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AbstractThe `volatility smile' is one of the well-known biases of Black-Scholes models forpricing options. In this paper, we introduce a robust method of reducing this bias bypricing subject to a deterministic functional volatility � = �(S; t). This instantaneousvolatility is chosen as a spline whose weights are determined by a regularised numericalstrategy that approximately minimises the di�erence between Black-Scholes vanillaprices and known market vanilla prices over a range of strikes and maturities; theseBlack-Scholes prices are calculated by solving the relevant partial di�erential equationnumerically using �nite element methods. The instantaneous volatility generatedfrom vanilla options can be used to price exotic options where the skew and term-structure of volatility are important, and we illustrate the application to barrieroptions.
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1 IntroductionThe standard Black-Scholes model (see for example [3], [10], [19]) for pricing optionsassumes that the underlying asset price S follows the stochastic di�erential equationdS=S = (�� d)dt+ �dX (1.1)where � is the expected growth rate, d is a constant continuous dividend yield, � isthe volatility and X is a standard Brownian motion. The model usually assumes that� and � are either constant or prescribed functions of time, although it is valid if �is a deterministic function of S also. Following a no-arbitrage argument it is thenshown that the option price V must satisfy the Black-Scholes equationVt + 12�2S2VSS + (r � d)SVS � rV = 0where r is the continuously compounded risk-free interest rate. We may then priceparticular contracts by subjecting this equation to the relevant payo� (�nal-condition)and boundary conditions and solving the resulting di�erential problem. The hedg-ing paramaters (delta, gamma, etc.) can be found subsequently by di�erentiation,whether numerical or analytical, although special consideration should be made forrho and vega if either of r and � are functions of S and/or t.The choice of volatility � (which measures the standard deviation of the rate ofchange of S) is crucial to the price. We may choose � to be a constant estimated viaa statistical analysis of historical S or, as is common market practice, we may choose� as the implied volatility { the constant that satis�es the Black-Scholes equation ifV is taken as a recent known market price of the option.However, in practice, it is almost invariably found that the implied volatility isdi�erent from option to option, varying with both strike E and maturity T . Thisvariation is known as the volatility smile, its spatial component being referred to asthe skew of volatility, its temporal component as the term structure. It follows thatno one constant � can give prices consistent with market data.
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Figure 1: Schematic of a volatility smile.While the use of a constant implied volatility may be adequate for liquid vanillaoptions it may be inappropriate for more exotic options where the e�ect of � and the4



bias of the volatility smile is more pronounced. Many remedies have been proposed forthis situation. We focus on one of the simplest, that one should use a `deterministic'functional volatility �(S; t) for pricing. This approach therefore stands in contrast to,say, stochastic volatility models (see, for example, [9], [8]) or jump di�usion models(see [15]) in which a second source of randomness is incorporated to explain betterthe bias in observed prices.In this paper we present a method for �nding a suitable representation of �(S; t)by minimising an appropriate measure of the di�erence between Black-Scholes vanillaprices and known market vanilla prices over a range of strikes and maturities. As-suming that the asset price does in fact evolve according to (1.1), we will �nd a formfor �(S; t) with the following desirable properties:� It will almost remove the bias of the volatility smile, in that calculated vanillaprices will be close to recent known market vanilla prices.� A probability density function (pdf) for future values of S implied by marketvanilla prices (see [13] for a method of construction), over a range of strike pricesand maturities, will approximately coincide with the pdf for future values of Ssubject to the functional volatility. We shall not demonstrate this property butit is implied by our method for constructing �(S; t).� Since the functional form will be chosen by consideration of recent known marketvanilla prices, it can be used to price exotic options consistently with the hedginginstruments.It should be noted though, that in using vanilla prices to determine �(S; t), weabandon any attempt to predict these prices (although we can of course predict theirgreeks). Thus, for example, if the asset price evolves according to some process otherthan (1.1) with a deterministic volatility, we do not attempt to �nd any mispricingsamong vanilla products, but rather take them as given. To this extent the determinis-tic volatility model is less ambitious than some others, such as those mentioned above.It should be noted, however, that the necessity for parameter estimation makes theother models less practical.In [6], Dupire shows that if vanilla option implied volatility were available for allconceivable strikes and maturities then �(S; t) is uniquely determined. However thesmile is not de�ned everywhere in practice (because only a �nite number of strikes andmaturities are traded), so �(S; t) is not uniquely determined. Moreover, the numerical`inverse problem' of choosing a suitable form for �(S; t) is often unstable even ifwe extend the smile to a suitably smooth continuous surface through interpolation.Therefore the problem of �nding �(S; t) is naturally ill-posed.Dupire [6], Derman & Kani [5] and Rubinstein [16] have each presented impliedbinomial/trinomial tree algorithms for pricing options that use the degrees of freedomof their lattices so as to �t the smile (or rather an interpolated extension of the discretearray of implied volatilities) to the price. The construction of a functional form for� is thus implicit in these algorithms. They have the advantage of relatively fastexecution but they have several disadvantages:� Algorithm [16] assumes that volatility only has skew structure, i.e. that � =�(S). However, the term-structure of volatility may be important for manypath-dependent options such as Americans or barriers and it is inconsistent to5



use di�erent �(S) for di�erent maturities. Jackwerth [12] has addressed thisdi�culty but at the cost of a large-scale optimisation problem.� Algorithms [6] and [5] do not e�ectively counter the natural ill-posedness ofthe problem of `�tting the smile' so they are not robust. Unusual behaviourin the smile or too high interest rates can cause the algorithms to fail or toallow negative probabilities (cf. Barle & Cakici [2] who attempt to reduce thesedi�culties).� Lattice methods only price for a single spot price and not for a range. Moreseriously, lattice methods only determine the instantaneous volatility at latticepoints, which cover only a (triangular) proportion of the whole (rectangular)(S; t) domain. In pricing exotics, in particular, values of �(S; t) outside thistriangular domain may be important.� More generally, it is di�cult to apply such algorithms to barrier option or multi-dimensional pricing problems.More recently, Lagnado & Osher [14] have presented a regularised minimisationmethod, using �nite di�erence methods, to �t the smile to option prices. Regularisa-tion is here a self-stabilising procedure in the minimisation process (see for example[18]) which restricts � to the smoothest functions that minimise the di�erence be-tween Black-Scholes prices and recent known market prices. This attempts to forcewell-posedness of the `inverse problem'. Lagnado & Osher's method appears to bee�ective and robust; however, it has some disadvantages:� The method is particularly computationally expensive { the calculation of vari-ational derivatives in their gradient descent minimisation requires extensive so-lution of partial di�erential problems.� The method only generates a discrete representation of the instantaneous volatil-ity function described by a relatively small array of nodes in space-time. Thisis disadvantageous because a knowledge of � away from these nodes is often re-quired in pricing exotics. There is no unique way to interpolate this array, anddi�erent (sensible) interpolants may yield signi�cantly di�erent option prices.� The method gives equal importance to all known market prices (or equivalentlyall implied volatilities) while it may be better to give greater weight to optionsthat are more heavily traded, shorter dated or nearer to the money.We also mention a recent paper of Avellaneda et al. [1] who construct a repre-sentation for �(S; t) via a relative-entropy minimisation method. The instantaneousvolatility that their method constructs has particularly sharp peaks and troughs nearstrike/expiration dates. There are two possible drawbacks to such an outcome. Oneis that it may be unrealistic { there may be no obvious a priori reason why volatilityshould change abruptly just because a particular option contract expires. The otheris numerical. While accurate numerical solution of a Black-Scholes problem (usingthis irregular volatility) may replicate a given set of market prices, coarse numericalsolutions are liable not to see the abrupt changes and thus not replicate the prices tosu�cient accuracy. In practice, due to critical �nancial time-constraints, it is oftennecessary to discretise the space-time domain coarsely in a lattice or �nite di�er-ence/element pricing method, and therefore it is advantageous for the instantaneous6



volatility to be as smooth as possible in nature so as to retain accuracy. Similarremarks apply to Monte Carlo pricing schemes.In this paper we present a robust algorithm for generating a near-optimal choicefor �(S; t) via a regularised minimisation strategy. We choose the instantaneousvolatility function to be a space-time spline; this choice is motivated by careful ex-perimentation. Our representation of �(S; t) is therefore guaranteed to be a smoothfunction (the simplest { and smoothest { functional volatility is a single constantimplied volatility!). We consider it to be reasonable to restrict ourselves to smoothvolatility functions as we have no reason to believe that today's market prices canforecast abrupt changes in future volatility with any reliability whatsoever. We choosethe constants that uniquely determine this spline via a regularised and weighted min-imisation of the di�erence between Black-Scholes prices and known market prices overa range of strikes and maturities. We solve the Black-Scholes di�erential problem inthe minimisation process using a �nite element method.We independently analyse the integrity of our method using the adaptive �niteelement method presented in [11]. This adaptive �nite element method solves Eu-ropean Black-Scholes problems to guaranteed accuracy, and thus it may be used toverify that a generated volatility function does indeed yield vanilla option prices thatmatch the given market vanilla option prices to within a prescribed error tolerance.Such integrity testing is important because it is all too easy to generate a represen-tation for instantaneous � via a discretised tree or �nite di�erence/element methodthat appears to price a set of vanilla options correctly, only to �nd that a much �nerdiscretisation yields a signi�cantly di�erent set of prices.It is particularly advantageous to be con�dent that the generated instantaneous �is not tied to discretisation errors of a particular generating method (whether that bean implied-tree or �nite di�erence/element optimisation method) and is continuouslywell-de�ned in space-time since it is then not method-dependent, and thus can beused consistently by many pricing methods (for example Monte Carlo simulation).In Section 2 we describe the space-time spline for �. In Section 3 we describe thefunctional and minimisation method that are used to con�gure the constants thatuniquely de�ne the spline. An example of instantaneous volatility generation is givenin Section 4: given an example set of recent known market straddle option prices onthe FTSE-100, we construct � and then prove that it does e�ectively remove the biasof the volatility smile. An example pricing of an exotic option using the generated �is given in Section 5. Finally, in Section 6, we conclude the work presented herein.2 Space-time spline representation of �(S; t)It is advantageous to represent �(S; t) by a space-time spline for the following reasons:� It is simple and convenient to have a structure that is uniquely determined bya �nite number of constant weights, this number being user-con�gurable.� We then know that � has the smoothness properties that we prescribe; werequire � to have at least one continuous spatial derivative and to be at leastcontinuous in time.� Without a priori knowledge of a suitable form for �, it allows local functionalvariation and thus is reasonably general. Moreover, by increasing the number7



of splines used, complicated functional forms can be represented.� We �nd that simple non-spline representations (for example �(S) = aS�b forconstants a > 0 and b2 [0; 1], the CEV model of Cox & Ross [4]) are usually notgeneral enough to perform well. More complicated non-spline representationsmay perform well in certain circumstances but they lack the exibility of aspline.For each t, we describe the `spatial' S-variation of �(S; t) by a P -dimensionalnatural cubic spline (see, for example, Schwarz [17]) for S 2 [Smin; Smax]; we chooseSmin > 0 and Smax <1 to approximate 0 and1 (see Appendix A.1). Then, for eacht, � is uniquely determined by specifying its value at a set of P + 1 nodes [pfSpg,where Smin = S0 < S1 < � � � < Sp < � � � < SP = Smax. For simplicity the set of assetprice nodes Sp are not time-varying and are chosen upfront. They need not coincidewith any particular spot or strike prices. However, it is sensible to choose a higherproportion of the Sp in the �nancial region of interest, near to at-the-money.The natural cubic spline is the smoothest of all piecewise cubic interpolants inthe sense that the energy functional 12 R SmaxSmin �2SSdS is minimised. For each t, havingspeci�ed the value of � at each Sp, spatial derivatives of � are chosen uniquely andautomatically by the construction method [17] to ensure that � is C2, i.e. that � hastwo continuous S-derivatives. In Figure 2 we graph a typical � against S for sometime t; the alternate shades denote di�erent cubics. The vertical lines delineate theregion near to at-the-money, in which we have represented � by six cubics, whiledeeply away from at-the-money there are just four.We now turn to the time dependence. We choose a selection of Q + 1 temporalnodes 0 = t0 < t1 < ��� < tq < ��� < tQ = Tmax, and at each spatial node Sp we force�(Sp; t) to be piecewise linear in time. These temporal nodes are chosen upfront andneed not coincide with any particular expiry times.Thus the approximation of �(S; t) is speci�ed by the matrix of weights� = 0BBB@ �00 �10 ��� �P0�01 �11 �P1... . . . ...�0Q �PQ 1CCCAT
where �pq = �(Sp; tq). This determines the representation uniquely.In Figure 3 we extend the schematic of Figure 2 (with P = 10) to sketch a sampleterm-structure (with Q = 3). We note that � is linear in t only at the nodes Sp.Therefore away from these nodes strictly speaking it does not have a piecewise linearspline representation in time.In due course we shall present a method for selecting the members of � by aminimisation method. However, we propose that the members of � that fall on ornear to S = Smin and S = Smax not be part of this minimisation directly. We willinstead `link' these asymptotic values to those being optimised. More precisely, wewill only optimise over a submatrix �� of � that contains all of the entries of � exceptsome of its �rst and last rows; the entries of the remaining �rst row(s) of � will be setto be always equal to the entries of the �rst row of ��; the entries of the remaininglast row(s) of � will be set to be always equal to the entries of the last row of ��. Sospecifying �� determines the complement �n��.8
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Figure 2: Schematic for spatial variation of �.
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Figure 3: Schematic for space-time variation of �.We adopt this procedure because the values of � far from at-the-money do not sig-ni�cantly e�ect option prices, and because it considerably reduces the computationalcomplexity of the minimisation, which leads to greater e�ciency.3 Regularised optimisation strategy3.1 The cost-functional �It is �nancially appropriate to minimise some measure of the di�erence betweenBlack-Scholes vanilla option prices V (calculated assuming a functional volatility)and known market vanilla option prices V (the arithmetic average of recent knownbid and o�er prices) over a range of strike prices Ei, for i = 1; :::; I, and maturities Tj,for j = 1; :::; J , relative to a given spot price S = S(0). Naturally we might select adi�erent spot price (and time) for each pair (Ei; Tj), corresponding to the spot price(and time) at which the trade was made, but here it is convenient to work with justone. The range of strike prices and maturities need not be described by a rectangular9



array but here they are for convenience. We speci�cally select these vanilla options tobe straddles, that is portfolios long one call and long one put of the same strike andmaturity. Straddles have been chosen to represent vanilla options because of theirability to preserve put-call parity more accurately in the numerical procedure thatfollows.We might attempt to �nd the �(S; t) that minimises the weighted discrete L2norm F := 0@Xi;j wij jV ij � Vijj21A1=2 (3.1)with a weighting function w that reects the relative importance/signi�cance of theparticular market straddle prices; we suppose wij > 0 and Pi;j wij = 1. The Black-Scholes prices Vij, subject to a particular volatility �(S; t), are obtained by solving therelevant partial di�erential problem numerically, and we present our �nite elementmethod for this purpose in Appendix A.However, because I and J are �nite, the problem of minimising F is not well-posed as typically it has many solutions. It is straightforward to demonstrate thiscomputationally and we do so in Section 4.1. By well-posedness we mean that thereexists a unique �, that has a continuous data-dependence and is contained in anadmissible space of functions, such that F is minimal.Therefore we regularise our strategy by instead choosing to minimise� := F 2 +G2; (3.2)where we de�ne G2 := Xp;q c1�2S(Sp; tq)(P + 1)(Q+ 1) +Xp;qq 6=Q c2�2t (Sp; t+q )(P + 1)Q ; (3.3)with the subscripts to � denoting partial derivatives, for positive constants c1 and c2.Clearly G2 is a measure of the size of the average gradient.Also, we constrain � to satisfy �min � �(S; t) � �max over the space-time domain,where �min and �max are chosen constants such that 0 < �min < �max < 1. The�nancial reason for constraining � to bounded positive values is clear but it is alsoimportant numerically that �min is as large as possible. This is because when � � 1(for example, if � = 0:00001 at some point in space-time) the Black-Scholes equationbecomes increasingly convection-dominated and hyperbolic in nature which makesaccurate solution of the Black-Scholes problem di�cult.The new term G2 has two e�ects as far as we are concerned. The �rst is toforce uniqueness of � if c1 and c2 are large enough. This is found to be the caseexperimentally although we do not attempt to prove it; we discuss the details inSection 4.1. The second e�ect is to make � increasingly smooth as c1 and c2 arechosen to be larger and larger; in the limit c1; c2!1, the minimising � is a constant,the `best-�t implied volatility'. Consequently, if c1 and c2 are very large, calculationwith the resulting � may give prices that di�er noticeably from market prices.These considerations of uniqueness and smoothness again force us to face thequestion: what properties should � have? Why should we ask for uniqueness when10



we know that it cannot be expected if we only have �nite number of market prices?Of several di�erent choices for � that all reproduce market prices closely enough, whyshould we choose the smoothest? One practical reason for specifying uniqueness isthat the model may need to be recalibrated frequently as market data changes, sothat if we were to use � to price exotic derivatives, or to hedge products, then aswitch to a signi�cantly di�erent � may predict unreasonably large changes in pricesor hedge ratios. The choice of a smoother � has two potential advantages. The �rst isnumerical: the smoother � is, the faster and more accurate certain numerical schemesare. The second is more ad hoc: we may take the view that it is not appropriate toforce calculated option prices Vij to be too close to market prices V ij on the groundsthat some of the latter may be out of line, or misquoted. Taking c1 and c2 to bevery large forces � to be nearly constant, and consequently allows larger di�erencesbetween calculated and market prices, which may be arbitrage opportunities. (Analternative approach to `outliers' is to try to identify them either before or after theminimisation, reject them, and calculate or recalculate � using a reduced set of marketprices.) It is an interesting empirical question whether trading on this basis yieldsnoticeably di�erent results than trading a volatility surface that matches all marketprices very closely.Some care is thus needed in the choice of c1 and c2. If we aim to select them soas to ensure � is unique, it is not immediately apparent how large they should be.However, their rough order of magnitude can be found as follows. It is reasonable toaim for roughly similar magnitudes of F 2 and G2 at the minimum of �, subject to theconstraints; if G2 were to dominate then the deterministic volatility surface wouldbe arti�cially at, while if F 2 were to dominate we might encounter the problems ofnon-uniqueness mentioned above. (It may be prudent to check a posteriori that thegradients of the deterministic volatility surface are of roughly similar magnitude tothose of the implied volatility surface.) If F = Fmin at this minimum, and if �S and�t are typical scales for variations in S and t, thenF 2min � G2min � c1 (��1�S )2 + c2 (��2�t )2;where ��1 is a typical variation in � that results from S 7!S��S and ��2 is a typicalvariation in � that results from t 7! t��t. Thus, on balancing these terms, we mightassume c1 = c (�SFmin��1 )2; c2 = c (�tFmin��2 )2;for a single regularising constant c; the choice of c is then found experimentally,though it is expected to be approximately O(1). Concerning the value of Fmin that weshould aim for, it should certainly not be smaller than the errors associated with thenumerical method, and it may be much larger if we aim to identify other discrepanciessuch as mispricings. The �� parameters are just rough order-of-magnitude estimates:if � denotes a typical at-the-money implied volatility for a typical maturity, and ifT denotes a typical maturity, we choose �S = S(0)�pT (the standard deviation ofchanges in S over time T under constant volatility) and �t = T ; we select ��1 and��2 using the typical gradients of the implied volatility matrix. It is not importantto select these values precisely as in any case c must still be chosen empirically.11



3.2 Method of functional minimisationWe employ the quasi-Newton algorithm of Gill & Murray [7] to minimise � subject tothe linear constraints �min � �(S; t) � �max; we only apply the constraints at eachof the nodes of the splined � for convenience (strictly speaking this will not ensurethe constraints are satis�ed over the whole space-time domain but, provided �min isnot too small, this is not problematic). In fact we only optimise over a submatrix�� of �, as described in Section 2, since it is appropriate to `link' those asymptoticmembers of � that lie on or near to S = Smin and S = Smax to members of ��.From a starting approximation ��(0) to the solution matrix ��, such that�(��) = min�subject to the constraints, on the basis of estimates of the gradient and curvatureof �, the algorithm generates a sequence of feasible matrices that are intended toconverge to ��. The algorithm may be terminated either when the number of quasi-Newton iterations has reached an unacceptable maximum or when changes in theapproximations to �� are small, for example when0@ 1(P � + 1)(Q+ 1) P �Xp=0 QXq=0 j��(�)pq � ��(��1)pq j21A1=2 < TOL; (3.4)for a user-speci�ed constant TOL, where ��(�) is the �th approximation to ��. Al-ternatively, we could adopt the stopping criterion thatXi;j wij jEij j < TOL0; (3.5)for a user-speci�ed constant TOL0, where we de�ne the basis-point errorEij := 104(V ij � Vij)=S(0):That is, we stop when we have reproduced market prices to a desired accuracy. Thereare some disadvantages to this approach, however. One is that it may not be possibleto satisfy (3.5) for a given TOL0, especially if c1 and c2 are large. Furthermore, itis not consistent with the gradient regularisation, but rather with simply minimisingF 2 (not F 2 +G2). Thus, while TOL0 may be large enough to allow the iteration tostop, the approximated �� may not be close to the true minimiser; in particular theassociated volatility � may be less smooth.4 Example volatility function generation4.1 ImplementationSuppose we wish to generate instantaneous � for the FTSE-100 index so as to priceexotic options today. Then we might select a set of yesterday's known market straddleprices over a range of �ve strike prices and two maturities, i.e. ten market prices inall with respect to the same spot price of S(0) = 5000. For this example we havechosen the sets (E)i = � 4800 4900 5000 5300 6000 � ;12



(T )j = � 0:5 1:0 �Tand (V )ij = � 429:40 384:95 353:98 388:16 934:14637:36 601:38 573:85 560:29 892:26 �T :We measure time in years. We are required to specify the continuously compoundedrisk-free rate for each maturity (obtained from the discount factors of zero-couponbonds) and to model the e�ects of dividends for each maturity (the dividends them-selves being known or forecasted). Here, we shall assume a constant r and a con-stant continuous dividend yield d for each Tj for convenience; more generally wecould assume r to be a known function of time and assume a discrete dividendmodel. Accordingly, the continuously compounded risk-free rate and constant con-tinuous dividend yield vectors are taken to be (r)j = � 0:04974 0:05354 �T and(d)j = � 0:032 0:027 �T .There are I = 5 strikes and J = 2 maturities while as yet an unspeci�ed numberof weights (P + 1)�(Q+ 1) are used to describe the splined �. We shall take P = 9and Q = 2, with Smin = 500 and Smax = 50000, and with the spline nodes(S)p = � Smin 3000 4500 4750 5000 5300 6000 10000 25000 Smax �and (t)q = � 0:0 0:5 1:0 �T :We prescribe two columns of asymptotic values for �T on or near to S = Smin, andthree columns of asymptotes on or near to S = Smax; that is we have� = 0@ ��00 ��00��10 ��10��20 ��20 ��T ��04 ��04 ��04��14 ��14 ��14��24 ��24 ��24 1AT :To begin with we use (3.4) as the stopping criterion for the minimiser with thehighly restrictive tolerance TOL = 5�10�(1+�)=p(P � + 1)(Q+ 1) so that �, subjectto the constraints, can be minimised very accurately by choosing � large enough.This is useful for analysis that follows since it implies that j��(�)pq � ��(��1)pq j = 0 to�-decimal accuracy for all p and q. We choose � = 6. Space-time of the di�erentialproblems involved in the minimisation is discretised by M = 60 piecewise quadratic�nite elements and (N)j = � 30 40 �T time-steps (see Appendix A.2); we chooseN1 6=N2 here as it is more e�cient to use a di�erent number of time-steps for optionsof di�erent maturities. We set �min = 0:01 and �max = 1:0. We choose the set ofweights (w)ij = 154 � 2 5 8 5 24 7 10 7 4 �T :Suppose we aim for Fmin = 1:5. We choose � = 0:1475, T = 0:5 and ��1 = ��2 =0:04. Then c1�3:8(108)c and c2�3:5(102)c. Then, with the starting approximation��(0) = 0@ 0:15 0:15 0:15 0:15 0:150:15 0:15 0:15 0:15 0:150:15 0:15 0:15 0:15 0:151AT ;13



application of the algorithm to generate the near-optimal choice for � yields theapproximations��(c = 0:00) � 0@ 0:081494 0:070511 0:118491 0:086233 0:0585170:234544 0:248359 0:133653 0:125910 0:0724470:210362 0:242019 0:170321 0:164311 0:1624031AT ; (4.1a)��(c = 0:01) � 0@ 0:153400 0:171052 0:109226 0:093051 0:0787470:197047 0:215270 0:129533 0:125311 0:0909510:234645 0:253174 0:174680 0:164172 0:1542881AT ; (4.1b)��(c = 0:07) � 0@ 0:165628 0:169917 0:110937 0:082097 0:0870340:204074 0:208146 0:129789 0:127549 0:0987770:233750 0:233882 0:172702 0:161416 0:1486811AT ; (4.1c)��(c = 0:10) � 0@ 0:172465 0:167995 0:111406 0:082620 0:0889500:207248 0:205021 0:129416 0:126414 0:1004980:232003 0:229633 0:172764 0:161788 0:1479951AT : (4.1d)However, with the starting approximation��(0) = 0@ 0:16 0:15 0:12 0:11 0:100:20 0:18 0:13 0:12 0:110:24 0:23 0:20 0:18 0:171AT ; (4.2)application of the algorithm yields the approximations��(c = 0:00) � 0@ 0:010000 0:112017 0:120900 0:105606 0:1796400:244730 0:230310 0:127910 0:113607 0:1021610:190260 0:238494 0:173239 0:168179 0:1541051AT ; (4.3a)��(c = 0:01) � 0@ 0:145859 0:181633 0:118454 0:081616 0:0851090:195128 0:205182 0:124707 0:126128 0:0972450:236547 0:253126 0:177269 0:164127 0:1507551AT ; (4.3b)��(c = 0:07) � 0@ 0:165333 0:169889 0:111356 0:082090 0:0868700:203874 0:207837 0:129517 0:127379 0:0986280:233958 0:234162 0:172934 0:161600 0:1488251AT ; (4.3c)��(c = 0:10) � 0@ 0:172465 0:167994 0:111406 0:082616 0:0889520:207250 0:205020 0:129416 0:126415 0:1005000:232001 0:229631 0:172763 0:161787 0:1479941AT : (4.3d)In accordance with the asymptotic linking procedure, for each of these solution ma-trices �� we have � = 0@ ��00 ��00��10 ��10��20 ��20 ��T ��04 ��04 ��04��14 ��14 ��14��24 ��24 ��24 1AT ;the same applies for the starting approximations ��(0).If �� were unique then it would be independent of its starting approximation.Therefore the matrices (4.1a) and (4.3a) provide a convincing demonstration of `non-uniqueness without regularisation'. Taken together, the sets of matrices (4.1) and14



(4.3) indicate `uniqueness with su�cient regularisation'. Furthermore, since we havenon-dimensionalised c1 and c2, it is reasonable to suppose that c�0:1 is a good choiceof regularising constant independently of the underlying.The highly restrictive stopping criterion used above will make the minimiser veryslow { it is also unnecessary other than for analysis. If we were to use the samecriterion except with � = 1 then, using as the starting approximation (4.2), weobtain ��(c = 0:1) � 0@ 0:178160 0:150367 0:116918 0:101893 0:0717220:206947 0:202562 0:124008 0:115095 0:0937850:237264 0:231821 0:178387 0:169686 0:1553111AT ; (4.4)which is in reasonable agreement with (4.3d) and was much less expensive to compute.If we had instead used (3.5) as the stopping criterion, with TOL0 = 2 measuringan average number of basis-points error, then, using as the starting approximation(4.2), we obtain��(c = 0:1) � 0@ 0:211880 0:147707 0:117241 0:099936 0:0521620:197152 0:192046 0:126953 0:113431 0:0879330:232217 0:222051 0:186165 0:168521 0:1642041AT ; (4.5)which does not agree with (4.3d) as well as (4.4) does (consider the �rst columnsof the transposed matrices), though it does give Black-Scholes prices Vij that agreeclosely with market prices V ij.For the remainder of this paper, we use the � determined by (4.4). This speci-�es the splined � which is depicted in Figure 4. (The non-monotonic behaviour forsmall and large S is a result of the spline representation and our procedure for theasymptotic values �n��. As stated previously, the consequences for pricing are in-signi�cant.) While � is de�ned for a large range of spot price, 500�S�50000, theregion nearest to at-the-money is of most �nancial interest and hence we depict thisrange speci�cally in Figure 5. Relative to the given set of market straddle prices, con-tinuously compounded risk-free rates and constant continuous dividend yields, thisfunctional form for the volatility may now be used to price many types of options onthe FTSE-100, for example Americans, Asians, barriers, lookbacks etc..Note that it is appropriate to retain at least three-decimal accuracy in �� de-spite the possibility of low-accuracy market data. This is because the shape of thespace-time spline, being entirely speci�ed by the entries of �, is sensitive to each ��pq.Consider, if we rounded �� to three-decimal accuracy then the average basis-point er-ror,Pi;j wij jEij j, would increase only slightly while rounding to two-decimal accuracywill more than double the error. If market data is deemed inaccurate then, ratherthan not retaining decimal accuracy, it would be appropriate to generate another ��for a perturbed set of market data and then to account for the pricing di�erencesimplied by each of the ��.The minimiser took around 60 seconds to run on a SUN SPARC-station HS14computer. Parallelisation of the minimiser would markedly reduce this time; a larger(smaller) set of market straddle prices will obviously imply more (less) run-time; more(fewer) splines will obviously imply more (less) run-time. The quality of the startingapproximation ��(0) to �� will greatly inuence the run-time. If we generated �� for15



the FTSE-100 on a daily basis then we would expect a good starting approximationto be available from yesterday's calculation, the use of which will reduce run-time.
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Figure 4: Today's instantaneous � for the FTSE-100.
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Figure 5: Today's instantaneous � for the FTSE-100 (near to at-the-money).4.2 Integrity testingRecall that the Black-Scholes prices, Vij , are approximated via numerical solution ofthe relevant partial di�erential problems, as described in Appendix A. Because we infact approximate Vij by Vij+ eij , with a numerical error eij , so we approximate F byF + e� = 0@Xi;j wijjV ij � Vij � eij j21A1=2 :16



Consequently, the smallness of F + e� (which is implied by the smallness of �+ e��,where e�� is the associated error in �) need not imply the smallness of F ; conversely,F+e� may be much larger than F . Therefore it is important that je�j should be smallenough not to e�ect the minimisation signi�cantly. Unless we adequately control thesize of the error eij , our strategy for selecting instantaneous � will not be e�ectiveas it will not ensure that the Black-Scholes prices, Vij , are su�ciently close to themarket prices, V ij.The size of eij is directly related to the size of M and the Nj , which describe thecoarseness of the discretisation of the relevant partial di�erential problems: the largerM and the Nj are, the smaller jeij j will be, and vice-versa. Thus we are required toselect M and the Nj carefully, for if they are too small them jeij j will be too largewhile if they are too large then the minimiser will be ine�cient and prohibitivelyslow! It is reasonable to expect them to have typical values, although unusual marketdata will require unusual M and Nj . For example, if market straddle prices areunusually low then they will imply low levels of instantaneous �, and the smaller � isthe more di�cult the Black-Scholes di�erential problem is so solve numerically dueto the dominant convection term in the partial di�erential equation; this is why wechoose �min not to be too small.Our approach is to generate � using some relatively small M and Nj, but then totest the integrity of � independently as follows. We solve the Black-Scholes straddlepricing problem, using the generated �, using the adaptive �nite element method[11]. This adaptive method solves European Black-Scholes problems to guaranteedaccuracy (the level of accuracy being supplied by the user), and so we use it to �ndthe Vij (to a suitable number of signi�cant �gures) so as to establish whether ornot je�j, at the minimum of � + e�� subject to the constraints, is su�ciently small;this also shows whether or not the generated � yields Black-Scholes straddle pricesthat match the market straddle prices to within a prescribed error tolerance. If thisadaptive method shows this je�j to be too large then we regenerate � using slightlylarger M and Nj. We continue along these lines until an appropriate choice of Mand the Nj is found { with a little experience it will be easy to make an appropriatechoice upfront. Thence by following this procedure we will ensure that our algorithmfor generating a near-optimal instantaneous � is robust and e�cient.Relative to the given set of market and numerical data described in Section 4.1,M = 60 and (N)j = � 30 40 �T may be considered to be an appropriate coarsenessof discretisation for the minimisation since, using the adaptive method [11], we prove(E)ij = � �2:31 �1:07 �0:17 �0:29 �0:75�6:25 �4:65 �3:62 �3:96 1:65 �Tto two-decimal accuracy. Therefore Pi;j wijjEij j < 2:65 so that the market priceswere on average replicated to within 2.65 basis points. Hence we may conclude thatthe bias of the volatility smile, with respect to the given set of market prices, hasbeen e�ectively removed.
17



5 Example volatility function pricing: up-and-out callWe now illustrate how the method can be applied in pricing an exotic option. Letus price an up-and-out call option, using the generated � of the last subsection, forexample. This should serve to demonstrate the signi�cant di�erences in prices andgreeks that �(S; t) may imply when compared to a constant volatility model.The Black-Scholes up-and-out call pricing problem is as follows: �nd the issueprice V (S = S(0); t = 0) such thatrV = Vt + 12�(S; t)2S2VSS + (r � d)SVS ; 0 < S < B; 0 � t < T; (5.1a)V = (S �E)+; 0 < S < B; t = T; (5.1b)V = 0; S = 0; B; 0 � t � T: (5.1c)The parameters r and d must be consistent with those used in determining �; it isalso necessary that T �TJ . We replace the boundary condition V = 0 at S = 0 byV = 0 at S = 500; this choice well approximates the `theoretically correct' one of 0for the reasons described in Appendix A.1. We choose B = 6500 and T = 1. Wesolve the di�erential problem (5.1) accurately for each of the strike prices Ei of thelast subsection using the adaptive method [11]. We depict the at-the-money issueprice and payo� in Figure 6 for S2 [4500; 6500].If the up-and-out call option were priced under the assumption of constant volatil-ity then it might be reasonable to use the implied volatility of the underlying straddle.Accordingly, we depict in Figures 7, 8 and 9 di�erences between the constant andfunctional volatility models. Here, (V 0)i, (V 0S)i and (V 0SS)i denote the Black-Scholesprices, deltas and gammas calculated assuming that the volatility is constant andequal to the implied volatility from the option with strike Ei and maturity T = 1; re-call that E3 is at-the-money. These graphs show, in particular, that pricing using theat-the-money implied volatility underestimates the price, delta and gamma comparedto using the functional volatility.
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Figure 8: Delta di�erences (VS � V 0S)i.Undoubtedly there will be signi�cant di�erences between the rhos, vegas andthetas also, although we must consider a new way of de�ning vega when � is functional{ it must measure the sensitivity of the option price to the form of the functionalvolatility. For example, we might select a number K of appropriately perturbedmarket price arrays (V )ijk, for k = 1; :::;K, then generate �k(S; t) for each of these,and then take vega as some relative measure of the di�erence between the optionprices implied by `today's functional �' and each of the �k: for a given strike andmaturity, we might takevega =  (P + 1)(Q + 1)Xk jV (�)� V (�k)j2PPp=0PQq=0 j�pq � �pqkj2!1=2 :6 ConclusionsWe have proposed a method of generating a functional form for � that minimises anappropriate measure of the di�erence between Black-Scholes vanilla prices and a given19
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Figure 9: Gamma di�erences (VSS � V 0SS)i.set of market vanilla prices. Because this instantaneous � is chosen as a spline, it iscontinuously well-de�ned in space-time. Moreover, because the optimised strategy isregularised and integrity tested, � should not only be the smoothest such spline butit is proved to replicate the given set of market prices to within a prescribed errortolerance. Therefore, with respect to this given set of market prices, it e�ectivelyremoves the bias of the volatility smile exhibited by the implied volatility model.The computational method is not overly time-consuming but will depend on thenumber of given market prices. Therefore attempting to minimise the di�erencebetween Black-Scholes vanilla prices and an overly large set of market vanilla pricesis inappropriate. Moreover, the complete set of yesterday's (for example) marketprices do not necessarily accurately reect the biases of the Black-Scholes model formany months to come. Indeed, there is clearly a trade-o� between trying to match allmarket prices and trying to predict some (and hence spot arbitrages). It is clear that`outlying' market prices, whether mispricings or misquotations, may signi�cantly skewthe volatility surface, so there is a case for a pre-processing procedure that identi�esthese prices and rejects them before the minimisation. Also, we need not match all ofthe market prices of options that are far from the money since they may increase thecomputational complexity of the model considerably while only have a small e�ecton the prices and greeks of exotic options that are calculated using the �.Having generated � for a given underlying it may be used consistently in thepricing of exotic options and may be employed by a variety of lattice, Monte Carloand partial di�erential equation pricing methods. We note that it is particularlyadvantageous that � is a simple function, de�ned for a large range of spot price, thatis particularly smooth in nature and is proved to replicate a given set of market pricesto su�cient accuracy.We end with a question that can only be answered by careful empircal work:despite the advantages of the functional volatility model that we have outlined, isthe model more e�ective in pricing and hedging exotic options than either the simpleremedy of using an array of constant implied volatilities or more complex models suchas stochastic volatility?
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Appendix A Black-Scholes straddle pricesA.1 Di�erential problemsTo evaluate the component Vij of F , we must solve for each pair (Ei; Tj) the followingBlack-Scholes straddle pricing problem: �nd the issue price V (S = S(0); t = 0) suchthatrjV = Vt + 12�(S; t)2S2VSS + (rj � dj)SVS ; Smin < S < Smax; 0 � t < Tj ;(A.1a)V = jS �Eij; Smin < S < Smax; t = Tj; (A.1b)V = Eie�rj(Tj�t); S = Smin; 0 � t � Tj ; (A.1c)V = Smaxe�dj(Tj�t) �Eie�rj(Tj�t); S = Smax; 0 � t � Tj : (A.1d)Note that in contrast to the `theoretically correct' di�erential problem for vanillaoptions (see [19, pages 425-426]) in which Smin should be chosen to be 0 and Smaxshould be chosen to denote 1 (in accordance with the consideration that vanillaoption value can only be deterministic in the limits S!0;1) we make the restrictionthat 0 < Smin < Smax <1 where Smin and Smax are simply chosen to be su�cientlysmall and large respectively. We easily �nd (by solving the di�erential problem forthe di�erence between the restricted and `theoretically correct' di�erential problems)that the error incurred by the restriction is extremely small. For example, by simplychoosing Smin = S(0)=10 and Smax = 10S(0) we �nd for straddle options for realistic�nancial parameter choices that the incurred error is several orders of magnitude lessthan the modelling error within trading neighbourhoods of the spot price. We makethe restrictions on Smin and Smax, as is possibly clear, a) because it is di�cult tosolve numerically on a in�nite interval and b) so as to ensure that the problem alwaysremains non-degenerate parabolic.It is of clearly of paramount importance that the di�erential problem (A.1) in-volved in the minimisation is solved to su�cient accuracy and in the least possibletime. If its space-time discretisation is either too coarse or too �ne then the gen-erated instantaneous � will either be inappropriate or will have taken too long togenerate. Financial time constraints are critical inasmuch as it may be necessary togenerate several instantaneous � for the same underlying (for a scenario analysis) orfor di�erent underlyings, and on a regular basis.We solve the problem (A.1) as follows: we �rst transform the �nancial variablesand we then solve the resulting transformed problem by a piecewise quadratic �niteelement method in space and a Crank-Nicolson �nite di�erence method in time. Weperform the transformation, which we describe below, for reasons of e�ciency; theP�eclet number of the resulting partial di�erential equation is maximised near to the�nancial region of interest which should improve the performance of the �nite elementmethod. We �nd experimentally that the piecewise quadratic �nite element methodin space, which we describe in the next subsection, is considerably faster than avariety of standard �nite di�erence methods in space (for example those described in[19]) relative to the level of accuracy we require.We transform the �nancial variables byS = S(0)ex; t = Tj � �; V = S(0)ek1x+k2�u;22



having de�ned the constantsk1 := 1=2 � (rj � dj)=�2; k2 := �rj � k21�2=2;where � is a constant derived from � by some form of simple averaging (for example,we might we choose � as the at-the-money implied volatility relative to some Tj), toobtain the following transformed problem: �nd u(x = 0; � = Tj) such thatu� = �uxx + �ux + u; a < x < b; 0 � � < Tj ; (A.2a)u = u0; a < x < b; � = 0; (A.2b)u = ua; x = a; 0 � � � Tj; (A.2c)u = ub; x = b; 0 � � � Tj ; (A.2d)having de�ned a := log(Smin=S(0)), b := log(Smax=S(0)), c := log(Ei=S(0)) and thefunctions � := �2=2;� := rj � dj + �(2k1 � 1); := �rj � k2 + k1(� � �k1);u0 := je(1�k1)x � e�k1x+cj;ua := e�k1a+c�(rj+k2)� ;ub := e(1�k1)b�(dj+k2)� � e�k1b+c�(rj+k2)� :A.2 Discretisation methodTo solve the problem (A.2) (numerically by our piecewise quadratic �nite elementmethod in space) we proceed by considering its weak formulation: �nd u 2 H1E suchthat, for each � > 0, and for all functions v 2 H1E0 ,(u� ; v) + (�ux; vx) + ((�x � �)ux � u; v) = 0; (A.3)recall that by de�nitionH1E := fw2L2(a; b) j wx2L2(a; b); w(a) = ua; w(b) = ubgwhile H1E0 is similarly de�ned except with respect to homogeneous boundary condi-tions, and recall the inner product notation(f; g) � Z ba fgdxfor some f and g. Then, given the M-dimensional trial-subspace ShE � H1E, the con-tinuous Galerkin principle is to �nd the approximation U(x; �) to u(x; �) that (foreach � > 0) lies in ShE and satis�es(U� ; v) + (�Ux; vx) + ((�x � �)Ux � U; v) = 0 (A.4)for every v 2 ShE0 ; we choose U0�U j�=0 to be the piecewise quadratic interpolant ofu0. We de�ne ShE as the space of C0 piecewise quadratic functions, satisfying the(essential) Dirichlet boundary conditions, on the spatial mesha = x0 < x1 < ��� < xi < ��� < x2M = b:23



If � denotes a local co-ordinate relative to the interval hi := x2i � x2i�2 wherex = 12(1� �)x2i�2 + 12(1 + �)x2ifor the ith quadratic element (for i = 1; 2; :::;M) then the basis functions areN1 := �12�(1� �); N2 := 1� �2; N3 := 12�(1 + �):Then we have, for the ith quadratic element,U(x(�); �) = U2i�2(�)N1 + U2i�1(�)N2 + U2i(�)N3:The contributions Ii to the ith integrals of the approximated weak formulation (A.4)may be writtenIi = 0@ v2i�2(�)v2i�1(�)v2i(�) 1A �0@Mi0@U�2i�2(�)U�2i�1(�)U�2i(�) 1A+Ki0@U2i�2(�)U2i�1(�)U2i(�) 1A1A ;whose components are de�ned as follows. The 3�3 element mass matrix Mi hasentries Mipq = hi2 Z 1�1NpNqd�;so that Mi = hi30 0@ 4 2 �12 16 2�1 2 4 1A ;and the 3�3 element sti�ness matrix Ki has entriesKipq = Z 1�1( 2hi�Np�Nq� + (�x � �)NpNq� � hi2 NpNq)d�;it is most appropriate to approximate these integrals using the two-point Gaussianquadrature rule (see [17, pages 367-368] for example). Summing the contributions Iiover i, noting that it is enough to apply the continuous Galerkin principle only to thespatial basis of v, yields the full system of equationsMfU� f +KfUf = 0;where Uf = � U0(�) U1(�) � � � U2M (�) �T ;and with the pentadiagonal full mass matrix
Mf = 130

0BBBBBBBBBBBBBBBB@
4h1 2h1 �h1 ��� 02h1 16h1 2h1 0 ...�h1 2h1 4h1 + 4h2 2h2 �h20 2h2 16h2 2h2 0�h2 2h2 4h2 + 4h3 2h3 �h30 2h3 16h3 . . . . . .�h3 . . . . . . 2hM �hM... . . . 2hM 16hM 2hM0 ��� �hM 2hM 4hM

1CCCCCCCCCCCCCCCCA :
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Then application of the Dirichlet boundary conditions yields the global system ofequations MU� +KU = bc�; (A.5)where U = � U1(�) U2(�) � � � U2M�1(�) �T ;
bc� = 0BBBBBBBBB@

�2h1ua� (�)�K1;0ua(�)h1ua� (�)�K2;0ua(�)0...0hMub� (�)�K2M�2;2Mub(�)�2hMub� (�)�K2M�1;2Mub(�)
1CCCCCCCCCA ;

the global matrices being simply the full matrices less their �rst and last rows andcolumns.We discretise in time via a Crank-Nicolson type �nite di�erence method. Speci�-cally, on the temporal mesh0 = �0 < �1 < ��� < �n < ��� < �Nj = Tj ;de�ning kn := �n � �n�1, we average �rst-order accurate forward and backward tem-poral di�erence approximations to (A.5). Thence we obtain the following matrixproblem: �nd Un = � Un1 Un2 � � � Un2M�1 �T ;for n = 1; 2; :::; Nj in succession, such that(M + 12knKn)Un = (M � 12knKn�1)Un�1 + bc; (A.6)where U0 = � u01 u02 � � � u02M�1 �T ;
bc = 0BBBBBBBBBB@

�2h1(una � un�1a )� 12kn(Kn1;0una +Kn�11;0 un�1a )h1(una � un�1a )� 12kn(Kn2;0una +Kn�12;0 un�1a )0...0hM (unb � un�1b )� 12kn(Kn2M�2;2Munb +Kn�12M�2;2Mun�1b )�2hM (unb � un�1b )� 12kn(Kn2M�1;2Munb +Kn�12M�1;2Mun�1b )
1CCCCCCCCCCA :

Thus far we have not speci�ed the location of xi on (a; b) and �n on (0; Tj). Wemight specify them by prescribing a uniform space-time discretisation by choosinghi = (b � a)=M (i = 1; :::;M) and kn = Tj=Nj (n = 1; :::; Nj) but it is much moree�cient to prescribe non-uniform sets of hi and kn that account for the nature ofthe initial and boundary data. Therefore, since we are solving a transformed strad-dle pricing problem, we have chosen the hi so that the spatial mesh is concentrated�nely near to the spot price and we have chosen the kn so that the temporal mesh isconcentrated �nely near to � = 0; it is important that any such meshes are smoothly25



varying so as to prevent ill-conditioning in the matrices of (A.6).Thus we see that the transformed di�erential problem (A.2) has been discretisedin space by approximating its solution space by a space of M -dimensional piece-wise quadratic functions while it has been discretised in time by �nite di�erencingover Nj time-levels. Therefore to obtain the approximation to the straddle priceV (S = S(0); t = 0) for each pair (Ei; Tj), we must �rst solve the pentadiagonal ma-trix problem (A.6) (via band Gauss elimination, say), so as to obtain the piecewisequadratic UNj , and then we must relate back to �nancial variables by the formulaV (S = S(0); t = 0) � S(0)ek2TjUNj :Lastly, we remark that considerable care should be taken when programming theabove procedure. Signi�cant e�ciency savings can be made by noting, for example,that the sti�ness matrix Kn need only be constructed once for each maturity, i.e.once for the pairs (E1; Tj); :::; (EI ; Tj) for each j.
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