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We introduce an approach for the identification and

tracking of image regions in monocular image se-

quences.

The assumptions are that the egomotion is known and

that an representation of the environment has been com-

puted in order to predict roughly the expected motion

field with respect to the movement of the sensor relative

to the environment.

Image regions, whose motions do not match with this

motion field, are assumed to belong to independently

moving objects in the scene. Having detected roughly

the location and movement of such a region in the im-

age plane (by Optical Flow or any other approach), we

decompose the image plane in two disjoint domains and

alter their shape such that the velocity fields which are

computed for both domains agree in an optimal way with

our interpretation of the scene.

By this method we reconstruct a velocity field for the

whole domain of the image plane, which is discontinu-

ous along a closed contour. This contour coincides in

an optimal, just described way with the motion bound-

aries of the object. As a result, a segmentation of the

velocity field a posteriori becomes superfluous.

Let. H denote the Hilbert space H^il) x H
l
(il).

(/ /^ft) denotes as usual the Sobolev space i/x(ft) =
W.\ (ft); cf. [8]). The approach of Horn and Schunck [2]
for the reconstruction of a velocity field u = (ul,w2)T

for a domain ft C R2 can be formulated as follows (cf.

[5]):
find » G H such that

') , v£H

H — R (Il/S fromwhere the functional -////,s
Jiorn/Schunck) is defined by

(r) = -a(r, r) — f(r) + const . (1)

Here «(•, •) : H x "H — R is the symmetric, bounded
bilinear form

a(H.i.) = 2 / {(Vg • u)(Vg • v) +
•In
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+ A2 ( VMI • Vel + Vi/2 • Vt>2)} dx , (2)

/(•) : H —»• R is the continuous linear form

f(v) = - 2 / {gtgxvl + gtgyv2) dx , (3)

and the constant term is given by

const = I gfdx . . (4)

Jn

It can be shown (see [5]) that, under weak condi-
tions on the greyvalue gradient, the functional (1) with
(2),(3) and (4) is strictly convex and that the unique
solution of this minimization problem can be computed
by solving the variational equality

a(u, v) = /((») , Vi> G H (5)

By discretisation with Finite Elements, this problem
reduces to the solution of a linear system with a sym-
metric, sparse and positive definite matrix.

Explicitely, (1) reads as

JH/S{V) = / {(V</ • v + gt )2+
•m

A2 (|Vi»l|2 + |Vi»2|2)} rfx (6)

Fig. 1 shows a velocity field, which was computed ac-
cording to this approach. Assuming that the camera is
stationary, one would hypothesise here the presence of
a moving object in the scene and would try to deter-
mine the corresponding image region, i.e. the motion
boundary. The vector field, which corresponds to the
projected motion on the image plane, is in general dis-
continuous on motion boundaries. In contrast to this,
it is well known that the variation of a velocity field,
which is reconstructed by the minimization of (1), is
bounded and that, consequently, the detection of mo-
tion boundaries a posteriori, for example with a thresh-
old, is difficult.

Our approach is to introduce motion boundaries ex-
plicitely by decomposing the domain ft and to move
them in the image plane by minimizing a suitable crite-
rion. To this end we assume, as stated above, that the
motion within the image plane can be roughly predicted
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for each domain ft/;- in terms of a model vectorfield ((«•„,,
and minimize

i) = / |»* -Mfc,,,|2f/.r, (7)
Jnk

where «jr is the solution of eqn. (5) (w.r.t. ft*.), and fi^
is the "variable" which has to be determined.

Note that the assumption that a vectorfield uk,n is
available is primarily related to the situation, where we
want to identify an image region. Here we have in view
the embedding of our approach into a vision system,
which uses several different modules in order to esti-
mate 3D-parameters. Such a. system should be possi-
ble to predict a motion field, which roughly corresponds
to the movement of the sensor relative to the environ-
ment. Concerning the tracking of an image region, the
vectorfield corresponding to the last image should pro-
vide enough information to compute «&,„ (see below).

Outline of the paper

The remainder of our contribution is organized as fol-
lows: In the next section, we sketch our algorithm for
the identification of an image region from Optical Flow
(for lack of space, we omit the derivation, which can
be found in [6] (as well as a discussion of related liter-
ature)). In the third section, we show experimental re-
sults, which demonstrate the feasibility as well as some
specific properties of our approach. Finally, we indicate
some directions of further research.

A descend procedure for the identifica-
tion of image regions from Optical Flow

We sketch now briefly our procedure, which generates
iteratively a sequence {ft"} of domains ft* C R2, such
that

J(Q
h+l

) < ./(ft*) (8)

Details may be found in [6]. Choosing for arbitrary k
the notation

ft := ft* , ft' := ft*+1 , u := uk , um := Ul.m ,

we consider ft' as a perturbation of the domain ft by a
vectorfield l ' £ V

ft' = (/ +V)(ft) = |* eft},

where 1 •= KIRS and I is an element of a space V of
smooth vectorfields which are defined on R'-1. 1* should
be "sufficiently small in order to ensure that the map-
ping / + ]' is a diffeomorphism of RJ. We use results
of Miirat and Simon [4, 7] about the (formal) differen-
tiability of mappings from a family of domains

V : = {ft'| ft'= T)(ft)}

into spaces H^'(ft) of smooth functions and R1, respec-
tively, and exploit a standard trick from the theory
about the control of distributed parameter systems (in-
troduction of an "adjoint state" p^, see below; cf. [3],
for example) in order to calculate the derivative of the

functional (7) at the point V = 0 in the direction of a
field V. Finally, we get an estimate of the sign of the
normal component on 5ft

Vn •= n • V

of vectorfields V, for which we have (8), by the formula

\n = - [|« - «„,|2 - 2(V,/ • «)(V</ • p)

-2A2(Vul • Vpl + V«2 • V//2)

-2</((V(/-/>)] on Oil

where, see Fig. 2, n denotes the outer normal of ft and
the vectorfield p = (pl,p2)

T is the solution of

a(p, v) = 2 1 (u - •«,„) • vdx Vi> € H . (9)
Jn

For the situation shown in Fig. 3 we define analogously

. / = / [in - uim\'
2
d.v + \uo - uom\

2
dx (10)

Jn, Jno

with "i" for inside and "o" for outside. Assuming that
V = 0 on c)fto\(fto n ft,) we get

Vn = - [Wi - uim\
2
 - 2(V</ • Ui){Vg • Pi)

U • VpU + V«2,- • Vp2,-)

-\u0 - uom\
2
 + 2{V<j • uo)(Vg • po)

+2A2(Vulo • Vplo + VM2 0 • V/>2,,)

+2g,(Vg-Po)]

on r = fto n ft,; .

Therefore, one iteration of the descend procedure
comprises the following steps:

1. Compute »,;, u0 according to (5)

2. Compute Pi,pc according to (9)

3. Move the boundary F (w.r.t. ft,) to the outside (to
the inside), if V'n > 0(V'n < 0).

An extension of the approach to the case of several
objects is obvious.

Experimental results

To keep the approach efficient, we used a uniform mesh
for the discretisation of the problem and the movement
of boundary markings (i.e. the "stepsize" is constant).
We moved a boundary marking to the inside or to the
outside if the same direction was computed for both
neighbours in order to avoid very irregular shapes of
the domains (and. in turn, poor triangulations) as well
as oscillations in the neighbourhood of the minimum.

We generated an image sequence by moving a domain
with a circle-like boundary (Fig. 4) with the constant
velocity (1,0)^ pixel/frame in the image. The domain
as well as the image were masked with a constant grey-
value and additive white noise. As model vectorfields
Him, Hom we used the exact vectorfields.
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Fig. 7 shows from the left to the right and from the
(.op to the bottom 16 iterations of the moving boundary.
The boundary was marked with black before an itera-
tion step. After the step the boundary was drawn with
white into the same image. At the beginning we started
with a small circle in the detected region according to
Fig. 1 (Fig. 7, first, image on the top).

Fig. 7 and the values of the functional (10) for each
step (Fig. 5) show that the iteration procedure runs
into a (local) minimum. Fig. 6 shows the discontinu-
ous vectorfield after the 16th step. Fig. 8 shows the
result for a different starting point (the final result dif-
fers from the previous, because the update-rule for the
boundary markings (see above) makes the boundary to
some extent rigid).

Fig. 9 shows a real image. The camera is moving to-
wards the crossing and a car is coining from the left. We
used the part of the image shown in Fig. 11. In order
to get the model vectorfield uom we computed a veloc-
ity field for the lower half of the image, and estimated
the parameters, which belong to a flow field caused by
a moving plane, by a least-squares procedure. These
parameters then were used to define uom. for the whole
part of the image. At the beginning of the iteration
procedure we decomposed the image within the image
region of the car, and used the mean value of the corre-
sponding flow field to define constant velocity fields (/,,„
for the domains Qf in the subsequent iteration steps.

Fig. 10 and Fig. 11 show the identified domain. We
also used a different value of the regularization param-
eter AJ (25 instead of 5) for the computation of the
flow fields. Fig. 12 indicates that this has only little
influence on the result.

From this result we conclude the following:

• The approach does not need prominent greyvalue-
structures (as corners or edges) but evaluates the
coherent motion of image regions. It is only as-
sumed, that the partial derivatives of the grey value
function can be (roughly) estimated ("short range
motion").

• It is necessary to know (again roughly) the mo-
tion of an image region, wliich has to be identified.
The resulting velocity field, however, can be used
to identify the corresponding region in the next im-
age, i.e., to track the region.

• The approach comes to a decision with respect to
the locality of the motion boundary of an object
(see Fig. 7 and Fig. 8). This makes a segmentation
a posteriori superfluously.

• In general, greyvalue edges need not correspond to
motion boundaries. Using edges one first has to
select the correct, ones (namely those that do not
correspond to surface markings) and then one has
to link them to a closed contour, whereas the re-
sulting boundary of our approach is always closed.

• Because the approach avoids the usual smoothing
over motion boundaries of the approach of Horn
and Schunck [2] the resulting velocity field is less

"distorted" (compare Fig. 1 with Fig. 6). This

should make it possible to track an identified image

region. For the example shown above one could, for

instance, use the value

V =

to define a constant model vectorfield M,,, (which is
always assumed to be defined on f2*: for each iter-
ation step k) for the identification of the region in
the next frame and to rigidly translate the bound-
ary in order to get a good starting point for the
next iteration.

• Each iteration step moves the whole boundary. For
this, a vectorfield pk has to lie computed for each
domain. Fortunately, the compilation of the corre-
sponding matrix is not necessary, because this ma-
trix is identical to the matrix which corresponds
to the vectorfield iik (compare eqn. (5) with eqn.

Further work
It might be worthwhile to apply the descend procedure
to the Finite-Element equations (i.e. after the discreti-
sation) in order to get. not only the qualitative infor-
mation "move the boundary at this point, to the in-
side/outside" but. also quantitative information for the
control of the "stepsize" and for the development of
termination criteria.

It is necessary to design a multi-grid procedure (cf.
[1]) to solve the systems (5) und (9) in an optimal way.
Extensive numerical investigations are then in order to
investigate the sensitivity of the approach as well as
effects which might arise from the presence of more than
one object.

Note that any strictly convex quadratic functional for
the reconstruction of Optical Flow instead of (1) fits
into our approach. Similarly, alternatives with respect
to (7) are possible. If one knows a priori, for example,
that the velocity field, which has to be reconstructed,
is nearly piecewise constant, then one could try

with the obvious advantage, that one does not need to
know the value of the vertorfields in each domain.

I hanks to Kostas Dauiilidis, Hans-Ilellnuit Nagel,
Joachim Kieger and Karl Rohr for their comments on
this paper.
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Figure 1: velocity field computed according to the ap-
proach of Horn and Schunck

Figure 2: deformation of the domain

Figure 3: decomposition of the image plane

Figure 4: shape of the moving image region (white)

Figure 5: values of the functional (10) for the 16 itera-
tion steps

Figure 6: the reconstructed discontinuous velocity field
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Figure 7: identification of the domain: 16 iterations of the moving boundary

Figure tf: same as above with a different starting point
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Figure 9: a real image sequence taken with a moving
camera

Figure 10: the identified domain corresponding to a
car coming from the left

Figure 11: detail of Figure 10 Figure 12: result for a different value of the regular-
ization parameter (see text.)

114


