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Abstract

The ‘volatility smile’ is one of the well-known biases of Black-Scholes models for
pricing options. In this paper, we introduce a robust method of reducing this bias by
pricing subject to a deterministic functional volatility o = (S, t). This instantaneous
volatility is chosen as a spline whose weights are determined by a regularised numerical
strategy that approximately minimises the difference between Black-Scholes vanilla
prices and known market vanilla prices over a range of strikes and maturities; these
Black-Scholes prices are calculated by solving the relevant partial differential equation
numerically using finite element methods. The instantaneous volatility generated
from vanilla options can be used to price exotic options where the skew and term-
structure of volatility are important, and we illustrate the application to barrier
options.
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1 Introduction

The standard Black-Scholes model (see for example [3], [10], [19]) for pricing options
assumes that the underlying asset price S follows the stochastic differential equation

dS/S = (p — d)dt + cdX (1.1)

where p is the expected growth rate, d is a constant continuous dividend yield, o is
the volatility and X is a standard Brownian motion. The model usually assumes that
1 and o are either constant or prescribed functions of time, although it is valid if o
is a deterministic function of S also. Following a no-arbitrage argument it is then
shown that the option price V must satisfy the Black-Scholes equation

1
Vi + 50252‘/55 +(r—d)SVg —rV =0

where r is the continuously compounded risk-free interest rate. We may then price
particular contracts by subjecting this equation to the relevant payoff (final-condition)
and boundary conditions and solving the resulting differential problem. The hedg-
ing paramaters (delta, gamma, etc.) can be found subsequently by differentiation,
whether numerical or analytical, although special consideration should be made for
rho and vega if either of r and o are functions of S and/or ¢.

The choice of volatility o (which measures the standard deviation of the rate of
change of S) is crucial to the price. We may choose o to be a constant estimated via
a statistical analysis of historical S or, as is common market practice, we may choose
o as the implied volatility — the constant that satisfies the Black-Scholes equation if
V is taken as a recent known market price of the option.

However, in practice, it is almost invariably found that the implied volatility is
different from option to option, varying with both strike £ and maturity 7. This
variation is known as the volatility smile, its spatial component being referred to as
the skew of volatility, its temporal component as the term structure. It follows that
no one constant o can give prices consistent with market data.
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Figure 1: Schematic of a volatility smile.

While the use of a constant implied volatility may be adequate for liquid vanilla
options it may be inappropriate for more exotic options where the effect of o and the
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bias of the volatility smile is more pronounced. Many remedies have been proposed for
this situation. We focus on one of the simplest, that one should use a ‘deterministic’
functional volatility o (S, t) for pricing. This approach therefore stands in contrast to,
say, stochastic volatility models (see, for example, [9], [8]) or jump diffusion models
(see [15]) in which a second source of randomness is incorporated to explain better
the bias in observed prices.

In this paper we present a method for finding a suitable representation of o (S, ?)
by minimising an appropriate measure of the difference between Black-Scholes vanilla
prices and known market vanilla prices over a range of strikes and maturities. As-
suming that the asset price does in fact evolve according to (1.1), we will find a form
for o(S,t) with the following desirable properties:

e It will almost remove the bias of the volatility smile, in that calculated vanilla
prices will be close to recent known market vanilla prices.

e A probability density function (pdf) for future values of S implied by market
vanilla prices (see [13] for a method of construction), over a range of strike prices
and maturities, will approximately coincide with the pdf for future values of S
subject to the functional volatility. We shall not demonstrate this property but
it is implied by our method for constructing o(S,t).

e Since the functional form will be chosen by consideration of recent known market
vanilla prices, it can be used to price exotic options consistently with the hedging
instruments.

It should be noted though, that in using vanilla prices to determine o(S,t), we
abandon any attempt to predict these prices (although we can of course predict their
greeks). Thus, for example, if the asset price evolves according to some process other
than (1.1) with a deterministic volatility, we do not attempt to find any mispricings
among vanilla products, but rather take them as given. To this extent the determinis-
tic volatility model is less ambitious than some others, such as those mentioned above.
It should be noted, however, that the necessity for parameter estimation makes the
other models less practical.

In [6], Dupire shows that if vanilla option implied volatility were available for all
conceivable strikes and maturities then o(S,t) is uniquely determined. However the
smile is not defined everywhere in practice (because only a finite number of strikes and
maturities are traded), so o(S, t) is not uniquely determined. Moreover, the numerical
‘inverse problem’ of choosing a suitable form for o(S,t) is often unstable even if
we extend the smile to a suitably smooth continuous surface through interpolation.
Therefore the problem of finding (S, t) is naturally ill-posed.

Dupire [6], Derman & Kani [5] and Rubinstein [16] have each presented implied
binomial/trinomial tree algorithms for pricing options that use the degrees of freedom
of their lattices so as to fit the smile (or rather an interpolated extension of the discrete
array of implied volatilities) to the price. The construction of a functional form for
o is thus implicit in these algorithms. They have the advantage of relatively fast
execution but they have several disadvantages:

e Algorithm [16] assumes that volatility only has skew structure, i.e. that o =
o(S). However, the term-structure of volatility may be important for many
path-dependent options such as Americans or barriers and it is inconsistent to



use different o(S) for different maturities. Jackwerth [12] has addressed this
difficulty but at the cost of a large-scale optimisation problem.

e Algorithms [6] and [5] do not effectively counter the natural ill-posedness of
the problem of ‘fitting the smile’ so they are not robust. Unusual behaviour
in the smile or too high interest rates can cause the algorithms to fail or to
allow negative probabilities (cf. Barle & Cakici [2] who attempt to reduce these
difficulties).

e Lattice methods only price for a single spot price and not for a range. More
seriously, lattice methods only determine the instantaneous volatility at lattice
points, which cover only a (triangular) proportion of the whole (rectangular)
(S,t) domain. In pricing exotics, in particular, values of o(S,t) outside this
triangular domain may be important.

e More generally, it is difficult to apply such algorithms to barrier option or multi-
dimensional pricing problems.

More recently, Lagnado & Osher [14] have presented a regularised minimisation
method, using finite difference methods, to fit the smile to option prices. Regularisa-
tion is here a self-stabilising procedure in the minimisation process (see for example
[18]) which restricts o to the smoothest functions that minimise the difference be-
tween Black-Scholes prices and recent known market prices. This attempts to force
well-posedness of the ‘inverse problem’. Lagnado & Osher’s method appears to be
effective and robust; however, it has some disadvantages:

e The method is particularly computationally expensive — the calculation of vari-
ational derivatives in their gradient descent minimisation requires extensive so-
lution of partial differential problems.

e The method only generates a discrete representation of the instantaneous volatil-
ity function described by a relatively small array of nodes in space-time. This
is disadvantageous because a knowledge of o away from these nodes is often re-
quired in pricing exotics. There is no unique way to interpolate this array, and
different (sensible) interpolants may yield significantly different option prices.

e The method gives equal importance to all known market prices (or equivalently
all implied volatilities) while it may be better to give greater weight to options
that are more heavily traded, shorter dated or nearer to the money.

We also mention a recent paper of Avellaneda et al. [1] who construct a repre-
sentation for o(S,t) via a relative-entropy minimisation method. The instantaneous
volatility that their method constructs has particularly sharp peaks and troughs near
strike/expiration dates. There are two possible drawbacks to such an outcome. One
is that it may be unrealistic — there may be no obvious a priori reason why volatility
should change abruptly just because a particular option contract expires. The other
is numerical. While accurate numerical solution of a Black-Scholes problem (using
this irregular volatility) may replicate a given set of market prices, coarse numerical
solutions are liable not to see the abrupt changes and thus not replicate the prices to
sufficient accuracy. In practice, due to critical financial time-constraints, it is often
necessary to discretise the space-time domain coarsely in a lattice or finite differ-
ence/element pricing method, and therefore it is advantageous for the instantaneous



volatility to be as smooth as possible in nature so as to retain accuracy. Similar
remarks apply to Monte Carlo pricing schemes.

In this paper we present a robust algorithm for generating a near-optimal choice
for o(S,t) via a regularised minimisation strategy. We choose the instantaneous
volatility function to be a space-time spline; this choice is motivated by careful ex-
perimentation. Our representation of o (S, %) is therefore guaranteed to be a smooth
function (the simplest — and smoothest — functional volatility is a single constant
implied volatility!). We consider it to be reasonable to restrict ourselves to smooth
volatility functions as we have no reason to believe that today’s market prices can
forecast abrupt changes in future volatility with any reliability whatsoever. We choose
the constants that uniquely determine this spline via a regularised and weighted min-
imisation of the difference between Black-Scholes prices and known market prices over
a range of strikes and maturities. We solve the Black-Scholes differential problem in
the minimisation process using a finite element method.

We independently analyse the integrity of our method using the adaptive finite
element method presented in [11]. This adaptive finite element method solves Eu-
ropean Black-Scholes problems to guaranteed accuracy, and thus it may be used to
verify that a generated volatility function does indeed yield vanilla option prices that
match the given market vanilla option prices to within a prescribed error tolerance.
Such integrity testing is important because it is all too easy to generate a represen-
tation for instantaneous o via a discretised tree or finite difference/element method
that appears to price a set of vanilla options correctly, only to find that a much finer
discretisation yields a significantly different set of prices.

It is particularly advantageous to be confident that the generated instantaneous o
is not tied to discretisation errors of a particular generating method (whether that be
an implied-tree or finite difference/element optimisation method) and is continuously
well-defined in space-time since it is then not method-dependent, and thus can be
used consistently by many pricing methods (for example Monte Carlo simulation).

In Section 2 we describe the space-time spline for o. In Section 3 we describe the
functional and minimisation method that are used to configure the constants that
uniquely define the spline. An example of instantaneous volatility generation is given
in Section 4: given an example set of recent known market straddle option prices on
the FTSE-100, we construct ¢ and then prove that it does effectively remove the bias
of the volatility smile. An example pricing of an exotic option using the generated o
is given in Section 5. Finally, in Section 6, we conclude the work presented herein.

2 Space-time spline representation of (S5, 1)

It is advantageous to represent o (S, t) by a space-time spline for the following reasons:

e It is simple and convenient to have a structure that is uniquely determined by
a finite number of constant weights, this number being user-configurable.

e We then know that ¢ has the smoothness properties that we prescribe; we
require o to have at least one continuous spatial derivative and to be at least
continuous in time.

e Without a priori knowledge of a suitable form for o, it allows local functional
variation and thus is reasonably general. Moreover, by increasing the number



of splines used, complicated functional forms can be represented.

e We find that simple non-spline representations (for example o(S) = aS~° for
constants a > 0 and b€ [0, 1], the CEV model of Cox & Ross [4]) are usually not
general enough to perform well. More complicated non-spline representations
may perform well in certain circumstances but they lack the flexibility of a
spline.

For each t, we describe the ‘spatial’ S-variation of o(S,¢) by a P-dimensional
natural cubic spline (see, for example, Schwarz [17]) for S € [Smin, Smaz]; We choose
Smin > 0 and Sp,e: < 00 to approximate 0 and 0o (see Appendix A.1). Then, for each
t, o is uniquely determined by specifying its value at a set of P + 1 nodes U,{S,},
where Sy = Sp < S1 <+ < 8p <+ < Sp = Spap- For simplicity the set of asset
price nodes S}, are not time-varying and are chosen upfront. They need not coincide
with any particular spot or strike prices. However, it is sensible to choose a higher
proportion of the S, in the financial region of interest, near to at-the-money.

The natural cubic spline is the smoothest of all piecewise cubic interpolants in
the sense that the energy functional % | ;Z‘:f 0%4dS is minimised. For each ¢, having
specified the value of o at each S, spatial derivatives of o are chosen uniquely and
automatically by the construction method [17] to ensure that o is C2, i.e. that o has
two continuous S-derivatives. In Figure 2 we graph a typical o against S for some
time ¢; the alternate shades denote different cubics. The vertical lines delineate the
region near to at-the-money, in which we have represented o by six cubics, while
deeply away from at-the-money there are just four.

We now turn to the time dependence. We choose a selection of ) + 1 temporal
nodes 0 =ty <t < - <ty < - <ty = Tinaz, and at each spatial node S, we force
o(Sp,t) to be piecewise linear in time. These temporal nodes are chosen upfront and
need not coincide with any particular expiry times.

Thus the approximation of o(S,t) is specified by the matrix of weights

T
Yoo 210 - Xpo
Yo1 X1 Yp1
Y = . .
ZOQ EPQ

where %,, = 0(Sp,t,). This determines the representation uniquely.

In Figure 3 we extend the schematic of Figure 2 (with P = 10) to sketch a sample
term-structure (with @ = 3). We note that o is linear in ¢ only at the nodes S,.
Therefore away from these nodes strictly speaking it does not have a piecewise linear
spline representation in time.

In due course we shall present a method for selecting the members of ¥ by a
minimisation method. However, we propose that the members of ¥ that fall on or
near to S = Sy and S = Sy not be part of this minimisation directly. We will
instead ‘link’ these asymptotic values to those being optimised. More precisely, we
will only optimise over a submatrix 3* of ¥ that contains all of the entries of ¥ except
some of its first and last rows; the entries of the remaining first row(s) of X will be set
to be always equal to the entries of the first row of ¥*; the entries of the remaining
last row(s) of ¥ will be set to be always equal to the entries of the last row of ¥*. So
specifying ¥* determines the complement ¥\¥*.
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Figure 2: Schematic for spatial variation of o.
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Figure 3: Schematic for space-time variation of o.

We adopt this procedure because the values of o far from at-the-money do not sig-
nificantly effect option prices, and because it considerably reduces the computational
complexity of the minimisation, which leads to greater efficiency.

3 Regularised optimisation strategy

3.1 The cost-functional ¢

It is financially appropriate to minimise some measure of the difference between
Black-Scholes vanilla option prices V' (calculated assuming a functional volatility)
and known market vanilla option prices V (the arithmetic average of recent known
bid and offer prices) over a range of strike prices F;, for ¢ = 1, ..., I, and maturities T},
for j = 1,...,J, relative to a given spot price S = S(0). Naturally we might select a
different spot price (and time) for each pair (£;,T}), corresponding to the spot price
(and time) at which the trade was made, but here it is convenient to work with just
one. The range of strike prices and maturities need not be described by a rectangular



array but here they are for convenience. We specifically select these vanilla options to
be straddles, that is portfolios long one call and long one put of the same strike and
maturity. Straddles have been chosen to represent vanilla options because of their
ability to preserve put-call parity more accurately in the numerical procedure that
follows.

We might attempt to find the o(S,¢) that minimises the weighted discrete L?
norm

1/2

F= Y wilVij = Vigl® (3.1)
i

with a weighting function w that reflects the relative importance/significance of the
particular market straddle prices; we suppose w;; > 0 and Zi,j w;j = 1. The Black-
Scholes prices Vj;, subject to a particular volatility o (S, t), are obtained by solving the
relevant partial differential problem numerically, and we present our finite element
method for this purpose in Appendix A.

However, because I and J are finite, the problem of minimising F' is not well-
posed as typically it has many solutions. It is straightforward to demonstrate this
computationally and we do so in Section 4.1. By well-posedness we mean that there
exists a unique o, that has a continuous data-dependence and is contained in an
admissible space of functions, such that F' is minimal.

Therefore we reqularise our strategy by instead choosing to minimise

¢ = F>+G?, (3.2)
where we define
2(Sy,tq) 207 (Sp, tF)
G e 5755ty 20 ) 33
L gty 2 Prg (33)

a7 Q

with the subscripts to o denoting partial derivatives, for positive constants ¢; and cs.
Clearly G? is a measure of the size of the average gradient.

Also, we constrain o to satisfy 0., < 0(S,t) < 0paq Over the space-time domain,
where o0, and o,,e: are chosen constants such that 0 < opmin < Omaz < 00. The
financial reason for constraining o to bounded positive values is clear but it is also
important numerically that o,,;, is as large as possible. This is because when o < 1
(for example, if o = 0.00001 at some point in space-time) the Black-Scholes equation
becomes increasingly convection-dominated and hyperbolic in nature which makes
accurate solution of the Black-Scholes problem difficult.

The new term G? has two effects as far as we are concerned. The first is to
force uniqueness of o if ¢; and ¢y are large enough. This is found to be the case
experimentally although we do not attempt to prove it; we discuss the details in
Section 4.1. The second effect is to make o increasingly smooth as ¢; and ¢y are
chosen to be larger and larger; in the limit ¢;, ca—00, the minimising o is a constant,
the ‘best-fit implied volatility’. Consequently, if ¢; and co are very large, calculation
with the resulting o may give prices that differ noticeably from market prices.

These considerations of uniqueness and smoothness again force us to face the
question: what properties should ¢ have? Why should we ask for uniqueness when
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we know that it cannot be expected if we only have finite number of market prices?
Of several different choices for o that all reproduce market prices closely enough, why
should we choose the smoothest? One practical reason for specifying uniqueness is
that the model may need to be recalibrated frequently as market data changes, so
that if we were to use o to price exotic derivatives, or to hedge products, then a
switch to a significantly different 0 may predict unreasonably large changes in prices
or hedge ratios. The choice of a smoother ¢ has two potential advantages. The first is
numerical: the smoother ¢ is, the faster and more accurate certain numerical schemes
are. The second is more ad hoc: we may take the view that it is not appropriate to
force calculated option prices V;; to be too close to market prices Vij on the grounds
that some of the latter may be out of line, or misquoted. Taking c¢; and ¢y to be
very large forces o to be nearly constant, and consequently allows larger differences
between calculated and market prices, which may be arbitrage opportunities. (An
alternative approach to ‘outliers’ is to try to identify them either before or after the
minimisation, reject them, and calculate or recalculate o using a reduced set of market
prices.) It is an interesting empirical question whether trading on this basis yields
noticeably different results than trading a volatility surface that matches all market
prices very closely.

Some care is thus needed in the choice of ¢; and ¢p. If we aim to select them so
as to ensure ¢ is unique, it is not immediately apparent how large they should be.
However, their rough order of magnitude can be found as follows. It is reasonable to
aim for roughly similar magnitudes of F2 and G? at the minimum of ¢, subject to the
constraints; if G? were to dominate then the deterministic volatility surface would
be artificially flat, while if F? were to dominate we might encounter the problems of
non-uniqueness mentioned above. (It may be prudent to check a posteriori that the
gradients of the deterministic volatility surface are of roughly similar magnitude to
those of the implied volatility surface.) If F' = F},;;, at this minimum, and if .5 and
0t are typical scales for variations in S and ¢, then

oo oo
Flin ~ Grin ~ C1 (5—5})2 +C2(5—:)2a

where do; is a typical variation in o that results from S+— S+4S and doy is a typical

variation in o that results from ¢+ ¢+4d¢. Thus, on balancing these terms, we might
assume

0oy

0t Frnin )2
oo ’
for a single regularising constant ¢; the choice of ¢ is then found experimentally,
though it is expected to be approximately O(1). Concerning the value of F,;, that we
should aim for, it should certainly not be smaller than the errors associated with the
numerical method, and it may be much larger if we aim to identify other discrepancies
such as mispricings. The §- parameters are just rough order-of-magnitude estimates:
if & denotes a typical at-the-money implied volatility for a typical maturity, and if
T denotes a typical maturity, we choose §S = S (O)Eﬁ (the standard deviation of
changes in S over time T under constant volatility) and 6t = T; we select doy and
doo using the typical gradients of the implied volatility matrix. It is not important
to select these values precisely as in any case ¢ must still be chosen empirically.

cp = E( )2, Co = E(
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3.2 Method of functional minimisation

We employ the quasi-Newton algorithm of Gill & Murray [7] to minimise ¢ subject to
the linear constraints o, < 0(S,t) < Omaz; we only apply the constraints at each
of the nodes of the splined o for convenience (strictly speaking this will not ensure
the constraints are satisfied over the whole space-time domain but, provided o, is
not too small, this is not problematic). In fact we only optimise over a submatrix
3* of X, as described in Section 2, since it is appropriate to ‘link’ those asymptotic
members of ¥ that lie on or near to S = S, and S = S},4; to members of X*.
From a starting approximation ¥*(0) to the solution matrix ¥*, such that

$(S) = ming

subject to the constraints, on the basis of estimates of the gradient and curvature
of ¢, the algorithm generates a sequence of feasible matrices that are intended to
converge to 3*. The algorithm may be terminated either when the number of quasi-
Newton iterations has reached an unacceptable maximum or when changes in the
approximations to X* are small, for example when

1/2

P Q
1 *(v *(v—1)|2
(P*+1)(Q+1)ZZ|ZPSI)_ZPSI )| < TOL, (3.4)
p=0 g¢=0

for a user-specified constant TOL, where ¥*(*) is the vth approximation to £*. Al-
ternatively, we could adopt the stopping criterion that

> wijl€ij| < TOL, (3.5)
2
for a user-specified constant TOL’, where we define the basis-point error
Eij = 101 (Vij — Vi) /S(0).

That is, we stop when we have reproduced market prices to a desired accuracy. There
are some disadvantages to this approach, however. One is that it may not be possible
to satisfy (3.5) for a given TOL', especially if ¢; and ¢, are large. Furthermore, it
is not consistent with the gradient regularisation, but rather with simply minimising
F? (not F? + G?). Thus, while TOL' may be large enough to allow the iteration to
stop, the approximated ¥* may not be close to the true minimiser; in particular the
associated volatility o may be less smooth.

4 Example volatility function generation

4.1 Implementation

Suppose we wish to generate instantaneous o for the FTSE-100 index so as to price
exotic options today. Then we might select a set of yesterday’s known market straddle
prices over a range of five strike prices and two maturities, i.e. ten market prices in
all with respect to the same spot price of S(0) = 5000. For this example we have
chosen the sets

(E); = ( 4800 4900 5000 5300 6000 ),
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(T); = (05 1.0)"

and .
— <429.40 384.95 353.98 388.16 934.14>

(V)ii =\ 637.36 601.38 573.85 560.20 892.26

We measure time in years. We are required to specify the continuously compounded
risk-free rate for each maturity (obtained from the discount factors of zero-coupon
bonds) and to model the effects of dividends for each maturity (the dividends them-
selves being known or forecasted). Here, we shall assume a constant r and a con-
stant continuous dividend yield d for each T for convenience; more generally we
could assume r to be a known function of time and assume a discrete dividend
model. Accordingly, the continuously compounded risk-free rate and constant con-
tinuous dividend yield vectors are taken to be (r); = ( 0.04974 0.05354 ) and

(d); = ( 0.032 0.027 )"

There are I = 5 strikes and J = 2 maturities while as yet an unspecified number
of weights (P + 1)x(Q + 1) are used to describe the splined o. We shall take P =9
and @ = 2, with S},,;, = 500 and S;,q, = 50000, and with the spline nodes

(S)p:(Smm 3000 4500 4750 5000 5300 6000 10000 25000 Smax)

and
()g=(00 05 1.0)".

We prescribe two columns of asymptotic values for 7 on or near to S = Sy, and
three columns of asymptotes on or near to S = Siqz; that is we have

T
St S e Zh Sh
Y= 2’fo Zfo by e Xl X
Y50 3 Y54 Y5y X3y

To begin with we use (3.4) as the stopping criterion for the minimiser with the
highly restrictive tolerance TOL = 5x10~(1®) / /(P* +1)(Q + 1) so that ¢, subject
to the constraints, can be minimised very accurately by choosing « large enough.

This is useful for analysis that follows since it implies that |2;g’j) - ZZS;'*I)| =0 to
a-decimal accuracy for all p and q. We choose a = 6. Space-time of the differential
problems involved in the minimisation is discretised by M = 60 piecewise quadratic
finite elements and (N); = ( 30 40 )T time-steps (see Appendix A.2); we choose
N1#N5 here as it is more efficient to use a different number of time-steps for options
of different maturities. We set 0,,;, = 0.01 and ,,,; = 1.0. We choose the set of

weights
= L2058 852 g
Wil =5g\ 47 107 4)

Suppose we aim for F,;, = 1.5. We choose & = 0.1475, T = 0.5 and do; = o9 =
0.04. Then c; ~3.8(10%)¢ and co~3.5(10%)¢. Then, with the starting approximation
0.15 0.15 0.15 0.15 0.15
¥ = | 0.15 0.15 0.15 0.15 0.15 | ,
0.15 0.15 0.15 0.15 0.15

13



application of the algorithm to generate the near-optimal choice for o yields the
approximations

0.081494 0.070511 0.118491 0.086233 0.058517\ ©

¥*(€=0.00) =~ [ 0.234544 0.248359 0.133653 0.125910 0.072447 , (4.1a)
0.210362 0.242019 0.170321 0.164311 0.162403

0.153400 0.171052 0.109226 0.093051 0.078747
S*(=0.01) &~ | 0.197047 0.215270 0.129533 0.125311 0.090951 | , (4.1b)
0.234645 0.253174 0.174680 0.164172 0.154288

0.165628 0.169917 0.110937 0.082097 0.087034
Y¥*(e=0.07) =~ [ 0.204074 0.208146 0.129789 0.127549 0.098777 , (4.1c)
0.233750 0.233882 0.172702 0.161416 0.148681

0.172465 0.167995 0.111406 0.082620 0.088950
¥ (€ =0.10) = | 0.207248 0.205021 0.129416 0.126414 0.100498 . (4.1d)
0.232003 0.229633 0.172764 0.161788 0.147995

T

T

However, with the starting approximation

0.16 0.15 0.12 0.11 0.10'\ "

»*© = [ 0.20 0.18 0.13 0.12 0.11 | , (4.2)
0.24 0.23 0.20 0.18 0.17

application of the algorithm yields the approximations

0.010000 0.112017 0.120900 0.105606 0.179640
¥*(€=0.00) =~ | 0.244730 0.230310 0.127910 0.113607 0.102161 , (4.3a)
0.190260 0.238494 0.173239 0.168179 0.154105

0.145859 0.181633 0.118454 0.081616 0.085109
Y¥(e=0.01) = [ 0.195128 0.205182 0.124707 0.126128 0.097245 , (4.3Db)
0.236547 0.253126 0.177269 0.164127 0.150755

0.165333 0.169889 0.111356 0.082090 0.086870
Y*(€=0.07) =~ | 0.203874 0.207837 0.129517 0.127379 0.098628 , (4.3¢)
0.233958 0.234162 0.172934 0.161600 0.148825

0.172465 0.167994 0.111406 0.082616 0.088952
¥*(e=0.10) =~ | 0.207250 0.205020 0.129416 0.126415 0.100500 . (4.3d)
0.232001 0.229631 0.172763 0.161787 0.147994

In accordance with the asymptotic linking procedure, for each of these solution ma-
trices %.* we have

T
St S e Zh Sh

Y= 2’fo ZTO by Y Xl X ;
% B3 Yo By ¥y

the same applies for the starting approximations *(0),

If ¥* were unique then it would be independent of its starting approximation.
Therefore the matrices (4.1a) and (4.3a) provide a convincing demonstration of ‘non-
uniqueness without regularisation’. Taken together, the sets of matrices (4.1) and
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(4.3) indicate ‘uniqueness with sufficient regularisation’. Furthermore, since we have
non-dimensionalised c; and cs, it is reasonable to suppose that ¢~0.1 is a good choice
of regularising constant independently of the underlying.

The highly restrictive stopping criterion used above will make the minimiser very
slow — it is also unnecessary other than for analysis. If we were to use the same
criterion except with @ = 1 then, using as the starting approximation (4.2), we
obtain

0.178160 0.150367 0.116918 0.101893 0.071722\ ©

Y(e=0.1) = [ 0.206947 0.202562 0.124008 0.115095 0.093785 , (4.4)
0.237264 0.231821 0.178387 0.169686 0.155311

which is in reasonable agreement with (4.3d) and was much less expensive to compute.

If we had instead used (3.5) as the stopping criterion, with TOL' = 2 measuring
an average number of basis-points error, then, using as the starting approximation
(4.2), we obtain

0.211880 0.147707 0.117241 0.099936 0.052162\ ~

Ye=0.1) = | 0.197152 0.192046 0.126953 0.113431 0.087933 ,  (4.5)
0.232217 0.222051 0.186165 0.168521 0.164204

which does not agree with (4.3d) as well as (4.4) does (consider the first columns
of the transposed matrices), though it does give Black-Scholes prices Vj; that agree
closely with market prices Vi]-.

For the remainder of this paper, we use the ¥ determined by (4.4). This speci-
fies the splined o which is depicted in Figure 4. (The non-monotonic behaviour for
small and large S is a result of the spline representation and our procedure for the
asymptotic values ¥\¥X*. As stated previously, the consequences for pricing are in-
significant.) While o is defined for a large range of spot price, 500<.5<50000, the
region nearest to at-the-money is of most financial interest and hence we depict this
range specifically in Figure 5. Relative to the given set of market straddle prices, con-
tinuously compounded risk-free rates and constant continuous dividend yields, this
functional form for the volatility may now be used to price many types of options on
the FTSE-100, for example Americans, Asians, barriers, lookbacks etc..

Note that it is appropriate to retain at least three-decimal accuracy in %* de-
spite the possibility of low-accuracy market data. This is because the shape of the
space-time spline, being entirely specified by the entries of 3, is sensitive to each X7 .
Consider, if we rounded ¥* to three-decimal accuracy then the average basis-point er-
ror, >, - wi;|€ij|, would increase only slightly while rounding to two-decimal accuracy
will more than double the error. If market data is deemed inaccurate then, rather
than not retaining decimal accuracy, it would be appropriate to generate another >*
for a perturbed set of market data and then to account for the pricing differences
implied by each of the ¥*.

The minimiser took around 60 seconds to run on a SUN SPARC-station HS14
computer. Parallelisation of the minimiser would markedly reduce this time; a larger
(smaller) set of market straddle prices will obviously imply more (less) run-time; more
(fewer) splines will obviously imply more (less) run-time. The quality of the starting
approximation £*©) to ©* will greatly influence the run-time. If we generated * for
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the FTSE-100 on a daily basis then we would expect a good starting approximation
to be available from yesterday’s calculation, the use of which will reduce run-time.

S 50000

Figure 4: Today’s instantaneous o for the FTSE-100.
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Figure 5: Today’s instantaneous o for the FTSE-100 (near to at-the-money).

4.2 Integrity testing

Recall that the Black-Scholes prices, V;;, are approximated via numerical solution of
the relevant partial differential problems, as described in Appendix A. Because we in
fact approximate V;; by Vi; + e;;, with a numerical error e;;, so we approximate F' by

1/2

* 7 2
Fte =Y wilVij = Vij — ey
i
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Consequently, the smallness of F' + e¢* (which is implied by the smallness of ¢ + e**,
where e** is the associated error in ¢) need not imply the smallness of F'; conversely,
F +e* may be much larger than F. Therefore it is important that |e*| should be small
enough not to effect the minimisation significantly. Unless we adequately control the
size of the error e;;, our strategy for selecting instantaneous o will not be effective
as it will not ensure that the Black-Scholes prices, V;;, are sufficiently close to the
market prices, Vij.

The size of e;; is directly related to the size of M and the N;, which describe the
coarseness of the discretisation of the relevant partial differential problems: the larger
M and the Nj are, the smaller |e;;| will be, and vice-versa. Thus we are required to
select M and the N; carefully, for if they are too small them |e;;| will be too large
while if they are too large then the minimiser will be inefficient and prohibitively
slow! It is reasonable to expect them to have typical values, although unusual market
data will require unusual M and N;. For example, if market straddle prices are
unusually low then they will imply low levels of instantaneous o, and the smaller ¢ is
the more difficult the Black-Scholes differential problem is so solve numerically due
to the dominant convection term in the partial differential equation; this is why we
choose 0,,;, not to be too small.

Our approach is to generate o using some relatively small M and Nj, but then to
test the integrity of ¢ independently as follows. We solve the Black-Scholes straddle
pricing problem, using the generated o, using the adaptive finite element method
[11]. This adaptive method solves European Black-Scholes problems to guaranteed
accuracy (the level of accuracy being supplied by the user), and so we use it to find
the Vj; (to a suitable number of significant figures) so as to establish whether or
not |e*|, at the minimum of ¢ + e** subject to the constraints, is sufficiently small;
this also shows whether or not the generated o yields Black-Scholes straddle prices
that match the market straddle prices to within a prescribed error tolerance. If this
adaptive method shows this |e*| to be too large then we regenerate o using slightly
larger M and N;. We continue along these lines until an appropriate choice of M
and the Nj; is found — with a little experience it will be easy to make an appropriate
choice upfront. Thence by following this procedure we will ensure that our algorithm
for generating a near-optimal instantaneous o is robust and efficient.

Relative to the given set of market and numerical data described in Section 4.1,
M =60 and (N); = ( 30 40 )T may be considered to be an appropriate coarseness
of discretisation for the minimisation since, using the adaptive method [11], we prove

()i = ( —231 —1.07 —0.17 —0.29 —0.75 )T
J —6.25 —4.65 —-3.62 —-3.96 1.65
to two-decimal accuracy. Therefore ), ;w;;|€;j| < 2.65 so that the market prices
were on average replicated to within 2.65 basis points. Hence we may conclude that
the bias of the volatility smile, with respect to the given set of market prices, has
been effectively removed.
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5 Example volatility function pricing: up-and-
out call

We now illustrate how the method can be applied in pricing an exotic option. Let
us price an up-and-out call option, using the generated o of the last subsection, for
example. This should serve to demonstrate the significant differences in prices and
greeks that o(S,t) may imply when compared to a constant volatility model.

The Black-Scholes up-and-out call pricing problem is as follows: find the issue
price V(S = S(0),¢ = 0) such that

1
rV =Vi+ oS, t)?S8?Veg + (r—d)SVs, 0<S<B, 0<t<T, (5.1a)
V=(ES-E4 0<S<B, t=T, (5.1b)
V=0 S=0B, 0<t<T. (5.1¢)

The parameters r and d must be consistent with those used in determining o; it is
also necessary that T'<T;. We replace the boundary condition V =0 at § = 0 by
V =0 at S = 500; this choice well approximates the ‘theoretically correct’ one of 0
for the reasons described in Appendix A.1. We choose B = 6500 and T = 1. We
solve the differential problem (5.1) accurately for each of the strike prices F; of the
last subsection using the adaptive method [11]. We depict the at-the-money issue
price and payoff in Figure 6 for S € [4500, 6500].

If the up-and-out call option were priced under the assumption of constant volatil-
ity then it might be reasonable to use the implied volatility of the underlying straddle.
Accordingly, we depict in Figures 7, 8 and 9 differences between the constant and
functional volatility models. Here, (V');, (V§); and (V§g); denote the Black-Scholes
prices, deltas and gammas calculated assuming that the volatility is constant and
equal to the implied volatility from the option with strike E; and maturity T = 1; re-
call that Fj3 is at-the-money. These graphs show, in particular, that pricing using the
at-the-money implied volatility underestimates the price, delta and gamma compared
to using the functional volatility.

1400 |
1200
1000 |
800 |
600 |
400 f
200 4

S

4500 5000 5500 6000 6500

Figure 6: Up-and-out call price for t =0, 7.
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Figure 7: Basis-point differences 10*(V — V");/S(0).

0.147

0.115

0.086

0.033 1

0.003

Wb

1 2 3 4

Figure 8: Delta differences (Vg — V§);.

Undoubtedly there will be significant differences between the rhos, vegas and
thetas also, although we must consider a new way of defining vega when ¢ is functional
— it must measure the sensitivity of the option price to the form of the functional
volatility. For example, we might select a number K of appropriately perturbed
market price arrays (V)ijk, for k = 1,..., K, then generate oy (S5,t) for each of these,
and then take vega as some relative measure of the difference between the option
prices implied by ‘today’s functional ¢’ and each of the og;: for a given strike and

maturity, we might take

V(e) = V(ox)? )1/2_

ega= | (P+1)(Q+1)
' ( zk: 25:0 Z?:O |2pq - quk|2

6 Conclusions

We have proposed a method of generating a functional form for o that minimises an
appropriate measure of the difference between Black-Scholes vanilla prices and a given
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Figure 9: Gamma differences (Vss — Vig);.

set of market vanilla prices. Because this instantaneous o is chosen as a spline, it is
continuously well-defined in space-time. Moreover, because the optimised strategy is
regularised and integrity tested, o should not only be the smoothest such spline but
it is proved to replicate the given set of market prices to within a prescribed error
tolerance. Therefore, with respect to this given set of market prices, it effectively
removes the bias of the volatility smile exhibited by the implied volatility model.

The computational method is not overly time-consuming but will depend on the
number of given market prices. Therefore attempting to minimise the difference
between Black-Scholes vanilla prices and an overly large set of market vanilla prices
is inappropriate. Moreover, the complete set of yesterday’s (for example) market
prices do not necessarily accurately reflect the biases of the Black-Scholes model for
many months to come. Indeed, there is clearly a trade-off between trying to match all
market prices and trying to predict some (and hence spot arbitrages). It is clear that
‘outlying’ market prices, whether mispricings or misquotations, may significantly skew
the volatility surface, so there is a case for a pre-processing procedure that identifies
these prices and rejects them before the minimisation. Also, we need not match all of
the market prices of options that are far from the money since they may increase the
computational complexity of the model considerably while only have a small effect
on the prices and greeks of exotic options that are calculated using the o.

Having generated o for a given underlying it may be used consistently in the
pricing of exotic options and may be employed by a variety of lattice, Monte Carlo
and partial differential equation pricing methods. We note that it is particularly
advantageous that o is a simple function, defined for a large range of spot price, that
is particularly smooth in nature and is proved to replicate a given set of market prices
to sufficient accuracy.

We end with a question that can only be answered by careful empircal work:
despite the advantages of the functional volatility model that we have outlined, is
the model more effective in pricing and hedging exotic options than either the simple
remedy of using an array of constant implied volatilities or more complex models such
as stochastic volatility?
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Appendix A Black-Scholes straddle prices

A.1 Differential problems

To evaluate the component Vj; of F', we must solve for each pair (F;, T;) the following
Black-Scholes straddle pricing problem: find the issue price V(S = S(0),¢ = 0) such
that

1
riV =Vi+5o(S, )28 Vss + (1j — d;)SVs, Smin < S < Spaz, 0<t < TiA.la
= |S_Ei|a Smin<s<smaxa t:Tja ( 1b
V=Ee Tt §=28,,, 0<t<Tj, (A.lc

)
)
)
V = Spaze 4070 — e M= g =5, 00 0<t < Ty (A.1d)
Note that in contrast to the ‘theoretically correct’ differential problem for vanilla
options (see [19, pages 425-426]) in which S,,;, should be chosen to be 0 and Sy,4x
should be chosen to denote oo (in accordance with the consideration that vanilla
option value can only be deterministic in the limits S—0, oo) we make the restriction
that 0 < Siin < Smaz < 00 where Syin and Sp,q, are simply chosen to be sufficiently
small and large respectively. We easily find (by solving the differential problem for
the difference between the restricted and ‘theoretically correct’ differential problems)
that the error incurred by the restriction is extremely small. For example, by simply
choosing Sy,in = S(0)/10 and Sy, = 105(0) we find for straddle options for realistic
financial parameter choices that the incurred error is several orders of magnitude less
than the modelling error within trading neighbourhoods of the spot price. We make
the restrictions on Sy, and Sy, as is possibly clear, a) because it is difficult to
solve numerically on a infinite interval and b) so as to ensure that the problem always
remains non-degenerate parabolic.

It is of clearly of paramount importance that the differential problem (A.1l) in-
volved in the minimisation is solved to sufficient accuracy and in the least possible
time. If its space-time discretisation is either too coarse or too fine then the gen-
erated instantaneous ¢ will either be inappropriate or will have taken too long to
generate. Financial time constraints are critical inasmuch as it may be necessary to
generate several instantaneous o for the same underlying (for a scenario analysis) or
for different underlyings, and on a regular basis.

We solve the problem (A.1) as follows: we first transform the financial variables
and we then solve the resulting transformed problem by a piecewise quadratic finite
element method in space and a Crank-Nicolson finite difference method in time. We
perform the transformation, which we describe below, for reasons of efficiency; the
Péclet number of the resulting partial differential equation is maximised near to the
financial region of interest which should improve the performance of the finite element
method. We find experimentally that the piecewise quadratic finite element method
in space, which we describe in the next subsection, is considerably faster than a
variety of standard finite difference methods in space (for example those described in
[19]) relative to the level of accuracy we require.

We transform the financial variables by

S =5(0)e", t=T;—71, V=_58(0)e7 Ty,
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having defined the constants
ki:=1/2—(r; — dj)/EQ, ky := —rj — k2522,

where 7 is a constant derived from o by some form of simple averaging (for example,
we might we choose & as the at-the-money implied volatility relative to some Tj), to
obtain the following transformed problem: find u(xz = 0,7 = T}) such that

Ur = QUgg + Puz +yu, a<z<b 07Ty,

ug, a<x<b T=0,

Ug, T=ua, 0<71<Ty, (A.2c
u=1u, x=0>b 0<7<Ty, (A.2d

having defined a := log(Smin/S(0)), b := log(Smaz/S(0)), ¢ :=log(E;/S(0)) and the

functions

o= 0°/2,
0 : ’)"j—dj-I-Oé(Zkl—l),
A — ko +k1(ﬁ—ak1),

I 1—k1)x —ki1z+c

ug = |e17F)T _ g=hizte|

Uy = efk1a+cf(rj+k2)'r,

up 1= e(l*kl)bf(d]%»kz)T _ efk1b+cf(rj+k2)T.

A.2 Discretisation method

To solve the problem (A.2) (numerically by our piecewise quadratic finite element
method in space) we proceed by considering its weak formulation: find u € Hé such
that, for each 7 > 0, and for all functions v € H}Eov

(ur,0) + (Qug, Uz) + (@ — B)ug — yu,v) = 0; (A.3)
recall that by definition
H}; := {weL?*(a,b) | w,€L?(a,b), w(a) =uq, w(b)=u}

while H}EO is similarly defined except with respect to homogeneous boundary condi-
tions, and recall the inner product notation

b
(f,9) E/ fgdz

for some f and g. Then, given the M-dimensional trial-subspace S% C H}E, the con-
tinuous Galerkin principle is to find the approximation U(z,7) to u(z,7) that (for
each 7 > 0) lies in S}, and satisfies

(Ur,v) + (@Usg,vz) + ((ag — B)Uz —yU,v) =0 (A.4)

for every v € S’%O; we choose Uy=U]|;=¢ to be the piecewise quadratic interpolant of
ug. We define S}} as the space of CV piecewise quadratic functions, satisfying the
(essential) Dirichlet boundary conditions, on the spatial mesh

a=20< 21 <<z < < xops = b.
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If ¢ denotes a local co-ordinate relative to the interval h; := z9; — T9; 9 where

T = 5(1 — 8w+ %(1 + &) T

for the ith quadratic element (for 7 = 1,2,..., M) then the basis functions are
1 1
Nii=—2g(1 =€), Npi=1- €2, N3 := S+
Then we have, for the ith quadratic element,
U(x(é), 7') = UQi_Q(T)Nl + U2i_1(7')N2 + UQZ'(T)Ng.

The contributions I; to the ith integrals of the approximated weak formulation (A.4)
may be written

V9i—2(T) Ury;_y (7) Uzi—2(7)
Ii = [ voia(T) |- | Mi| Upy_ (1) | + K; | Ugi1(7) ;
V24 (T) UT2i (T) Uai (T)

whose components are defined as follows. The 3x3 element mass matrix M; has
entries

h; [*
Mipg = 2/, N,N,d¢,
so that
hof 42 -1
Mi:3—6 2 16 2 |,
-1 2 4

and the 3x3 element stiffness matrix K; has entries

1
2 h;
Kipg = /l(h_iaNpqug + (aw — B)Np Ny, — éVNqu)dg;
it is most appropriate to approximate these integrals using the two-point Gaussian
quadrature rule (see [17, pages 367-368] for example). Summing the contributions I;
over %, noting that it is enough to apply the continuous Galerkin principle only to the
spatial basis of v, yields the full system of equations

MU + Kfu! =,

where .
U'=(Uo(r) Ui(r) -+ Uam(7) ),
and with the pentadiagonal full mass matrix
4hl 2hl —h1 0
2h1 16~ 2h 0
—h1 2hy 4hy +4hy 2hy —hsy
0 2ho 16h9 2hs 0
uf- L —hy  2hy 4hy +4hs 2h3 —hs
30 0 2hy 16k
—h3 2hM —hM
. 2hM 16hM 2hM
0 - —hy 2har 4hy
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Then application of the Dirichlet boundary conditions yields the global system of
equations
MU; + KU = bc*, (A.5)

where
U= (Uilr) Us(r) - Uaralr))’,
—2h1uaT( ) K1 oua( )

-
hitg, (1) — Ko2,0uq(T)
0

0
hoarup, (T) — Konr—2.90up(T)
—2hMubT (7') - K2M—1,2Mub(7-)

the global matrices being simply the full matrices less their first and last rows and
columuns.

We discretise in time via a Crank-Nicolson type finite difference method. Specifi-
cally, on the temporal mesh

0=70 <7 < <Tp <o <7y, =Tj,

defining k,, := 7, — T,_1, we average first-order accurate forward and backward tem-
poral difference approximations to (A.5). Thence we obtain the following matriz
problem: find

ur=(up vy - Upy, )T’

for n =1,2,..., N; in succession, such that
1 n n 1 n—1 n—1
(M + Sk K")U" = (M = Sk K™ U™+ be, (A.6)

where

3
I

1 1
hov (uy —wy ™ ) k(K 2M oonty + Konr ooty )1
n

—2hp(uy —uy ™ ) lk( oM — 12M“b +K2M112M“b )

Thus far we have not specified the location of z; on (a,b) and 7, on (0,7}). We
might specify them by prescribing a uniform space-time discretisation by choosing
hi=(b—-a)/M (i =1,..,M) and k, = T;/N; (n = 1,..., N;) but it is much more
efficient to prescribe non-uniform sets of h; and k, that account for the nature of
the initial and boundary data. Therefore, since we are solving a transformed strad-
dle pricing problem, we have chosen the h; so that the spatial mesh is concentrated
finely near to the spot price and we have chosen the k,, so that the temporal mesh is
concentrated finely near to 7 = 0; it is important that any such meshes are smoothly
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varying so as to prevent ill-conditioning in the matrices of (A.6).

Thus we see that the transformed differential problem (A.2) has been discretised
in space by approximating its solution space by a space of M-dimensional piece-
wise quadratic functions while it has been discretised in time by finite differencing
over N; time-levels. Therefore to obtain the approximation to the straddle price
V(S = 5(0),t = 0) for each pair (E;,T}), we must first solve the pentadiagonal ma-
trix problem (A.6) (via band Gauss elimination, say), so as to obtain the piecewise
quadratic UNJ, and then we must relate back to financial variables by the formula

V(S =5(0),t =0) =~ S(0)eTiyhi,

Lastly, we remark that considerable care should be taken when programming the
above procedure. Significant efficiency savings can be made by noting, for example,
that the stiffness matrix K™ need only be constructed once for each maturity, i.e.
once for the pairs (E1,Tj), ..., (Er,Tj) for each j.
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