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Abstract— A numerically stable homotopy continuation
method was first proposed by Enqvist for computing degree
constrained rational covariance extensions. The approach was
later adapted in the works of Nagamune, and Blomqvist
and Nagamune, to the Nevanlinna-Pick interpolation problem
and more general complexity constrained problems. Yet the
method has not been developed to the fullest extent as all
the previous works limit the associated parametrizing function
(in the form of a generalized pseudopolynomial) to be strictly
positive definite on the unit circle, or equivalently, that all
spectral zeros should lie inside the unit circle. The purpose
of this paper is to show that the aforementioned restriction is
unnecessary and that the method is equally applicable when
some spectral zeros are on the unit circle. We show that even
in this case, the modified functional of Enqvist has a stationary
minimizer. Several numerical examples are provided herein
to demonstrate the applicability of the method for computing
degree constrained interpolants with spectral zeros on the unit
circle, including solutions which may have poles on the unit
circle.

Index Terms— Rational interpolation with degree constraint,
homotopy continuation, unbounded interpolants

I. NOTATION AND BASIC DEFINITIONS

This section introduces the main notation used in this
paper, and also recall some definitions and relevant results
from the literature.

• A and∂A denote the completion and boundary of a set
A, respectively.

• R, C, D andT denote the set of real numbers, complex
numbers, the open unit disc= {z ∈ C | |z| < 1} and
the unit circle, respectively.

• ℜ{c} denotes the real part ofc ∈ C.
• C⊤ and C∗ denote the transpose and conjugate trans-

pose of a complex matrixC, respectively.
• col(a1, . . . , an) = [a1 . . . an]T.
• f∗ denotes theparahermitian conjugate of a complex

function f , defined byf∗(z) = f(z∗−1)∗.
• C denotes the Carathèodory class{f ∈ H | ℜ{f(z)} ≥

0∀z ∈ D} and C+ denotes the subset{f ∈ H |
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ess inf
z∈D

ℜ{f(z)} > 0} of C whereH denotes the set

of functions holomorphic inD.
• H∞ denotes the Hardy class of functions inH which

are essentially bounded onT.

• 〈f, g〉 denotes the integral12π

∫ π

−π

f
(

eiθ
)

g
(

eiθ
)∗

dθ

for complex functionsf and g which are square-
integrable onT.

• ‖f‖∞ = ess supz∈T
|f(z)|.

For z0, z1, . . . , zn ∈ D, define

αk(z) =
z + zk

z − zk

wheneverzk has multiplicity1, and

αk(z) =
z + zk

z − zk

and αk+j(z) =
2z

(z − zk)j+1

for j = 1, . . . ,m − 1 when zk has multiplicity m and
zk = zk+1 = . . . = zk+m−1. By a generalized pseu-
dopolynomial we mean a complex function of the form

f(z) = a0 +

n
∑

k=1

(a∗
kαk + akαk∗), where 0 ≤ n < ∞,

an 6= 0 and (a0, a1, . . . , an) ∈ R × C
n. We say thatn is

the order of the generalized pseudopolynomialf (the order
is zero if f is a constant function).Q (n,A) denotes the
set of all generalized pseudopolynomials of orderat most n

with (a0, a1, . . . , an) ∈ R×An where A ⊆ C. We induce
a topology on this set by the‖ · ‖∞ norm. We also define
Q+(n,A) to be the set of all elements ofQ (n,A) which
are strictly positive (> 0) on T. The restriction of any
element ofQ+(n,A)\{0} to T is a rational spectral density
of McMillan degree at most2n, thus we shall often view any
such element as a spectral density instead of a generalized
pseudopolynomial. Hence, to eachd ∈ Q+(n,A)\{0} we
may associate aunique outer rational function (i.e., having no
roots and poles inD) of McMillan degree at mostn, denoted
by φ(d), which is the unique canonical spectral factor ofd

satisfying:φ(d)(0) > 0 and |φ(d)(z)|2 = d(z) ∀z ∈ T. For
details on outer functions, spectral densities and CSFs see
[1], [2].

Let τ(z) = Πn
k=0(1 − z∗kz) and Hn =

span{α0, α1, . . . , αn}. It will prove useful later
to note that Hn has an equivalent description as
Hn = {f | f = σ

τ
, σ is polynomial of degree at mostn}

[3]. Then Q+(n, C) can be alternatively described as
Q+(n, C) = {g + g∗ | g ∈ Hn,ℜ{g(z)} ≥ 0∀z ∈ D, g(0) >

0}.



II. BACKGROUND AND MOTIVATION

Let there be given {z0, z1, . . . , zn} ⊂ D and
{w0, w1, . . . , wn} ⊂ C0+, whereC0+ = {z ∈ C | ℜ{z} ≥
0}. We make the convention that non-uniquezk’s are ordered
sequentially. Moreover, for simplicity we shall assumez0 =
0 andw0 is real. There is no loss in generality in taking this
assumption since the mapz 7→ z−z0

1−z∗

0
z

sends anyz0 ∈ D to 0

and is a bianalytic map fromD onto itself. Secondly, we are
allowed subtract the imaginary part ofw0 from w1, . . . , wn

without changing Problem 1 to be stated below. For further
details, the reader may consult [4, Appendix A].

Consider the following degree constrained rational inter-
polation problem:

Problem 1: Find all f ∈ C of McMillan degree at most
n such thatf(zk) = wk if zk is of multiplicity 1, and
f (k+j)(zk) = wk+j for j = 1, . . . ,m − 1 if zk is of
multiplicity m andzk = zk+1 = . . . = zk+m−1.

It is well known that the above problem has a solution if
and only if a certain(generalized) Pick matrix, constructed
from the data{w0, w1, . . . , wn}, is non-negative definite [3],
[5]. Moreover, the solution is unique if the matrix is singular,
otherwise there are infinitely many solutions. It has been
shown in [3] (and rederived by constructive means in [6]
and [7], see Remark 4 below) that when the generalized Pick
matrix is (strictly) positive definite, all solutions to Problem
1 are completely parametrized by the set of generalized
polynomials of degree at mostn which are non-negative
definite onT. To be precise, we have the following:

Theorem 2 ([3], [6], [7]): For a given interpolation data
with a positive definite Pick matrix, and any polynomialη 6=
0 of degree≤ n with roots inDc normalized byη (0) = 1,
there exists a unique pair of polynomials(a, b) of degree
≤ n such thatb(0) > 0, a + b has all its roots inDc, the
pair satisfies the relation

ab∗ + ba∗ = κ2ηη∗ (1)

for a fixedκ > 0, andf = a
b

is a solution of Problem 1.
The roots ofη in the above theorem are referred to in the

literature as “spectral zeros.”
The connection betweenαk and Problem 1 lies in the Her-

glotz representation [8]. In this representation, any solution
of Problem 1 is expressed as:

f(z) =
1

2π

∫ π

−π

eiθ + z

eiθ − z
dµ(θ),

whereµ is a non-decreasing function of bounded variation on
[−π, π] with µ(0) = 0, called thespectral distribution of f .
The spectral distribution has the decompositionµ = µa +µs

whereµa is absolutely continuous whileµs is a piecewise
constant function with at mostn − 1 jumps. This allows us
to write each interpolation condition in integral form:

f(zk) =
1

2π

∫ π

−π

eiθ + z

eiθ − z
dµ(θ)

=
1

2π

∫ π

−π

αk(eiθ)dµ(θ) = wk

and

1

j!
f (j)(zk) =

1

2π

∫ π

−π

2eiθ

(eiθ − z)j+1
dµ(θ)

=
1

2π

∫ π

−π

αk+j(e
iθ)dµ(θ)

= wk+j , for j = 0, 1, . . . ,m − 1

wheneverzk = zk+1 = . . . , zk+m−1.
A convex optimization approach for computing solutions

of the problem forη∗η ∈ Q+(n, R) are given in the papers
[9], [10]. However, the method, without modification, has
features which makes it numerically unsuitable for computa-
tion of solutions with poles close to the unit circle. A modi-
fication of the method, by reparametrization and application
of a homotopy continuation method, was first introduced by
Enqvist [11] for the rational covariance extension problem,
and subsequently adapted by Nagamune [12], and Blomqvist
and Nagamune [4], [13] to Nevanlinna-Pick interpolation and
moment problems. However, the approach was never studied
and extended to the case whereη∗η ∈ ∂Q+(n, C)\{0}.
Although theoretical results are available in [6] in the setting
of generalized interpolation onH∞, and an alternative treat-
ment given in [14], [7], no “complete” algorithm has been
presented for this case apart from [15]. The latter algorithm
departs from the ideas of [11], [4], [12], [13] and proposes
computation of all real solutions by numerically solving
some non-linear equations. However, the latter approach was
specific for rational interpolation problems, while the method
of [9], [11] extends to more general moment problems as
demonstrated in [13]. Moreover, further theoretical results
have been obtained by studying the convex optimization
technique for the case of spectral zeros on the unit circle
[6], [14], [7] and has been applied to spectral factorization
[16]. Therefore, it is of interest to investigate applicability of
the homotopy continuation method of Enqvist if one allows
η to have zeros on the unit circle. It has already been argued
in [14] and indicated in Example 14 therein that such an
extension is feasible when the solutionf is bounded (has no
poles onT). The present paper provides further justification
and goes on to cover the case of unbounded solutions as well.
As a starting point, we focus on the rational interpolation
problem as summarized in Problem 1 and show theoretically
that such an extension is indeed valid. Later in Section IV,
the extended homotopy continuation method is then applied
on several examples for practical illustration.

III. A NALYSIS AND MAIN RESULTS

Define the mappingQ : R × Cn → Q(n, C) by:

Q(q0, q1, q2, ..., qn)(z) = q0 +
n

∑

k=1

1

2
(q∗kαk + qkαk∗). (2)

ClearlyQ is a bijective map. Then we defineQn+ ⊂ R×Cn

asQn+ = Q−1(Q+(n, C)) and letQn = Qn+.
Let Ψ = η∗η

τ∗τ
with η is a polynomial as defined in Theorem

2. ThenΨ ∈ Q+(n, C)\{0} (for details, see Section III of



[3], [10]). We first consider the functionalJΨ : Qn → R ∪
{∞} defined by:

JΨ (q) = ℜ
{

w∗q − 〈Ψ, log Q (q)〉
}

(3)

The functional was first introduced and studied for the
case Ψ ∈ Q+(n, C) in [9], [10]. It was subsequently
shown in [17], [14] that they continue to hold forΨ ∈
∂Q+(n, C)\{0}. Its properties are summarized the follow-
ing:

Theorem 3 ([14], [17], [10], [9]): JΨ has the following
properties for anyΨ ∈ Q+(n, C)\{0}:

• JΨ is finite and continuous at anyq ∈ Qn, except at
zero. Moreover,JΨ((1 − t)q0 + tq1) is a C∞ function
w.r.t. t for anyq0, q1 ∈ Qn.

• JΨ is strictly convex on the closed, convex domainQn.
• The functionalJΨ has a unique minimum onQn.
Remark 4: Strictly speaking, [17], [14], [7] consider the

case z0 = z1 = . . . = zn = 0 and αk(z) = 2
zk

for k = 0, 1, . . . , n, i.e., the rational covariance extension
problem. However, as the stated in [14], [7], and as can be
seen by observing thatQ+(n, C) lies in a finite dimensional
space (i.e.,span{α1∗, . . . , αn∗}

⊕

Hn) and contains rational
functions continuous onT, the analysis carries overmutatis
mutandis (one substituteszk with αk∗(z) and ck with wk,
etc) without technical difficulty to the current setting.

For any q′ ∈ Qn, let Dq′JΨ(q) denote the direction
derivative ofJΨ at the pointq in the direction ofq′, i.e.,

Dq′JΨ(q) = lim
h↓0

JΨ(q + h(q′ − q)) − JΨ(q)

h
.

It was first shown in [9] that wheneverΨ is positive definite
on T, JΨ has a minimizerqmin which is stationary (i.e.,
Dq′JΨ(qmin) = 0 ∀q′ ∈ Qn) and lies inQn+. It then follows
that b in Theorem 2 is given byb = τφ(Q(qmin) anda can
be found by solving the equationa∗b + ba∗ = Ψ [10].

As for the case whereΨ has zeros onT, it turns out
that JΨ exhibits some interesting properties as stated in the
following adaptation of [7, Theorem 8]:

Theorem 5: Let η be as in Theorem 2,Ψ = η∗η
τ∗τ

∈
∂Q+(n, C)\{0} andqmin = arg min

q∈Qn

JΨ. Then:

1) Dq′JΨ(qmin) = 0 for all q′ ∈ Qn if and only if the
pair (a, b) as defined in Theorem 2 is such thatf =
a
b
∈ H∞.

2) Dq′JΨ(qmin) > 0 (resp.,= 0) for all q′ ∈ Qn+ (resp.,
q′ ∈ ∂Qn+) if and only if the pair(a, b) as defined
in Theorem 2 is such thatf = a

b
has a pole onT.

Dq′JΨ(qmin) is then given by:

Dq′JΨ(qmin) =

n
∑

k=0

ℜ

{(

wk −
〈

αk,
Ψ

Q(qmin)

〉

)∗

(q′k − qmin,k)

}

=

m
∑

l=0

Klℜ

{ n
∑

k=0

αk∗(e
iθl)

(q′k − qmin,k)

}

, (4)

where m < n, K0,K1, . . . ,Km are some positive
constants andθ0, θ1, . . . , θm ∈ (−π, π], with θi 6= θj

wheneveri 6= j, are the discontinuity points of the
spectral distribution off , i.e., eiθ0 , . . . , eiθm are poles
of f on T.

Moreover, in both casesb
τ

= φ(Q(qmin)) and all roots of
Q(qmin) on T, including multiplicities, are also roots ofΨ.

Proof: Although the proof is analogous to the proof of
[7, Theorem 8] (see Remark 4), for the sake of clarity we
shall here just detail a possibly not so obvious part in the
adaptation of the latter proof needed to establish Point 2 of
the theorem.

As in [7], we write f = fa + fs, where fa ∈ C ∩
H∞ while fs ∈ C has one or more poles onT. We
also have the representationfa(z) = 1

2π

∫ π

−π
eiθ+z
eiθ−z

dµa and

fs(z) = 1
2π

∫ π

−π
eiθ+z
eiθ−z

dµs, where µa and µs are, respec-
tively, the absolutely continuous and singular part of the
spectral distributionµ of f . Sincedµa(θ) = ℜ{fa(eiθ)}dθ

and dµs(θ) =
∑m

l=0 Klδ(θ − θl)dθ for some positive
constantsK0,K1, . . . ,Kn (δ(x) denotes the Dirac delta
function), we have thatfa(zk) = 〈fa + fa∗, αk∗〉 and
fs(zk) =

∑m
l=0 Klαk(eθl). Thus, we obtain the relation

f(zk)−fa(zk) = wk −〈fa +fa∗, αk∗〉 =
∑m

l=0 Klαk(eiθl),
in analogy with that obtained for the casez0 = z1 = . . . =
zn = 0 in [7]. The relation is a key one for establishing
(4). As for remaining arguments, they are straightforward to
adapt from the proof of [7, Theorem 8].

An important conclusion to be drawn from Theorem 5
is that, regardless of whetherΨ is positive definite onT
or has zeros there, we always have that the polynomial
b of Theorem 2 associated withΨ is given by b =
τφ(Q(qmin)). Once b is computed,a is easily obtained
from b by multiplying the coefficients ofb by a certain
matrix W which only depends on the interpolation data
w1, w2, . . . , wn (see, e.g., [15], [7] for further details), i.e.,
if a(z) = col(a0, a1, . . . , an)Tcol(1, z, . . . , zn) and b =
col(b0, b1, . . . , bn)Tcol(1, z, . . . , zn) then:

col(a0 a1 . . . an) = W col(b0, b1, . . . , bn). (5)

The only disrepancy is that whenΨ has zeros onT, JΨ may
have a minimizer which isnot a stationary point.

Although properties ofJΨ make it convenient for analysis,
it is not suitable for numerical optimization, especially when
qmin is close to or on the boundary. This is due to the fact
that the condition number of the Hessian ofJΨ tends to∞
as one goes to the boundary. Define

D(d)(z) =

n
∑

k=0

dkzk

and Dn = {d = col(d0, d1, . . . , dn) ∈ R × Cn | d0 >

0,D(d) is outer}. Then for Ψ ∈ Q+(n, C), one way to
circumvent the difficulty withJΨ, developed in [11], [18],
[4], [12], [13], is to reformulate the optimization problemas



minimizing the functionalJΨ : Dn → R:

JΨ(d) = d∗Kd −
〈

log

∣

∣

∣

∣

D(d)

τ

∣

∣

∣

∣

2

,Ψ
〉

.

whereK is a positive definite matrix which is only depen-
dent on the interpolation data{(zk, wk)}k=0,1,...,n. Since
|D(a)(eiθ)|2 = D(eiθ)D(eiθ)∗ (and similarly for τ ), it is
easy to see thatJΨ can be written as

JΨ(d) = d∗Kd − 2ℜ{〈log D(d),Ψ〉} + 2ℜ{〈log τ,Ψ〉},

where the last term does not depend ond is not essential in
the ensuing analysis.

It has been argued in [11], that the new functional is
much better suited for numerical treatment as the hessian
and its condition number does not blow up as one goes to
the boundary ofDn. However, the modified optimization
problem is no longer convex as the domainDn is not a
convex set, besides the fact thatJΨ is also not convex on
Dn. Fortunately, due to the bijective correspondence between
Q+(n, C)\{0} andDn, JΨ has a unique global minimum,
and it has been shown that locally convex around the global
minimum. This makes it possible to find its global minimum
by constructing a convex homotopy and solving a sequence
of locally convex optimization problems as detailed in [11],
[18], [4], [12]. We have the following new result which has
only been shown previously forΨ ∈ Q+(n, C):

Lemma 6: For Ψ ∈ ∂Q+(n, C)\{0}, JΨ again has a
unique minimizer onDn. Moreover, this minimizer is also
stationary.

Proof: Let s denote the bijective map that sendsa ∈ Dn

to Q−1(D(a)∗D(a)) ∈ Qn\{0} and note the relation:

JΨ(a) = JΨ(s(a)) + 2〈log |τ |,Ψ〉,

Let qmin be as in Theorem 5 and definêd = s−1(qmin).
Using the fact thatJΨ(qmin) ≤ JΨ(q) ∀q ∈ Qn (by Theorem
3), we then have that

JΨ(d̂) = JΨ(qmin) + 2〈log |τ |,Ψ〉

< JΨ(q) + 2〈log |τ |,Ψ〉 ∀q ∈ Qn\{qmin}

= JΨ(s−1(q)) ∀q ∈ Qn\{qmin}.

Therefore,JΨ(d̂) < JΨ(d) for all d ∈ Dn\{d̂}, implying
that d̂ is the unique minimizer ofJΨ. This proves the first
part of the lemma.

Define the directional derivative ofJΨ in the directiond′

analogously to (4) and denote it byDd′JΨ, whered′ ∈ Dn.
Let NΨ = {d ∈ Dn | ess supz∈T

∣

∣

∣

Ψ(z)
D(d)(z)

∣

∣

∣
< ∞}. Then by

similar arguments to [14, Proof of Theorem 13 (Appendix)],
we may show thatDd′JΨ is given by:

Dd′JΨ(d) = 2ℜ
{

d∗R(d′ − d)

−
n

∑

i=0

〈 gi

D(d)
,Ψ

〉

(d′i − di)
}

, (6)

wheregi(z) = zi. Let dmin be the unique minimizer ofJΨ.
Since dmin = s−1(qmin), it is obvious thatD(dmin) =

φ(Q(qmin)). Now, let Ψk, k = 1, 2, . . . , be a sequence
such thatΨk ∈ Q+(n, C) for all k and Ψk converges to
Ψ uniformly on T, i.e., limk→∞ ‖Ψ − Ψk‖∞ = 0 and let
dk

min = arg mind∈Dn
JΨk

(d). Then as shown in [7, Proof
of Theorem 8]:

lim
k→∞

‖dmin−dk
min‖2 = lim

k→∞
‖D(dmin)−D(dk

min)‖∞ = 0.

Furthermore, as shown in [13] we have that
Dd′JΨk

(dk
min) = 0 for all d′ ∈ Dn and for all k.

Now, by the uniform convergence ofΨk to Ψ andD(dk
min)

to D(dmin) as noted above, we have:

lim
k→∞

Ψk(z)

D(dk
min)(z)

=
Ψ(z)

D(dmin)(z)
for a.a.z ∈ T, (7)

with the exceptional points being the roots ofD(dmin)
on T (which are also roots ofΨ by Theorem 5). Since
Ψk = D(dk

min)D(Wdk
min)∗+D(dk

min)∗D(Wdk
min) (see the

discussion on the previous page and Eq. (5)), we have that
∥

∥

∥

Ψk

D(dk
min)

∥

∥

∥

∞
=

∥

∥

∥
D(Wdk

min)∗

+
D(dk

min)∗
D(dk

min)
D(Wdk

min)
∥

∥

∥

∞

≤ ‖D(Wdk
min)∗‖∞

+
∥

∥

∥

D(dk
min)∗

D(dk
min)

∥

∥

∥

∞
‖D(Wdk

min)‖∞

= 2‖D(Wdk
min)‖∞.

Now, sinceD(Wdk
min)

‖·‖∞

→ D(Wdmin) as k → ∞, it
follows that supk≥1 ‖D(Wdk

min)‖∞ < ∞. Consequently,

sup
k≥1

∥

∥

∥

Ψk

D(dk
min)

∥

∥

∥

∞
< ∞, (8)

i.e., the sequence{‖ Ψk

D(dk

min
)
‖∞; k = 1, 2, . . .} is uniformly

bounded. Now, by plugging (7) into (6), and once again
invoking the Lebesque Dominated Convergence Theorem by
using (8), we get:

Dd′JΨ(dmin) = lim
k→∞

2ℜ
{

(dk
min)∗R(d′ − dk

min)

−
n

∑

i=0

〈 gi

D(dk
min,i)

,Ψ
〉

(d′i − dk
min,i)

}

= lim
k→∞

Dd′JΨk
(dk

min)

= lim
k→∞

0 = 0 for all d′ ∈ Dn.

This shows thatdmin is a stationary point and completes the
proof of the lemma.

Lemma 6 shows astriking difference betweenJΨ andJΨ:
for Ψ ∈ ∂Q+(n, C)\{0}, the minimizer ofJΨ is always
stationary while the minimizer ofJΨ may not be. From the
lemma the following is easily obtained:

Corollary 7: The functionalJΨ is locally convex in a
neighborhood of its unique minimizer.

Proof: Again, let dmin denote the unique minimizer
of JΨ and let NΨ be as defined in the proof of the



previous lemma. Note thatdmin ∈ NΨ since all roots of
D(dmin) on T, counting multiplicities, are also roots ofΨ.
Then we may, as before, proceed by invoking the Lebesque
Dominated Convergence Theorem [19] to show that the
second directional derivative ofJΨ at a pointd ∈ NΨ in
the direction ofd′ ∈ Dn, defined as:

D2
d′JΨ(d) = lim

h↓0

Dd′JΨ(d + h(d′ − d)) − Dd′JΨ(d)

h
,

is given by (recall thatgi(z) = zi):

Dd′JΨ(d) = 2ℜ
{

(d′ − d)∗R(d′ − d) − d∗R(d′ − d)

+

n
∑

i=0

n
∑

j=0

〈 gigj

D(d)2
,Ψ

〉

(9)

×(d′i − di)(d
′
j − dj)

}

. (10)

In particular, D2
d′JΨ(dmin) exists and is bounded in all

directionsd′ ∈ Dn. Sincedmin is stationary and is the unique
minimizer ofJΨ, as shown in the previous lemma, we may
conclude thatD2JΨ(dmin) ≥ 0 for all d′ ∈ Dn. Hence,JΨ

is convex on some sufficiently small convex neighborhood
of dmin.

Lemma 6 and Corollary 7 justify the use of the homotopy
continuation method for finding solutions of Problem 1 corre-
sponding toη with spectral zeros on the unit circle. Although
the functional is not globally convex, we do have a stationary
minimizer and local convexity around the minimizer. This
is enough to allow us to use a homotopy continuation to
circumvent the lack of global convexity, and solve a sequence
of locally convex problems, as is done for the case where
all spectral zeros are strictly inside the unit circle. In the
next section, we put our assertions to the test by applying
the continuation method to compute the different kinds of
possible solutions as summarized in Theorem 5.

IV. N UMERICAL EXAMPLES

In this section we present numerical results of applying
the continuation method for computing solutions of Problem
1 corresponding to spectral zeros onT. However, although
our results are developed for a general case, in the examples
we restrict our attention to the rational covariance extension
problem, i.e.z0 = z1, . . . , zn = 0. The reason for this
is that this special problem has been the focus of our
recent research efforts in approximation of second order
processes and spectral factorization [16]. Moreover, to avoid
complex arithmetics, we shall only consider the real case,
where w0, w1, . . . , wn ∈ R. We implement the homotopy
continuation algorithm as described in [11] and use the
stopping criteria:en = ‖JΨ(d̂n) − JΨ(d̂n−1)‖2 < ǫ for
a specified toleranceǫ > 0, whered̂n denote the iterate (ap-
proximation ofdmin) at thek-th iteration of the algorithm.
In all examples, we take the step sizeρ = 0.1 (see [11, p.
1196]) and setǫ = 10−6.

Example 8: Let w0 = 0.21052, w1 = −0.10263 and
w2 = −0.00671. We chooseη(z) = (z − 0.5)(z − 1) ⇔
Ψ = η∗η = z−2 − 4.5z−1 + 7 − 4.5z + z2. The algorithm

returnsdmin = col(3.162283,−1.423018, 0.158116). Thus,
b(z) = 3.162283 − 1.423018z + 0.158116z2 and a(z) can
be computed to bea(z) = 0.21052−0.10263z−0.00671z2.
Since all roots ofb are inside the unit circle, this example
illustrates the case where there are spectral zeros inside the
unit circle, but whereb is in the interior ofDn (cf. Point 1
of Theorem 5).

Example 9: Let w0 = 0.10088, w1 = −0.00439,
w2 = −0.00702 and w3 = −0.00294. We choose
η(z) = (z − 0.5)(z + 1) ⇔ Ψ = η∗η = z−2 −
0.5z−1 + 3 − 0.5z − z2. The algorithm returnsdmin =
col(3.162283, 1.73787,−1.26443, 0.158116). Thus, b(z) =
3.16323−1.423018z+0.15807z2 anda(z) can be computed
to bea(z) = 0.10087− 0.00439z − 0.00702z2 − 0.00293z3.
It may be inspectedb has one root very close to−1 (indeed
the trueb, with which this example is constructed, has a root
on T). This example serves to illustrate the case whereb has
roots onT which cancels the same corresponding roots of
η. An example of this type has also been given in [14], [17].

Example 10: Let w0 = 1.10088, w1 = 0.86164, w2 =
0.492982, w3 = −0.00294 and w4 = −0.50097. We
chooseη(z) = (z − 0.5)(z + ei π

6 )(z − ei π

6 ) ⇔ Ψ =
η∗η = z−3 + 5.96410z−2 − 14.66025z−1 + 19.42820 +
−14.66025z+5.96410z2+z3. The algorithm returnsdmin =
col(3.16228,−6.90025, 5.78514,−1.69689, 0.15811). Thus,
b(z) = 3.16228 − 6.90025z + 5.78514z2 − 1.69689z3 +
0.15811z4 and a(z) = 1.10088 − 0.86164z + 0.49298z2 −
0.00294z3−0.50097z4. It may be inspectedb has roots very
close toei π

6 ande−i π

6 , but a does not. The example serves
to illustrate the case wheref = a

b
is an unbounded solution

with poles onT (cf. Point 2 of Theorem 5).
The examples show that indeed all solutions to Problem 1

for η corresponding toη with some spectral zeros on the unit
circle can be computed with the same homotopy continuation
method that was previously developed for spectral zeros
exclusively inside the unit circle.

V. CONCLUSIONS

The contribution of this paper is development of theoreti-
cal results which show that a certain homotopy continuation
method, originally due to Enqvist, for computing solutions
of degree constrained rational interpolation problems with
strictly positive parametrizing functions remains valid even
when the parametrizing functionΨ is non-strictly positive
definite on the unit circle. In particular, we show that, unlike
the original dual functionalJΨ introduced by Byrnes et. al.,
the modified functionalJΨ of Enqvist, has the remarkable
property that it continues to have a stationary minimizer
when the parametrizing function is non-strictly positive def-
inite. Several numerical examples have been provided to
illustrate the validity of the theoretical results.

For the special case of the rational covariance extension
problem, this method is particularly attractive since the
Hessian ofJΨ has a Toeplitz-plus-Hankel structure which
can be inverted with fast algorithms, some of which can
be implemented in parallel. Moreover, since the method has
been adapted for finding strictly positive solutions of some



moment problems, the development of this paper may allow
for finding non-strictly positive solutions of the problems.
This will be treated in forthcoming work.
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