite element  technique,   together with  a  source distribution  method. 

It would greatly help designers  of harbours and offshore structures  if it  were  possible  to get some 

quantitative information about the wave penetration and wave height which  can  be expected in the harbour 

and around the structures.   For simple harmonic  linear water waves mathematical  models exist in the case 

of diffraction    13,  4J      or refraction   I 5,  7 J   separately.  The  combined effect in  the case of long waves 

Is described by the  linear two-dimensional  shallow water equation    1 10 J   ,  but for short waves the 

describing  equation has not yet been derived.   Battjes   ]_ 1  J   proposed a set of equations from which  the 

equation  derived in  this paper differs  in one  term. 

Independently of the writer of this paper SchiJnfeld I 8| derived the same equation written in 

another form and obtained in a different way. Solving the equation and treating the boundary conditions 

In the horizontal plane is possible in various ways. This paper gives a method which solves the equation 

in an area in which the combined effect of refraction and diffraction is important, with a finite element 

technique    1 T2J     and treats  the  Sommerfeld radiation  condition   i 9J   with a source distribution method 

Numerical  results in  the  case of   Tsunami   response of a  circular Island with  parabolic water depth 

,  propagation of plane waves over a parabolic shoal,  and response of a  rectangular harbour with 

a  constant slope of the bottom are given and compared with analytical  or numerical  results  from other 

methods.   The accuracy of the numerical  treatment is not yet known in detail and will  be  the subject of 

further study,  so the interpretation of the results must be  done with  care.  An attempt was made  to compare 

the results for short waves over a parabolic shoal  with measurements  by  Holthuysen    |6| 

Derivation  of the ..equation 

The  theory will  be restricted to Irrotational   linear harmonic waves,  and  loss of energy due  to 

friction or breaking  is not taken into account.  A  two-dimensional  equation  which is applicable  to waves 

in the  range  from shallow water to deep water has been derived  by means of a small  parameter development 

and an integration over the  water depth. 
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Basic equations 

The equations  with  which  the derivation starts are: 

The  three-dimensional  potential  equation 

2 „ 2 ,2 
=    0 

Oi) 

(iii) 

3x 3y 9z 

The   linearised  free-surface  condition   for harmonic  waves 

2 
—   rii 
9 

The bottom condition 

3jS 

3z 
at z  = 0 

3 0    +     3 ?!     3h    +    3 jl 3h 

3x        3x 3y       3/ 
= 0 at z  =   -  h   (x,   y) 

0) 

(2) 

(3) 

horizontal  coordinates. 

vertical   coordinates, 

three-dimensional velocity potential. 

angular  frequency, 

acceleration  due  to gravity, 

water depth. 

Dimensionless  coordinates sT 

Introduce dimensionless quantities with  the aid of a vertical   length  H  (mean water depth) and a 

horizontal   length   ^   {wave   length  corresponding   to  H) 

x'-x/A;    y'-y/k;    z'=    z/X.;     d = h/H 

The  equations  written   in  these dimensionless quantities are: 
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A'p(     +    -^      =    ° (4) 

3z'2 

3z' 
(5) 

i^    +    M    ( V '<# .   V'd)    =    0 at z'   =    - (id (6) 
3z' 

*ith A'   -V'2^-^      +   -^-)     ; v' = (—    <—  > 
2 2 

3x' 3y' 3x' 9y' 

s-          u  A • H o     =     and p =   ___ 

g A 

Gradient of the bottom 

Instead of the horizontal   length   A  it is more  correct to use the horizontal  length  I (see figure 

for the definition) as a  characteristic  length  corresponding  to the slope of the  bottom. 

If x = x/L and y = y/L    then V h  =  jf V  d with    p   —    and     V    = (~ 

—       — — 2 Assume   ( V d. V  d) and V   d    are of order one. 

3 x 3  y 

V'd =   — V  h    = E   V  d 
H 

„,2 ,        2=2, V    d = e    yd 

(.= ±) 

(From now on  the primes will  be omitted for simplicity in  notation.) 

Power - series 

Assume the potential  function  j#   has  the  form 

<f> (x,  y,  z)  =    Z   (d,  z ;  v)     f    (x,  y,   V? z) 

</>   = Z   (d,  f   ;     H)     9»   (x,   y, V ?) (7) 
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with   £   = z/u. and    \>    = pe     ( = H/ ]/ X   L),  f   will  be developed Into a power - series  with  respect to i>£ 

f = f0 fr, y)   + v Cf](x, y)     + v2^2f2 
(x' y) +   (8) 

The parameter u. can vary   independently  from  the parameter S>   between zero  (shallow water) and 

infinity  (deep water).  Assuming  that the function Z is such  that for small  values of u  the derivatives with 
2                  1       F)7-                    1      3^7 

respect to d are of order JJ   ,   then   — ——      and —      are  finite  for every value of the parameter 
2    3d 2    a,2 

u. u.      3d 

M     (0 ^    u.   <<*>). 

Substitution  into the boundary conditions 

Substitution of (7) and  (8)  into the condition   (6)  using  the  relation 

V  Z  =    £  i?-   V    d (9) 
3d 

gives in  the  limit     V —»0 the results: 

(i) ^r   = 0 at  K   = -d (10) 

(ii) The  odd numbered functions   <p ,    are  identically  zero. 

(iii) The even numbered functions <f> ,   can be expressed in the  function <f>       with  the aid 

of recurrence  relations. 

Substitution of (7) and  (8) into the  condition   (5) gives 

^-    =    6  u Z    =    0 at   f   = 0 (11) 

As  the unknown  functions  the two-dimensional  potential  function  0    and the  function Z  remain. 

Substitution  into the differential  equation 

Remembering  the previous assumption about the  function Z,  substitution of (7) and  (8)  into  the 

differential  equation  (4) gives in first approximation  for small  values of S> the equation: 

or 

M>o     =._LA (,2) 
fa Z      9f 
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The  left-hand side of equation   (12)  is a  function of x and y only,  so  the  right-hand side also must 

be a  function of x and y only. 

Now put 

——   ^    =    V 2(x, y) 03) 
M Z        3£ 

with   "^   an arbitrary  function  of x and  y  only. 

The  function Z 

Equation   (13)  together with  condition   (10) and the imposed condition  Z -  1   at £ - 0 gives the solution: 

Z    =      cos h    fyM  (£ + d)j (14) 

cos h j V   u. d I 

Dispersion relation 

The   function   X.  (dlmensionless  wave  number)  Isfixed  by  equation   (11)  which  results  in  the  dispersion 

relation 

5 =  X    ton  h   { X.  V d] 05) 

The dispersion  relation  is  the same as is given  in the theory with a constant water depth.   The 

wave number X   's  the real  root of equation   (15) and will  now be a  function of x and y corresponding  to 

the  local  water depth d. 

The   function (f> 

To get an equation for the two-dimensional function y> in a higher degree of approximation than 

is given by equation (12), equation (4) is integrated with respect to C from -d to zero after multiplication 

with  the  function  Z,   With  the  aid of the  relations 

o . f = 0 o 

f   z2 J??   d t  =  z2 .!£. .    f   if II2 d(: 

I    ^        8?,^-d  I 8e 8f 

32Z       ,  f.  _    .2^2    /"      ,2, Z <p  -»-±-    d £ =   /x      /       Zfl(   , 
a?2 

the power - series development of the  function <p   and  the recurrence  relations between  the even numbered 
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functions <p ,    ,   the  integrated equation  becomes 

O O 0 

(    f  z2 df) A<PO  +K
2 (  f z2 of)fo + ^ JL (   f z2 df) 

-d ^ H      yd 

(Vf.Vd)   +   0(V2)   + i-  0("i>4) = 0 06) o 2 

M 

The  function ©     must be a solution of this equation.   Now 

o 

f   Z2 d t = -5$-       w!th    „=i(l+ -2VM d J    , 
4 X2u sinh{2Kud] 

and the following  relation exists between  the parameters 5 and p according  to the definition of   X  and 

H  (see  figure  1): 

6 - 2 ir tan h  (2 IT p) (17) 

o 

Soforsmall  values of p the integral       /      Z    d r   is of order one.  A distinction is  now made 

between  three cases: -d 

Case A:     Assume    p y, 3 .     In practice  this  is the case of "deep"  water, giving  no variation in  the wave 
2 

number.   Neglecting  the  terms of the order O   (^  ) gives  the equation in dimensional  quantities: 

2 
A©    +  JL      cp       =0 (18)   , 

' o ' o 
g 

which  Is the diffraction equation  for deep water. 

Case B:      Assume u = *>«],  which means  the water is shallow,  and neglect again  terms of the order 
2 2 

O (^ )•   It "s easy  to see  that in  this  case Z =  1  +0(^ ) and the dimensionless wave number 

* =-2-i  +   O (v2). 

In dimensional  coordinates and variables  the equation   (16) becomes 

V  .   (c2Vy>o)'+ J <f>Q   =   0 (19) 

with  c = Vgh       (phase velocity}. 

This is the  linearised shallow water equation. 
2 

Case C:     Assume   t)  < p   < 1     and neglect in equation  (16)  terms of order O (V   ).   The  resulting equation 

in dimensional quantities is: 

2 
A <P      +    k2<p      +— —    ( — )     (Vto      . V h)      =0 

r° r° n        3h k2 
To 

or,   written  in another form, 
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2 u    c 
V  .     ( c c   V f   ) +  L  ,p =0 (20) 

/ith  c  =    —     ;     c      - n c (group velocity) 
k 9 

2 
u    = g  k  tanh   (k h)    ;  n  = •£  (  1   + - 

Properties  of equation   (20) 

Equation   (20)  changes  Into the well-known  diffraction equation in  the  case of constant water depth 

and  is also  usable  in   the  limiting  cases  of deep and  shallow waters.   Substitution  of the  expression 

(p      = a e      ,  where a is the amplitude and  S the phase of the  wave,gives the equations: 

1     f A   a +    —L     v   a.   V ( c cj }    + k2 -  (VS.7S) =    0 (21) 
c c g 

V •   (a2 c  c    V S)    =    0 (22) 

If the  term  between  curly  brackets  in equation   (21)  is  neglected,   the  refraction equations 

remain    J_5j    . Equation  (20)  therefore  contains all   limiting  situations as special   cases   and Is generally 

applicable. 

Battjes    |_ 1 j    gives the equations: 

- A a    +      k2 -  (VS. VS)  = 0 and      V .   (a2 c  c    V S)    - 0 
a 9 

as the describing   equations  for the  refraction  -  diffraction phenomenon.   The  combination of these equations, 

however,  does not pass into  the  linear shallow water equation  when  the water depth  is small. 

Method of  Solution 

General  description: 

The solution  of the differential equation   (20)  in an  arbitrary area  can  be  found  by minimizing   the 

corresponding  functional  over the area,   taking  into account the  conditions at the boundaries,   i.e.,   full 

reflection at rigid walls and the  Sommerfeld condition at sea.   The solution at sea,   where  the water depth 

is assumed to be constant,  will  be a superposition of the  incident and an outgoing  wave which  is caused 

by  the presence of the harbour or an obstacle.   This outgoing wave will  represented by a superposition 

of waves  from point sources at  the boundary between the sea and the area of interest.   The solution at 

this  boundary must be continuous with respect to wave  height and phase. 
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The functional 

The  functional  which must be minimised to get the solution  in area I   in which  the water depth  is 

variable  (see figure 2)  reads    [2j     : 

•I "iff    [c c    (V?,   . Vf[)  -u2   i   f ,   <p]  ] dxdy (23) 

The overbar denotes  the conjugate complex value.  Minimizing   (23)   gives a solution with  the 

natural  boundary conditions: 

\ 

Hi 
d n 

at  /\     and /"*- 

^1.   CD   L" gure 2 

If the boundary condition at    /*\ f,   the following  term must be added to the 

functional  J    [2j 

f   <f f ,+ f f\ )    c c    ds 
9 

(24) 

Source distributio 

In area  II,  where the water depth h    is constant,   the solution  can be written  in  the  form     |_ 3 \ 

'„ (p) = <p (n 
*;. 

M  (s)   -!—       H       (k  r)  ds 
2 i        °      ° 

(25) 

with  <p      :     The potential  function of the  known  incident wave. 

u.(s)   :    The strength of a source distribution on  the boundary   AV 
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2 
H :     Hankel  function of the second kind, o 
k :     Constant wave number. o 
r ;     Distance  from point P  to the point M at the boundary /  «  (see  f"9ure 2). 

i :       VTT. 
Formulation   (25) gives a solution  in area  II   that satisfies  the  Sommerfeld radiation  condition.   From 

this expression it can be derived that 

S3l   =   i!     -    „  (P) +/     „  W J_      f_L      Ho
2  frQ r)l      ds 

if the point is situated on  the boundary/I    [_3 J . 

(26) 

Continuity conditions 

Taking  together the  two continuity conditions between  the solutions (p.  and f>..  at the boundary /*« 

P,    -    y„       and         iL    = L      ( = fj (27) 
' M On d n 

the problem    is well-defined and the unknown  functions u.(s) and y*.   (x,  y)  can  be found. 

Numerical  method 

The  functional  written  in  real  terms  {<p =<f, + '^9)  reads: 

,    /•/•    r r       3?1    2 3?1   2 3?2   2 3?2   2! 

«/-/.. a   t       9 x 3  y 9 x 9 y 

-  U
2    JL    (f]

2 + <p 2
2,    ]    dx dy        -A    c   cg (f,    5°,   ^ fj   ?2)   ds (28) 

Thenumerlcal treatment is based on the finite element method to find the minimum of the 

functional    [12 J    .   Now area  I  is split up into elements of triangular form and the functions <J>.,  and 

<o y are approximated in  each element by a   linear expression.  As  the  treatment of both  functions a>, 

and <p«  is   the same,   in  the following  the subscript will  be omitted.  After the  linear approximation of 

(P,   the functional  will be a  function of the M  nodal values  y5] / ^o'    ' ^°M*   ^e ^unct'ona' 
must be minimal  with  respect to variation  in these values,  so 

AJ_     =    0 m = 1, 2, 3,       , M (29) 
3f 
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This gives a set of linear equations  in  the unknown nodal   values.   The  function f h also    unknown, 

and therefore  the integral  will be approximated by a summation over N segments in which c  c f is assumed 

to be a  constant and equal  to  the value in  the centre  point P  (see figure 4). 

Figure 4 

With the aid of equations  (26) and  (27)  the unknown values f in the  N points  P on  the boundary 

Its can be expressed in  terms of the strength p of the source distribution: 

• it~ M(P)+ r   ujy-i-  [-L-    Ho
2(kor     )]   Lk (30) 

k -  i 3 n       I i k 

The continuity condition  for the  wave height gives  the additional set of equations to provide 

M + N equations in  the M + N unknown values f., <f>_,        y      and p,,   p«'    '  ^N    : 

i <5Pp + ?P f   <P) +    k£ ,   M OV  ~     H0
2 (k0 rpPk)    Lk (31) 

The value of CO in the source point P  is approximated by  the average of the values in the  two 

neighbouring nodal  points P,  and P. on  the boundary f^  (see figure 4).   The full  set of equations,  which 

must be solved to get the complex values ft> and p in the nodal and source points respectively,  becomes 

in matrix notation: 

A $_ +    B    H (32) 

9s   is the vector of the unknown  complex values y, ifyt    /  9s KJ.    anal H ^e vect°r °f fne strength of 

the source distribution in  the  N source points on  the boundary   Pj- 

A is a real symmetric M x M matrix with a  band structure generated by  the   finite element method. 

B is a complex M x N matrix which has non-zero values in the rows corresponding with the nodal 

points on  the  boundary P<)• 

D Is a  real   N x M matrix generated by  the averaging  procedure in equation  (31). 
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T is a complex N x N matrix wifh coefficients consisting of Hankel functions according to equation 

(31). The known vectors r^ and s are provided by the Indicent wave <p This system of equations is solved 

by a direct solution method.   First the vector u. is computed according   to 

H = (T - DA-1B)~'   (s  - DA-1r) (33) 

and then  the vector   <p     follows  from 

(34) 

In computing  the decomposition of the matrix A,   the symmetrical   band structure of the matrix has 

been  taken into account. 

Results 

It is  not the intention of this paper to give accurate solutions of some of the problems but more 

to show the possibilities of the method of solution which has been described. 

The quantitative    aspects of the accuracy of the method will  be the subject of further study. 

(1)       Tsunami  response for a  circular island 

A good comparison  with other computations without  large computing  time can be obtained in 

the problem of tsunami  response for a circular island with a parabolic bottom profile.   Vastano and 

Reid       111     have solved  this problem with a  finite difference technique and compared their results 

with  analytic solutions.   The  results   of the  method given  In  this  paper are shown  in  figures 5-9. 

Figure 5 gives the  configuration of the finite elements in  the area of variable depth.   First 

the problem with a constant water depth  has been  computed to check  the method of solution   (figure 

6) and  then  the problem with a parabolic  bottom profile has  been solved and compared with  the 

results  of Vastano and  Reid  (figure  7).   It has still   to be seen  whether  the accuracy  of the method  is 

better  when  the  wave   length   becomes greater with  respect  to  the size     of the elements, 

(ii)      Propagation of tsunami   waves over a parabolic shoal 

The  influence ofashoal with parabolicbottomprofile on  the propagation of tsunami  waves has 

been computed and the results are given  in figures 8  -   10.   Figure 8 indicates how the area of 

variable depth has been split up into triangular elements.   Figures  9-10 show lines of equal  phase 

and amplitude.   The phase of the wave  is expressed in degrees, so a difference of 360 degrees 

corresponds  to one wave   length, 

(iIi)     Propagation  of short waves  over a shoal 

An  interesting  problem  with  respect  to  the  combined  effect of refraction and  diffraction  of 

waves  is  the propagation of short waves   (short with  respect to the size of the disturbance of the 

bottom) over a shoal  with  a parabolic bottom profile,   because  the presence of a caustic curve  (see 

figure   11)  following  from Jhe refraction  theory is an indication  that diffraction effects cannot be 

neglected.  An attempt was made  to compare  the  results  in  this  case with  the measurements of 
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Holthuysen    16 ]    .   To save memory and  computing  time  the area,  which has been split up Into  finite 

elements,  was  reduced  to a  circle segment with an angle at the  top of 60 degrees  (figure  12).   It was 

assumed that the solution at the boundary AO   (see figure  11) does not deviate from  the solution  follo- 

wing  from the refraction  theory  (ray-method) according  to the measurements.   The solution of the  ray- 

method has been imposed as a boundary condition on the boundary AO,  and the results of the  compu- 

tation are given as  lines of equal  phase  (fiure  13),   lines of equal  amplitude  (figure  14) and lines 

of equal  water elevation at some time  (figure  15).  A good comparison  with  the measurements over a 

large area was not possible  because of the  lack of information about the phase and because of the 

unreliability of the quantitative results of the measurements in an area above  the shoal.  Qualitatively 

the computer results seem reasonable, 

(iv)     Response of a rectangular harbour 

The  last problem of which  the results will  be given is the response of a rectangular harbour 

with a constant slope of the bottom.  The amplitude of the standing  wave in the centre  line of the 

harbour    is   given  for different slopes of the bottom in  figure   16.   In the first Instance  the wave 

height    in  the  harbour decreases as a  result of the  increasing  slope  of the  bottom,   but wlrh a  slope 

of 1/3 the phenomenon of resonance of the harbour becomes important. 
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Notation 

H o 
h 

I 

j 

k 

ko 
L 

lk 
M 

matrix 

amplitude 

matrix 

phase velocity 

group velocity 

matrix 

dimensionless depth 

function 

gravity constant 

mean water depth 

Hankei  function 

water depth 

r 

functional 

wave number 

constant wave number 

horizontal  length 

length of k-th segment 

number of noda! points 

number of source points 

shoaling  factor 

normal vector 

known vector 

phase 

distance along  the  boundary 

known vector 

matrix 

horizontal  coordinates 

verti ca I  coord! nate 

function 

? 
& 
8 

e 

K 
X 
M 

Hfe) 

E 

V> 

9 
f 

t 

boundaries 

parameter  (H/L) 

Laplace operator 
2 

parameter    (u   A/g) 

parameter  (A/H) 

dimensionless wave  number 

mean wave  length 

parameter  (H/X ) 

strength  of the source distribution 

vector of strength of the sources 

parameter (H/ V A U 

three-dimensional potential   function 

two-dimensional  potential  function 

potential of incident wave 

potential  functions in areas 1  and !l 

respectively 

vector of values of * In  the nodal  points 

angular frequency 

stretched vertical coordinate z/u. 

nabla operator. 
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*   £   £ 
O •*   * 
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3        4- 
U      C 

•HH. 



486 COASTAL ENGINEERING 

I 

5 > 



COMBINED REFRACTION-DIFFRACTION 487 

o 
o 

in     in        o   >"  «0    O O 
<\i     m        ^   m   r-iin    q  Q 8 8    8 o 

Q 

-w 

o tf> O   O O K o r> m        w ^ 

-01 

o o 

II 



488 COASTAL ENGINEERING 

iS u 



COMBINED REFRACTION-DIFFRACTION 489 

6   3 
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