Computation of Degree Constrained Rational Interpolants Wih
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Abstract— A numerically stable homotopy continuation
method was first proposed by Enqvist for computing degree
constrained rational covariance extensions. The approach was
later adapted in the works of Nagamune, and Blomqvist
and Nagamune, to the Nevanlinna-Pick interpolation problem
and more general complexity constrained problems. Yet the
method has not been developed to the fullest extent as all
the previous works limit the associated parametrizing function
(in the form of a generalized pseudopolynomial) to be strictly
positive definite on the unit circle, or equivalently, that all
spectral zeros should lie inside the unit circle. The purpose
of this paper is to show that the aforementioned restriction is
unnecessary and that the method is equally applicable when
some spectral zeros are on the unit circle. We show that even
in this case, the modified functional of Enqvist has a stationary
minimizer. Several numerical examples are provided herein
to demonstrate the applicability of the method for computing
degree constrained interpolants with spectral zeros on the unit
circle, including solutions which may have poles on the unit
circle.

Index Terms— Rational interpolation with degree constraint,
homotopy continuation, unbounded interpolants

esseiﬁ}f%{f(z)} > 0} of C where’H denotes the set

of functions holomorphic ifD.
o H> denotes the Hardy class of functions % which
are essentially bounded dh -

« (f,g) denotes the integralzl—ﬂ/ £ (%) g ()" o

for complex functionsf and g_TrWhiCh are square-
integrable orT.

o [[flloo = esssup.er[f(2)]-

For zg, z1,...,2, € D, define
_Z + 2k
ak(z) o Z— ZE
wheneverz, has multiplicity 1, and
_Z+ oz _ 2z
for j = 1,...,m — 1 when z;, has multiplicity m and
2k = Zk+1 = ... = Zprm-1. By a generalized pseu-

dopolynomial we mean a complex function of the form

f(z) =
k=1 .
This section introduces the main notation used in thig. 7 0 and(ao,as,...,a,) € R x C". We say thatn is
paper, and also recall some definitions and relevant resuttie order of the generalized pseudopolynomigal(the order
from the literature. is zero if f is a constant function)Q (n, A) denotes the

« A anddA denote the completion and boundary of a setet of all generalized pseudopolynomials of oreemost
A, respectively. with (ap,as,...,a,) € RxA™ where A C C. We induce

« R, C, D andT denote the set of real numbers, comples ©0P0I0gy on this set by thg- || norm. We also define
numbers, the open unit disc{> € C | |z| < 1} and Q4 (n, A) to be the set of all elements O)I(_n,_A) which
the unit circle, respectively. are strictly positive £ 0) on_’Jl‘. Thg restriction of any
« R{c} denotes the real part ofc C. eIemenF ofQ, (n, A)\{0} to T is a rational spectralldensny
« CT and C* denote the transpose and conjugate tran§’-f McMillan degree at mos2n, thus'we' shall often view any
pose of a complex matrik’, respectively. such element as a spectral density instead of a generalized
e col(a,...,an) = la;...an)T. pseudopolynomu_il. Hence, to eadhe Q_+(n,_A)\{O}_We
« f. denotes theparahermitian conjugate of a complex may associate anique outer rat|0nal function (i.e., having no
function £, defined byf.(z) = f(z*~1)*. roots and pqles_|m) of M(_:Mlllan degree at most, denoted
« C denotes the Caradodory clasg f € H | R {f(z)} > by _qb(d), which is the unique canonzlcal spectral factordof
0Vz € D} and C; denotes the subsetf e 7 | Sausfying:¢(d)(0) >0 and|é(d)(z)|* = d(z) V= € T. For
details on outer functions, spectral densities and CSFs see
(11, [2].
Let 7(z) m_,1 — ziz) and H, =
span{ag, ay,...,a,}. It wil prove useful later
to note that H, has an equivalent description as
H, = {f | f = Z,0 is polynomial of degree at most}
[3]. Then 9Q.(n,C) can be alternatively described as
Q,(n,C) ={g+g. | g€ Hp,R{g(2)} > 0¥z € D, g(0) >
0}.

aog + Z(aiakJrakak*), where0 < n < oo,
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II. BACKGROUND AND MOTIVATION and

Let there be given{z,21,...,2,} C D and
{wo,wl, e ,wn} - (C()+, WhereC(H_ = {Z eC | %{Z} > 1 ) . 1 g 26i0 du(o
0}. We make the convention that non-unigqués are ordered ﬁf (2) = o [ﬂ (eif — z)i+1 p(6)
sequentially. Moreover, for simplicity we shall assume= 1 [~ 4
0 andwy is real. There is no loss in generality in taking this = 5 gy (e)dp(0)
assumption since the map— =2 sends any, € D to 0 _ o for i — 0.1 1
and is a bianalytic map fror onto itself. Secondly, we are = Wk =L m
allowed subtract the imaginary part of, from wy,...,w, wheneverz, = zp11 = ..., 2k rm_1-
without changing Problem 1 to be stated below. For further A convex optimization approach for computing solutions
details, the reader may consult [4, Appendix A]. of the problem forp.n € Q. (n,R) are given in the papers
Consider the following degree constrained rational inteif9], [10]. However, the method, without modification, has
polation problem: features which makes it numerically unsuitable for computa

Problem 1: Find all f € C of McMillan degree at most tion of solutions with poles close to the unit circle. A modi-
n such thatf(zx) = wy if 2 is of multiplicity 1, and fication of the method, by reparametrization and applicatio
SERD (2p) = wpyy for j = 1,...,m — 1 if 2, is of of a homotopy continuation method, was first introduced by
multiplicity m andz, = zx41 = ... = Zkfm—1- Enqvist [11] for the rational covariance extension prohlem
It is well known that the above problem has a solution ifind subsequently adapted by Nagamune [12], and Blomgvist
and only if a certain(generalized) Pick matrix, constructed and Nagamune [4], [13] to Nevanlinna-Pick interpolatiod an
from the data{wo, w1, ..., w,}, is non-negative definite [3], moment problems. However, the approach was never studied
[5]. Moreover, the solution is unique if the matrix is singyl and extended to the case wheygn € 99, (n, C)\{0}.
otherwise there are infinitely many solutions. It has beenlthough theoretical results are available in [6] in thetisgt
shown in [3] (and rederived by constructive means in [6pf generalized interpolation gH>°, and an alternative treat-
and [7], see Remark 4 below) that when the generalized Pigkent given in [14], [7], no “complete” algorithm has been
matrix is (strictly) positive definite, all solutions to Rilem  presented for this case apart from [15]. The latter algorith
1 are completely parametrized by the set of generalizegbparts from the ideas of [11], [4], [12], [13] and proposes
polynomials of degree at most which are non-negative computation of all real solutions by numerically solving
definite onT. To be precise, we have the following: some non-linear equations. However, the latter approash wa
Theorem 2 ([3], [6], [7]): For a given interpolation data specific for rational interpolation problems, while the hrt
with a positive definite Pick matrix, and any polynomigd~  of [9], [11] extends to more general moment problems as
0 of degree< n with roots inDD¢ normalized byn (0) = 1, demonstrated in [13]. Moreover, further theoretical ressul
there exists a unique pair of polynomials,b) of degree have been obtained by studying the convex optimization
< n such thatb(0) > 0, a + b has all its roots inD°, the technique for the case of spectral zeros on the unit circle
pair satisfies the relation [6], [14], [7] and has been applied to spectral factorizatio
[16]. Therefore, it is of interest to investigate applidapiof
the homotopy continuation method of Engvist if one allows
for a fixedx > 0, and f = ¢ is a solution of Problem 1. 7 to have zeros on the unit circle. It has already been argued
The roots ofyy in the above theorem are referred to in then [14] and indicated in Example 14 therein that such an
literature as “spectral zeros.” extension is feasible when the solutigris bounded (has no
The connection betweem, and Problem 1 lies in the Her- poles onT). The present paper provides further justification
glotz representation [8]. In this representation, any tsmhu and goes on to cover the case of unbounded solutions as well.

aby + ba, = K2y, Q)

of Problem 1 is expressed as: As a starting point, we focus on the rational interpolation
1™ el 4 s problem as summarized in Problem 1 and show theoretically
flz)= 27/ ——du(0), that such an extension is indeed valid. Later in Section 1V,
) _ev—z

the extended homotopy continuation method is then applied
wherey is a non-decreasing function of bounded variation oon several examples for practical illustration.

[—7, 7] with 1(0) = 0, called thespectral distribution of f.
The spectral distribution has the decompositios 1, + s
where i, is absolutely continuous whilg, is a piecewise Define the mapping) : R x C* — 9Q(n,C) by:
constant function with at most — 1 jumps. This allows us

I1l. A NALYSIS AND MAIN RESULTS

to write each interpolation condition in integral form: Q(q0:q1,925 -, qn)(2) = o + Z %(q;’;ak + aroes). (2)
k=1
Flo) = i T et 4 Zdu(e) Clearly @ is a bijective map. Then we defirg,,;, C RxC"
g o |, e — 2 as O,y = Q- 1(Q4(n,C)) and letQ,, = O,
1 [T . Let¥ = % with 7 is a polynomial as defined in Theorem

_ 6 _
o2 ) an(€)dp(6) = w 2. Then¥ € 9,4 (n,C)\{0} (for details, see Section Il of



[3], [10])_. We first consider the functiondly : Q, — R U (qh — Qmin,k)}7 (4)
{oo} defined by:

_ _— wherem < n, Ky, Kq,...,K,, are some positive
Tu(9) = %{w 1 <\II’IOgQ(q)>} ® constants andy, 01, ...,0,, € (—m, ], with 6; # 0;
The functional was first introduced and studied for the wheneveri # j, are the discontinuity points of the
caseV € 9,(n,C) in [9], [10]. It was subsequently spectral distribution off, i.e., %, ... e are poles
shown in [17], [14] that they continue to hold fob € of f onT.
QDAn,(C)\{O}. Its properties are summarized the follow- \oreover, in both cased = ¢(Q(gmin)) and all roots of
Ing: Q(gmin) on T, including multiplicities, are also roots af.
Theorem 3 ([14], [17], [10], [9]): Ju has the following Proof: Although the proof is analogous to the proof of
properties for anyl € 9. (n, C)\{0}: [7, Theorem 8] (see Remark 4), for the sake of clarity we

» Jy is finite and continuous at any € Q,,, except at shall here just detail a possibly not so obvious part in the
zero. MoreoverJy ((1 — t)go + tg1) is aC™ function adaptation of the latter proof needed to establish Point 2 of

w.r.t. t for anyqo,q1 € Q.. the theorem.
o Jy is strictly convex on the closed, convex dom&. As in [7], we write f = f, + fs, Where f, € C N
« The functional]y has a unique minimum og@,,. H*> while f, € C has one or more poles off. We
Remark 4: Strictly speaking, [17], [14], [7] consider the also have the representatig(z) = = [ EZijdua and
casezp = z = ... = z, = 0 and ‘?‘k(z) = zlk fs(z) = &= [7 etz q,,, where u, and p, are, respec-
for k = 0.1,...,n, i.e., the rational covariance extensionyye|y the absolutely continuous and singular part of the

problem. However, as the stated in [14], 7], and as can bfpectral distributioru of f. Sincedu,(0) = R{f.(e??)}do
seen by observing thad, (n, C) lies in a finite dimensional and du(6) — m g5 — 6)do for some positive
space (i.espan{ai., ..., an.} @ H,) and contains rational : 1=0

; X ) - ' constants Ky, K1, ..., K,, (6(z) denotes the Dirac delta
functions continuous offf, the analysis carries ovenutatis function), we have thatfu(zy) = (fo + fas,au.) and
mutandis (one substitutes* with ay.(2) and ¢, with wy, folz) = S Kiap(e®). Thus, we obtain the relation
etc) without technical difficulty to the current setting. Flz) — f (Zkl)_ﬂ Wi = (fa =+ far Q) = 327 Ky ()

a - a ax*s */ — 1=0 ’

For any ¢ € Q,, let Dy Jy(q) denote the direction

i T e ) in analogy with that obtained for the casg=2; = ... =
derivative ofJy at the pointg in the direction of¢/, i.e.,

zn = 0in [7]. The relation is a key one for establishing
. Ju(g+h(d —q) —Julq) (4). As for remaining arguments, they are straightforward t

Dy Ju(q) = 1,51(} A : adapt from the proof of [7, Theorem 8]. [

An important conclusion to be drawn from Theorem 5
is that, regardless of whetheF is positive definite onT
or has zeros there, we always have that the polynomial
b of Theorem 2 associated witlr is given by b =
7O(Q(qmin)). Once b is computed,a is easily obtained
from b by multiplying the coefficients o by a certain
matrix W which only depends on the interpolation data

It was first shown in [9] that whenevdr is positive definite
on T, Jg has a minimizerg,,;, which is stationary (i.e.,
Dy Jw(gmin) = 0V¢ € Q,)andliesing,, . It then follows
thatb in Theorem 2 is given by = 7¢(Q(¢min) anda can
be found by solving the equatian.b + ba, = ¥ [10].

As for the case wher& has zeros orfl, it turns out

thatJ\y exhibits some interesting properties as stated in th@%hwg,...,wn (see, e.g., [15], [7] for further details), i.e.,
following adaptation of [7, Theorem 8: ; _ T n _
) if a(z) = col(ag,as,...,an) col(l,z,...,2") and b =
Theorem 5: Let  be as in Theorem 20 = 11 ¢ T n .
) T col(bg, b1, ...,b,) col(1, z,...,2") then:
99+ (n, C)\{0} and g;s», = argmin Jg. Then:
9€<9n col(ag ay ... an) = Weol(bg, by, ..., by). (5)

1) Dy Jw(gmin) = 0 for all ¢ € Q,, if and only if the
pair (a,b) as defined in Theorem 2 is such that= The only disrepancy is that wheh has zeros off, Jg may
T € H™. have a minimizer which isiot a stationary point.

2) Dy Jw(Gmin) > 0 (resp.,= 0) for all ¢ € Q,,4 (resp.,  Although properties ofy make it convenient for analysis,
q' € 0Q,4) if and only if the pair(a,b) as defined it is not suitable for numerical optimization, especialljjen
in Theorem 2 is such thaf = § has a pole oril. ¢, ,, is close to or on the boundary. This is due to the fact

Dy Jw(gqmin) is then given by: that the condition number of the HessianJaf tends toco
as one goes to the boundary. Define
n U * "
Dolultmin) = ,;0%{ (1~ (o0 ) D)) = Y dy*
- k=0
(q;c - Qmin,k)} and D, = {d = COl(do, dl, e ,dn) e RxC» | do >

m n 0,D(d)is outet. Then for ¥ € Q,(n,C), one way to
ZKZ%{Zak*(ewl) circumvent the difficulty with]y, developed in [11], [18],
=0 =0 [4], [12], [13], is to reformulate the optimization probleas



minimizing the functional7y : D,, — R: d(Q(gmin))- Now, let Uy, k = 1,2,..., be a sequence

D)2 such that?, € 94 (n,C) for all ¥ and ¥;, converges to
Ju(d) = d*Kd — <1og Dd) 7\1/>, U uniformly on T, i.e, limg o0 ||V — Ui|loc = 0 and let
T dt ., = argmingep Ju, (d). Then as shown in [7, Proof

where K is a positive definite matrix which is only depen-of Theorem 8]:
dent on the interpolation daté(zy,wy)}k=01,...n- Since i e — g — Jim 1D(do ) — D(d* -0
ID(a)(e®)|? = D(e®)D(e)* (and similarly forr), it is  rom ldmin = diinll2 _kgroloH (dmin) = D(drpin )| o0 = 0
easy to see thafy can be written as Furthermore, as shown in [13] we have that
_ e Dy Jy,(dr,,) = 0 for all & € D, and for all k.
Ju(d) = d"Kd = 2R{{log D(d), W)} + 2R {log 7, 1)}, Now, by the uniform convergence @ to ¥ and D(d% . )
where the last term does not dependdis not essential in to D(d,in) as noted above, we have:
the ensuing analysis. Ty (2) U (z)
It has been argued in [11], that the new functional is lim k’“ = foraa.zeT, (7)
much better suited for numerical treatment as the hessiart > D (dnin)(2)  D(dmin)(2)
and its condition number does not blow up as one goes tith the exceptional points being the roots &f(d,:»)
the boundary ofD,,. However, the modified optimization on T (which are also roots oft by Theorem 5). Since
problem is no longer convex as the domdh, is not a W, = D(d*, YD(WdF,, ).+D(d*, ).D(WdE . ) (seethe
convex set, besides the fact thd@{ is also not convex on discussion on the previous page and Eq. (5)), we have that
D,,. Fortunately, due to the bijective correspondence between

Q4 (n,C)\{0} and D,,, Jy has a unique global minimum, HL,fH = HD(Wdf,Lm)*

and it has been shown that locally convex around the global D(dy,i) oo

minimum. This makes it possible to find its global minimum +D(dfnm)*D(de )

by constructing a convex homotopy and solving a sequence D(dk ) e

of locally convex optimization problems as detailed in [11] < IID(Wdfnm)*lloo

[18], [4], [12]. We have the following new result which has D(d: . ), .

only been shown previously fob € Q. (n, C): +H#ﬁ NPWdni)llo
Levma 6: For ¥ € 99, (n,C)\{0}, J¢ again has a i

unique minimizer orD,,. Moreover, this minimizer is also = 2([D(Wdp,n)ll0-

stationary.

min) ”LOQ D(dezn) ask — oo, it
follows thatsup;~, [|D(WdF,;,)|l« < co. Consequently,

min

i k
Proof: Let s denote the bijective map that sends D,, Now, since D(Wd

to Q~*(D(a).D(a)) € Q,\{0} and note the relation:

Wy
- L NS 8
Tu(a) = T (s(a)) + 2og ). ¥). sup | 5t 5 < ®)
Let ¢nin be as in Theorem 5 and defire= s~ (qmin). . o, L . .
Using the fact thabie (guumm) < Ju(q) Ya € O (by Theorem € the sequencl|| 57— lloo; k = 1,2,...} is uniformly

bounded. Now, by plugging (7) into (6), and once again
A invoking the Lebesque Dominated Convergence Theorem by
Ju(d) = Ju(qmin) + 2(log|7], ¥) using (8), we get:

3), we then have that

< dulo)t2floglrl W) Vo€ QuMamind p gy (d) = lim 2R{ (@) R dby)

= Ju(s (q)) Vg€ Qn\{gmin}. oo
Thergfore,j\p(cf) < Ju(d) for all d € D,\{d}, implying —Z(ﬁ,\m(dg — dfm-m)}
that d is the unique minimizer offy. This proves the first = Dldnin,)
part of the lemma. = [lim Dy T, (d5,.)

Define the directional derivative fy in the directiond’

analogously to (4) and denote it By, 7y, whered' € D,,.
U(z

Let Ny = {d € D,, | esssup ¢y ’ﬁ)()z) < oo}. Then by

similar arguments to [14, Proof of Theorem 13 (Appendix)];This shows thatl,,;, is a stationary point and completes the

we may show thaD, Jy is given by: proof of the lemma. ]
Lemma 6 shows atriking difference between7y andJy:

for U € 094 (n,C)\{0}, the minimizer of 7y is always

stationary while the minimizer ofJy may not be. From the

gi , lemma the following is easily obtained:
_Z<W"I’>(di _di)}’ (6) Corollary 7: The functional 7y is locally convex in a
=0 neighborhood of its unique minimizer.
whereg; (z) = z'. Let d,,;, be the unique minimizer affy. Proof: Again, letd,,;, denote the unique minimizer
Since dpin, = 5 (gmin), it is obvious thatD(d,.;,) = of Jy and let Ny be as defined in the proof of the

= klim 0=0 foralld eD,.

Dy Jy(d) = zﬁ{d*R(d’—d)



previous lemma. Note thaf.;, € ANy since all roots of returnsd,,;, = col(3.162283, —1.423018,0.158116). Thus,
D(din) on T, counting multiplicities, are also roots @&. b(z) = 3.162283 — 1.423018z + 0.1581162% and a(z) can
Then we may, as before, proceed by invoking the Lebesqbe computed to be(z) = 0.21052 —0.10263z — 0.0067122.
Dominated Convergence Theorem [19] to show that thB8ince all roots ofb are inside the unit circle, this example
second directional derivative of y at a pointd € Ng in illustrates the case where there are spectral zeros irlsée t

the direction ofd’ € D,,, defined as: unit circle, but where is in the interior ofD,, (cf. Point 1
; r_ D, of Theorem 5).
D}y Ty (d) = lim DarJu(d + h(d - 4)) = Da j@(d), Example 9: Let wy = 0.10088, w; = —0.00439,
" wy = —0.00702 and w3 = -—0.00294. We choose
is given by (recall thay;(z) = 2%): nz) = (z-05)(z+1) & ¥ = nn = 272 —
, L e 0.5z~ + 3 — 0.5z — 22. The algorithm returnsi,,;, =
Dy Ju(d) = 2%{@ —d)R(d" —d) —d"R(d' —d)  (0](3.162283,1.73787, —1.26443,0.158116). Thus, b(z) =
"L gig 3.16323 —1.4230182+0.1580722 anda(z) can be computed
+> 3 ( D(dJ)Q ) (9)  tobea(z) = 0.10087 — 0.00439z — 0.0070222 — 0.002932.
i=0 j=0 It may be inspected has one root very close tel (indeed
x (df — d;)(d; — dj)}. (10) the trueb,_with which this example is constructed, has a root
on T). This example serves to illustrate the case wibdnas

In particular, D2, Jy (dmn) €xists and is bounded in all roots onT which cancels the same corresponding roots of
directionsd’ € D,,. Sinced,,;,, is stationary and is the unique 7. An example of this type has also been given in [14], [17].
minimizer of J, as shown in the previous lemma, we may Example 10: Let wy = 1.10088, w; = 0.86164, ws =

conclude thatD? 7y (d,.in,) > 0 for all d’ € D,,. Hence, 7y 0.492982, ws = —0.00294 and' wy = —0.50097. We
is convex on some sufficiently small convex neighborhoodhoosen(z) = (z — 0.5)(z + €'5)(z — €'%) & ¥ =
Of dmin. B . = 273 4 596410272 — 14.660252 4 19.42820 +

Lemma 6 and Corollary 7 justify the use of the homotopy-14.660252+5.9641022+22. The algorithm returnd,,;,, =
continuation method for finding solutions of Problem 1 cerrecol(3.16228, —6.90025, 5.78514, —1.69689, 0.15811). Thus,
sponding ta; with spectral zeros on the unit circle. Althoughb(z) = 3.16228 — 6.90025z + 5.785142% — 1.6968923 +
the functional is not globally convex, we do have a statignar0.158112% anda(z) = 1.10088 — 0.861642 + 0.4929822 —
minimizer and local convexity around the minimizer. This0.0029423 —0.500972*. It may be inspected has roots very
is enough to allow us to use a homotopy continuation tolose toe’s ande~%%, buta does not. The example serves
circumvent the lack of global convexity, and solve a seqaendo illustrate the case wherg= ¢ is an unbounded solution
of locally convex problems, as is done for the case whenith poles onT (cf. Point 2 of Theorem 5).
all spectral zeros are strictly inside the unit circle. It th The examples show that indeed all solutions to Problem 1
next section, we put our assertions to the test by applyirfgr n corresponding te with some spectral zeros on the unit
the continuation method to compute the different kinds ofircle can be computed with the same homotopy continuation
possible solutions as summarized in Theorem 5. method that was previously developed for spectral zeros

exclusively inside the unit circle.
IV. NUMERICAL EXAMPLES

In this section we present numerical results of applying
the continuation method for computing solutions of Problem The contribution of this paper is development of theoreti-
1 corresponding to spectral zeros @n However, although cal results which show that a certain homotopy continuation
our results are developed for a general case, in the examptasthod, originally due to Engvist, for computing solutions
we restrict our attention to the rational covariance extens of degree constrained rational interpolation problemshwit
problem, i.e.zg = z1,...,z, = 0. The reason for this strictly positive parametrizing functions remains valicbe
is that this special problem has been the focus of owrhen the parametrizing functiof is non-strictly positive
recent research efforts in approximation of second ordelefinite on the unit circle. In particular, we show that, keli
processes and spectral factorization [16]. Moreover, tidav the original dual functionaly introduced by Byrnes et. al.,
complex arithmetics, we shall only consider the real cas#éhe modified functional7y of Enqvist, has the remarkable
where wg, w1, ..., w, € R. We implement the homotopy property that it continues to have a stationary minimizer
continuation algorithm as described in [11] and use thehen the parametrizing function is non-strictly positivef-d
stopping criteriaze,, = ||j\;,(czn) — jq,(cin_l)Hg < ¢ for inite. Several numerical examples have been provided to
a specified tolerance> 0, whered,, denote the iterate (ap- illustrate the validity of the theoretical results.
proximation ofd,,.;,) at thek-th iteration of the algorithm. For the special case of the rational covariance extension
In all examples, we take the step sige= 0.1 (see [11, p. problem, this method is particularly attractive since the

V. CONCLUSIONS

1196]) and set = 1076. Hessian of 7y has a Toeplitz-plus-Hankel structure which
Example 8: Let wy = 0.21052, w; = —0.10263 and can be inverted with fast algorithms, some of which can
wy = —0.00671. We choosen(z) = (2 — 0.5)(z — 1) <&  be implemented in parallel. Moreover, since the method has

U =nm=2"2—-452"1+7— 45z + 22 The algorithm been adapted for finding strictly positive solutions of some



moment problems, the development of this paper may allop1] P. Engvist, “A homotopy approach to rational covariargension
for finding non-strictly positive solutions of the problems
This will be treated in forthcoming work.
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