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Numerical solutions of the Poisson-Boltzmann equation (PBE) have found wide application in the computation 
of electrostatic energies of hydrated molecules, including biological macromolecules. However, solving the PBE 
for electrostatic forces has proved more difficult, largely because of the challenge of computing the pressures 
exerted by a high dielectric aqueous solvent on the solute surface. This paper describes an accurate method 
for computing these forces. We  begin by presenting a novel derivation of the forces acting in a system governed 
by the PBE. The resulting expression contains three distinct terms: the effect of electric fields on 'fixed" atomic 
charges; the dielectric boundary pressure, which accounts for the tendency of the high dielectric solvent to 
displace the low dielectric solute wherever an electric field exists; and the ionic boundary pressure, which 
accounts for the tendency of the dissolved electrolyte to move into regions of nonzero electrostatic potential. 
Techniques for extracting each of these three force contributions from finite difference solutions of the PBE 
for a solvated molecule are  then described. Tests of the methods against both analytic and numeric results 
demonstrate their accuracy. Finally, the electrostatic forces acting on the two members of a salt bridge in the 
enzyme triose phosphate isomerase are analyzed. The dielectric boundary pressures are  found to make substantial 
contributions to the atomic forces. In fact, their neglect leads to  the unphysical situation of a significant net 
electrostatic force on the system. In contrast, the ionic boundary forces are  usually extremely weak a t  physiologic 
ionic strength. 

1. Introduction 

Continuum models of electrostatic interactions, based upon 
numerical solutions of the Poisson-Boltzmann equation (PBE), 
have found increasing application in the modeling of hydrated 
molecules, particularly biological macromolecules. '-3 To date, 
they have been used chiefly in energy calculations. However, 
there is reason to expect that they will also be of value in molecular 
mechanics calculations, such as molecular dynamics simulations 
and energy minimizations. This is chiefly because the PBE 
approach promises to permit a simplified treatment of solvent 
electrostatic effects. In molecular mechanics calculations, com- 
putational limitations frequently make it difficult to include more 
than a few layers of solvent around a macromolecule. Including 
a dissolved electrolyte explicitly further increases the computa- 
tional cost. Continuum models could provide a computationally 
efficient, albeit approximate, means of incorporating the elec- 
trostatic effects of an aqueous solvent containing dissolved ions 
into macromolecular simulations. There would be no question 
of convergence of the solvent dielectric properties, because the 
PBE approach yields what are essentially potentials of mean force. 
This fact also implies that molecular mechanics calculations using 
a PBE treatment of electrostatics cannot be expected to yield 
accurate results for fluctuations, but the results for equilibrium 
properties should be reasonable. 

However, if the PBE is to be used in molecular mechanics 
calculations, methods must be devised for using the Poisson- 
Boltzmann equation to compute electrostatic forces, rather than 
energies. In doing so, it is important to recognize that the 
electrostatic force on an atom in a system governed by the PBE 
is not simply the electrostatic field, E, at the atom multiplied by 
the atomic charge, q. As will be discussed below in detail, such 
uqE forces" represent only one of three force components in the 
system. For now, however, the fact that something is missing 
may be highlighted by considering the case of a spherical 

' Current address: Macromolecular Modeling, Bristol-Myers Squibb. P.O. 
Box 4000, Princeton, NJ 08543-4000. 

0022-3654/93/2091-3591 S04.90/0 

centrosymmetric ion, or Born ion, in water. It is well-known that 
increasing the radius of the ion weakens the favorable interaction 
with the surrounding solvent. There must, accordingly, be a 
pressure acting at the boundary between the ion and the solvent. 
However, by symmetry, the field at the central charge is zero. 
Thus, the boundary pressure cannot be obtained from the qE 
force term. A more dramatic example is that of a hydrated 
spherical ion containing an eccentric charge. In this case, qE is 
nonzero, because the charge is attracted to the portion of the 
dielectric boundary to which it is closest. A molecular mechanics 
calculation including only the qE force would predict that the ion 
would translate continuously through solution; the violation of 
Newton's third law results from the fact that the dielectric 
boundary pressure has been neglected. By a similar argument, 
it is evident that any dissolved ions in solution also exert a pressure 
at the ion-exclusion boundary. As demonstrated below, the 
dielectric boundary pressures are far from negligible. Thus, any 
method for incorporating the PBE into molecular mechanics 
calculations must in some way account for this additional force 
term. 

The problem of computing forces within the context of the 
PBE has been addressed inseveral ways todate. Threeapproaches 
based upon the finite difference method have been reported. 

The 'virtual work" method4 is, in a sense, the most definitive. 
Here the electrostatic energy, G, is recalculated for small 
displacements d of each atom in the x ,  y ,  and z directions. The 
force is then just -AG/d for each direction. The drawback of 
this approach, however, is that four full finite difference 
calculations are required in order to calculate the force on each 
atom in the system. 

In the DIEMOND method,s the emphasis is on computing the 
reaction field produced by the solvent. This is added to the field 
produced by the atomic charges in the absence of any solvent 
screening (which we will term the Coulombic field), to yield a 
net, solvent-screened, field at each atomic charge. Force is then 
computed as charge times field ('qE" force). The problem of 
solvent pressure is dealt with primarily by what may be termed 
the surface charge appr~ximat ion ,~  where the pressure on a 
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dielectric boundary is calculated as uE, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis surface charge 
density, and E is the electrostatic field, or some variant thereof, 
a t  the boundary. Although this approximation can be made to 
yield zero net force on the system, satisfying Newton's third law, 
it is in fact approximate and can be shown to yield incorrect 
solvation energies. For example, when this approximation is used 
to calculate the charge-solvent interaction energy of a Born ion 
as an integral of force-distance, as the ion radius is contracted 
from infinity to the ionic radius, the result is in error by a factor 
of two. 

A more recent paper describes molecular dynamics simulations 
of bovine pancreatic trypsininhibitor,in which the finitedifference 
method is used to compute the solvent reaction field a t  each 
charged atom, and the net field a t  each atom is written as the sum 
of this reaction field and the Coulombic field due to the other 
atoms.6 These calculations neglect dielectric boundary pressures. 
As a consequence, there is no guarantee that Newton's third law 
will be obeyed. Despite this approximation, the trajectories do 
appear to be remarkably well-behaved. 

Another promising approach to the incorporation of PBE 
electrostatics into molecular mechanics is based upon the use of 
the boundary element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI Because this method includes 
an explicit dielectric boundary surface, it is conceptually 
straightforward to compute boundary pressures using the Maxwell 
stress tensor. Such an approach is described by Zauhar,I2 who 
includes both qE forces and boundary pressures in an energy 
minimization of a zwitterionic tripeptide. It should be noted, 
however, that the accuracy of the boundary pressures computed 
by this technique have not yet been demonstrated. Another issue 
which must be addressed is the treatment of "reentrant surface",I3 
in cases where the dielectric boundary is defined in terms of the 
probe accessible surface. For example, the boundary pressure 
acting on reentrant surface must be transduced properly into the 
forces on actual atoms. The problems with defining the dielectric 
boundary to be the probe-accessible surface are further discussed 
below. 

The methods so far discussed all require that the PBE be solved 
repeatedly during a molecular mechanics calculation. This is a 
computationally intensive approach, and as a consequence 
simplified methods for incorporating continuum electrostatics 
into molecular simulations have been proposed. One such involves 
the use of the generalized Born equation, together with an 
empirical interaction function involving charge-charge distances 
and effective radii.I4 This method appears to be well suited for 
simulations of small molecules in solution, where the effective 
radii are not expected to vary much during the simulation. 
However, the function does not permit the calculation of 
derivatives with respect to effective radius. As a consequence, 
there is no force opposing the desolvation of charged atoms, so 
this method should probably be used with caution in macromo- 
lecular simulations where changes in solvation may be important. 
Another simplified method for incorporating continuum elec- 
trostatics into simulations, the "field energy method",ls is designed 
to yield accurate electrostatic fields a t  atoms. The electrostatic 
forces on atoms are then taken to be charge times field (qE) .  
Again, however, dielectric boundary forces are not included. 
Another method has been devised specifically for treating the 
charge-solvent interactions of individual atoms.16 However, this 
approach in effect distributes dielectric boundary forces over all 
atoms in a solute, rather than associating them solely with atoms 
which contribute to the dielectric boundary. Finally, a number 
of screening functions for charge-charge interactions have been 
developed, starting with the simple distance-dependent dielectric 
constant (e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= r);  to alternative forms where e = ar, a being a 
proportionality c o n ~ t a n t ; ~ ~ . ~ ~  to distance-dependent screening 
functions having more complicated functional forms.19-21 Al- 
though such functions may be quite successful for computing the 

interactions of groups on the surface of a protein, their ability to 
reproduce the results of the PBE is obviously limited. 

To sum up, it would appear that, aside from the laborious 
virtual work method, no numerical method of demonstrated 
accuracy currently exists for computing the electrostatic forces 
on atoms predicted by the PBE. The present work describes a 
novel method for computing these forces, using finite difference 
solutions of the PBE. The structure of the paper is as follows. 
The Methods section begins with a variational derivation of a 
complete force expression for the PBE equation. This derivation 
extends the line of reasoning used in recent variational derivations 
of the free energy expression for the PBE.22.23 When written as 
a force density, the resulting force expression contains three 
distinct terms. Although the same expression may be derived as 
a limiting case of the primitive electrolyte model24 and is also 
explicit in the theory of the electrical double layer,2s the present 
derivation is particularly straightforward. The Methods section 
next describes numerical methods for computing each of the three 
force terms. The Results section presents accuracy tests, and a 
sample calculation on a salt bridge of triose phosphate isomerase. 
Finally, the limitations and implications of this workarediscussed. 

2. Methods 

2.1. Variational Derivation of Force Expressions. This section 
presents a novel variational derivation of expressions for the 
electrostatic forces in a system governed by the Poisson-Boltzmann 
equation. The system of interest is that of a macromolecule of 
known three-dimensional structure, having a low dielectric 
constant and immersed in a high dielectric solvent containing 
dissolved ions. The parameters of this system can be described 
by the "fixed" charge density, pf = pf(r), associated with the 
atoms of the macromolecule; the permittivity, e = e&), as a 
function of position, where eo is the permittivity of vacuum, and 
e, is the relative permittivity (dielectric constant); the bulk 
concentration ci of each of N ionic species i ;  the charge of each 
ionic species, qi; and a "masking" function X = X(r) which has 
a value of 0 wherever ions cannot penetrate and a value of 1 
where they can. X(r) will thus be zero within the macromolecule 
and 1 elsewhere. If there is an ion-exclusion layer, or Stern layer, 
around the macromolecule, X(r) will be 0 there as well. In 
principle, the thickness of the Stern layer will depend upon the 
radius of the ionic species. Therefore, each ionic species i should 
have its own Xi(r). For simplicity, however, we assume here that 
a single X(r) provides an adequate description of the ion-exclusion 
volume. 

We begin with an expression which has been shown22.23 to 
represent a free energy functional for the Poisson-Boltzmann 
equation. The present form permits consideration of an asym- 
metric electrolyte, and is given in SI units: 

G(4,pr,e,W = 
N 

where 4 = $(r) is the electrostatic potential as a function of 
position, k is Boltzmann's constant, and T is the absolute 
temperature. The integral is taken over all space. The variations 
in the functions pfr e, 4, and X are related to variations in this 
functional by 

N 



Electrostatic Forces on Solvated Molecules The Journal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Physical Chemistry, Vol. 97, No. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14, 1993 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3593 

Integrating the fifth term by parts 

J"(tV4)*(V64) d V  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 

and using the divergence theorem to convert the first integral on 
the right-hand side into a vanishing surface integral a t  infinity 
allows us to rewrite the functional as 

N 

N 

( p ' +  V.(eV#) + Axqicie'q'"/kTJ64) d V  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) 
i 

For a given system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6pf = 6c = 6X = 0), we wish to find the 
function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4(r) which extremizes G. Thus 6G = 0 for any small 
arbitrary 64. This condition is met when the term in braces 
vanishes, or 

N 

( 5 )  

which is the Poisson-Boltzmann equation. Here the right-hand 
side represents the sum of the fixed charge p' of the solute, and 
the induced ('mobile") space charge in the solvent. This result 
confirms that the potential which extremizes G is also the potential 
which satisfies the Poisson-Boltzmann equation.22.23 

It is now possible to write the variation of G with the three 
spatially varying parameters p', e, and A, as 

N 

6G = Jv(#6p'- ' /,E2& - k T x [ ( e - q i @ / k T -  l)ci]6X) d V  (6) 
i 

where E is the electrostatic field strength. 
A force density f(r) is defined, such that 

-6G = J,,f(r)-s(r) d V  (7) 

where s(r) is some arbitrary infinitesimal displacement of the 
system.2h To convert eq 6 to the form of eq 7, it is necessary to 
express 6p', be, and 6X in terms of s. Because p' is a true charge 
density 

6p' = -V.(p's) (8) 

This expression, which follows from conservation of 
permits the first integral of eq 6 to be rewritten as 

JV46pfdV= -J$V*(p's) d V  

= -J,,V.(qjp's) d V +  ],,p'~.V4 d V  

= -Jp(p'E) d V  ( 9 )  

where the divergence theorem has been used to convert the integral 
of V.(4pfs) to a vanishing integral over a surface at  an infinite 
distance. E is the electrostatic field vector. 

For e and A, we write2' 

where r i s  themassdensityofthemediumasa functionofposition. 
Continuum models for electrostatic interactions in macromol- 
ecules typically assume that t and X are independent of density. 
For this reason, and in the interest of simplicity, we here neglect 

the density dependent terms in the expression for 6c and 6X. 
However, these terms can readily be included and carried through 
the following derivation, leading to their appearance in the stress 
tensor. The classical Maxwell stress tensor in fact includes the 
density-dependent term in e, which is associated with electro- 
strictive effects.Z6 

Substituting the resulting expressions for 6pf, be, and 6X into 
eq 6 and rewriting in the form of eq 7 yields 

-6G = 
N 

Jp(pfE- ' / 2 E 2 V c - k T x [ ( e - q i ~ / k T -  1)ci]VA)dV (11) 
i 

where the expression in braces is the desired force density f. 

The first term in the force density yields the usual interactions 
of fixed charges with the electrical field ('qE" force), which may 
be partitioned into the Coulomb's law fields of atomic charges 
in thedielectricconstant of the molecular interior, plus thereaction 
field due to the solvent around the molecule. The second term 
yields the forces acting at  boundaries between different dielectric 
media. The last term yields the forces acting a t  the ion-exclusion 
boundary, which delineates the region into which mobile solvent 
ions cannot penetrate. The two boundary forces will always be 
directed normal to the boundaries, because they are proportional 
to the gradients of e and A. The first two terms in this force 
density expression are included in the force density expression of 
classical e lec t r~s ta t ics .~~ The present expression differs from the 
classical force density in neglecting the density dependence of the 
dielectric constant and in including the ionic term. 

Essentially the same derivation can be used to obtain a force 
density expression in the context of the linearized Poisson- 
Boltzmann equation. The linearizing approximation is made in 
eq 1, where the Taylor series expansion for the exponential is 
used: 

(12) 

The first sum vanishes because of electroneutrality, leaving 

N 

where K is the usual Debye-Huckel parameter: 

l N  
K 2  = -xC,q? 

c k T  j 

The resulting force density is 

f = pfE - '/2E2Ve - 1/zt~2$2VA (15) 

This force density expression is readily convertible into a tensor 
form, identical to the standard Maxwell stress tensor, except for 
the fact that the diagonal elements have an additional term which 
accounts for the ionic pressure. This is consistent with the contact 
theorem of Henderson et al.28.29 

2.2. Numerical Implementation. From the above derivation, 
it can be seen that computing the electrostatic forces in a system 
governed by the PBE actually requires solving for three different 
terms: the pfE term, which corresponds to the qE term discussed 
in the Introduction; the dielectric pressure term -'/2E2Vc; and 
the ionic pressure term, -kny[(e-qt+lkr - l)c,]VX. In a 
molecular system, we will usually be interested in computing the 
electrostatic force acting on each atom. For an atom which does 
not form part of a dielectric or ionic boundary, the force will be 
given by just the qE term. However, any atom which forms part 
of a boundary will feel additional boundary pressures, which must 



3594 The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJournal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Physical Chemistry, Vol. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA97, No. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1993 Gilson et al. 

be summed with the qE term to give the net force zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the atom. 
The three sections which follow describe how each of the three 
force contributions may be computed from a finite difference 
solution to the Poisson-Boltzmann equation. 

2.2.1. Forces on Free Charges. The qE forces are calculated 
as follows.J,h A finite difference calculation of the full system is 
performed, yielding a potential distribution 4’. A second 
calculation is then performed with the solvent region now set to 
the dielectricconstant of the solute and zero ionic strength, yielding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
411. Thelatter isan approximation to the Coulomb’s law potential, 
but it may contain significant errors for charges which are close 
together, due to the discrete nature of the finite difference grid. 
However, as discussed p r e v i o ~ s l y ~ . ~  and again demonstrated below, 
numerical experiments show that 41 - 4” can be an accurate 
representation of the reaction potential generated by the solvent, 
and the gradient of this reaction potential can be an accurate 
reaction field. 

When implemented in this fashion, the method requires that 
two finite difference calculations be performed. In fact, the second 
calculation is not needed. Consider the potential a t  some atomic 
charge. The finite difference grid yields accurate Coulomb’s law 
potentials for atomic charges which are more than perhaps 10 
grid units apart. The contribution of closer charges to the grid 
field may be computed rapidly using the appropriate Green’s 
function for the finite difference grid with a uniform permittivity 
equal to that of the solute interior.3o This may be subtracted 
from and the correct Coulomb’s law field added back in its 
place. This procedure can yield accurate qE forces without the 
need to perform a second finite difference grid calculation. 

2.2.2. Dielectric Boundary Forces. Computing the dielectric 
boundary forces accurately presents a considerable numerical 
challenge. In principle, boundary forces may be computed in 
terms of either the force density formulation given above or 
alternatively in terms of the tensor formulation given in Appendix 
A. The latter involves the evaluation of surface integrals. As a 
consequence, it is probably the best formulation to use when the 
boundary element method is used to solve the PBE. On the other 
hand, because the finite difference method yields particularly 
inaccurate electrostatic fields a t  the dielectric boundary, it is not 
well suited to a straightforward application of the tensor method. 
What does appear to be feasible is to place surfaces of integration 
approximately one grid spacing within and without the boundary 
and to apply the tensor formulation on these surfaces.” Work 
on this method is in progress. However, in the present paper, a 
force density method is described. As shown below, this 
formulation is particularly well suited to the finite difference 
method. 

Equation 6 shows that the change in electrostatic energy with 
a variation in t is 

If 6c is the consequence of a small movement Ax of an atom along 
the x axis, say, then the x component of the dielectric boundary 
force on this atom will be -AG/Ax. The other force components 
can be written similarly. 

To implement this basic idea numerically, it is necessary to use 
theappropriategrid definitions of E and t. Because the dielectric 
pressure term comes from the second term of the energy density 
expression (eq I ) ,  the appropriate discretization of the dielectric 
boundary pressure term must be based upon the discretization 
of this component of the energy density, which is 

where h is the grid spacing in angstroms; t ,J iJ ,k) ,  t ) . ( iJ ,k) ,  and 

t Z ( i j , k )  are the permittivities associated with the x - ,  y-, and 
z-directions grid branches originating at  grid point (i , j ,k);  and 
d(i , j ,k)  is the potential a t  grid point ( iJ,k) .  Therefore, the x 
component of the dielectric boundary force on an atom will be 

at,.( i J ,k )  

ax 
( 4 ( i J + l , k )  - N j , k ) ) 2  + 

atZ( iJ,k) 

ax 
($(iJ,k+ 1) - W J , ~ ) ) ’  (1 8 )  1 

where the partial derivatives are taken with respect to atomic 
coordinates. Similar expressions will apply for they- and z-force 
components. 

When dielectric boundary smoothing is used3* and when the 
dielectric boundary is defined as the van der Waals surface of the 
solute, the only grid branches whose permittivities will be affected 
by infinitesimal atomic motions are the “fractional” grid branches, 
which are only partially covered by atoms, and therefore form 
the dielectric boundary. In the current implementation of the 
smoothing algorithm, the permittivity of a grid branch is given 

by 

(19) 
‘ i t s  

t =  
(t, + min( 1 ,a,+a,)(t, - t i ) )  

whereeland e,are thesoluteand solvent permittivities, respectively; 
a, is the largest fraction of the grid branch internal to any atom 
whose surface intersects the grid branch once from the negative 
direction; a,, is the largest fraction of the grid branch internal to 
any atom whose surface intersects the grid branch once from the 
positive direction; and the min function limits the internal fraction 
of the grid branch to a maximum of 1. The permittivity of a grid 
branch which is intersected twice by the surface of a single atom 
is set to t,. This permits the use of a fast algorithm and also 
avoids the occurrence of a singularity in the force calculations-see 
below. Note that a maximum of two atoms (the ones associated 
with a, and a,,) are involved in determining the permittivity of 
a fractional branch. 

The contribution of an x-directed fractional grid branch to the 
force on an atom which sets a,, (Le., which intersects the branch 
from the negative direction) will be 

(20) 

Substitution of a,, for a, yields the result for an atom which sets 

a,,. It can be shown that 

where Ax, Ay, and Az are the x, y ,  and z distances between the 
atomiccenter and point where theatom intersects thegrid branch. 
(The actual algorithm is simplified by approximating these as 
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distances to the grid branch center.) Equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 becomes 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc isi the vector pointing from the grid branch center to the 
atom center. 

Examination of the previous equation reveals that an infinite 
force will occur if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0. In practice, however, this does not 
arise. This is because, as noted above, we measure Ax from the 
center of the grid branch, rather than from the intersection point. 
Therefore, any atom which intersects the branch with Ax = 0, 
will intersect the branch twice. In this case, c is set directly to 
e,, and the branch will not be a force-generating, fractional grid 
branch. 

A related approach is used in computing atomic forces when 
the probe-accessible boundary definition’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 is used. The procedure 
is based upon the method of generating the probe-accessible 
dielectric map, which has been described previously.33 Briefly, 
however, all grid branches are initially set to e,. Then the radius 
of each atom is enlarged by the radius of the probe sphere, and 
all grid branches whose centers lie within an enlarged atom have 
their permittivity set to e,. Next, a set of points on the Lee and 
Richardsj4 surface is generated. These points represent possible 
locations of the center of a probe molecule and lie one probe 
radius off the atomic van der Waals surfaces. Finally, a 
hypothetical probe sphere is placed at  each of these surface points, 
and the contents of each sphere is set back to c,. Dielectric 
boundary smoothing is incorporated into the last step: any grid 
branch intersected by the surface of a probe sphere is assigned 
a permittivity intermediate between e, and e,, using the formula 
given above, except that e, and es are interchanged. Thus, the 
larger the fraction of a grid branch covered by one or two probe 
spheres, the closer to e, will be the branch’s permittivity. Note 
that a grid branch which is set to a fractional permittivity by one 
probe sphere may turn out to fall completely inside another. In 
this case, its permittivity is set to that of the solvent, and it is not 
treated as a force-generating fractional branch. 

The key to the treatment of forces on probe-accessible surfaces 
is to calculate the force on each of the hypothetical probe spheres, 
using the same formulas as given above for forces on van der 
Waals atom spheres. We find that the total boundary force in 
the system is given quite accurately by the net boundary force 
on all the probe spheres. The next step is to convert from forces 
on hypothetical probe spheres to forces on atoms. 

In principle, the force on a probe sphere will be applied tn all 
the atoms which it contacts. The simplest case, then, is that of 
a probe sphere which contacts only one atom (a “contact” probe 
sphere). Here the force is transmitted simply along the line of 
centers of the atom and probe sphere, which will be very similar 
to Ihe atom’s surface normal. Therefore, it is appropriate simply 
to add the force contributions of such probe spheres to the net 
boundary forces on the atoms which they contact. 

The case of “reentrant” probe spheres-those probe spheres 
which contact two atoms simultaneously and which therefore are 
associated with toroidal reentrant surface-is treated as follows. 
The first problem is to identify such spheres. The probe sphere 
points on the Lee and Richards surface are established by 
generating a set of hundreds or thousands of points on a sphere 
around each atom zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ,  having the radius of the atom i plus that of 
the probe sphere. Any such point which is closer than atom 
radius (r,) p F s  probe radius to another atom j is deleted from 
the list, leaving a list of accepted probe sphere locations. Each 
of these remaining points still “belongs”, in a sense, to the atom 
i .  A reentrant probe sphere may be distinguished from a contact 
probe sphere by the fact that it contributes to a surface region 
further than r, from the center of atom i. In practice, any probe 
sphere which creates one or more fractional grid branches whose 
centers are greater than r ,  + 1.1 h/2 from the center of atom i 
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Figure 1. Distribution of the force on a reentrant probe sphere between 
the two atoms it contacts. Two atomic van der Waals spheres (shaded) 
are shown, together with a reentrant probesphere. Vectorsdesignate the 
dielectric boundary force, F, on the probe sphere, and the unit vectors, 
F, and Q,, pointing from the probe to the two atoms, i and j .  

is determined to be a reentrant sphere. (Adding h/2 accounts 
for the fact that a grid branch can be fractional if a probe sphere 
intersects it anywhere along its length. The factor of 1.1 is a 
somewhat arbitrary selected adjustment for the fact that a contact 
probe sphere may actually create a fractional grid branch slightly 
greater than r ,  + h/2 from the center of its atom i, because of 
the finite number of probe locations.) Recalling that a reentrant 
probe sphere actually contacts two atoms, it is necessary to identify 
these two atoms so that the force on this probe sphere can be 
appropriately distributed between them. One of the atoms is 
that to which the probe sphere “belongs”, atom i .  We take the 
other atom to be that surface atom j which is closest to the probe 
sphere (after subtracting the radius of a tomj) .  The search for 
such atoms is made rapid by means of a neighbor list. 

Although the dielectric boundary pressure on a patch of 
reentrant surface must be normal to the surface and therefore 
may initially appear not to affect the atoms which are associated 
with it, in fact pressure on reentrant surface tends to separate the 
atoms. This is because increasing the separation of the atoms 
allows the reentrant surface to move inward. Therefore, pressure 
on the reentrant surface drives the atoms apart. One way of 
relating force on reentrant surface to atom forces is illustrated 
in Figure 1. The total force F on each reentrant probe sphere 
is computed, and distributed between the two atoms i and j in 
such a way that the force on each atom, f, and f, is directed along 
the line joining the probe sphere and atom sphere centers, with 
the requirement that F = f, + f,. Thus 

Vi.F - (Vj*F)(Vi*Vj) 

1 - V i 4 ,  
fj = Vi 

f j  = Vj(0,*F - fj(VfVj)) 

where Vi and Vj are unit vectors pointing from the probe sphere 
toward atoms i and j ,  respectively. 

In this way, each probe sphere which determines either a, or 
a,, for a fractional grid branch contributes to atomic forces, either 
by simple summation if the sphere contacts only one atom, or by 
eq 24 if it is associated with reentrant surface. It is possible for 
a probe sphere to contact three or even more atoms a t  a time. The 
present algorithm does not address this level of complexity. 
However, it seems likely that treating such cases approximately, 
as described here, will not substantially alter the results. This 
issue is examined in a t  least a preliminary way, in the Results 
section. 

2.2.3. Ionic Boundary Forces. The ionic boundary forces are 
considerably easier to calculate than are the dielectric boundary 
forces. From eq 11, the ionic boundary force equals a constant 
times VX. Since X is a unit step function a t  the ionic boundary, 
its gradient is a delta function along the surface normal. 
Therefore, an integral of the ionic force density term of eq 11 
from inside to outside the boundary, along the normal, yields a 
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TABLE I: Analytic versus Numerical Forces (kcal/(mol A))  versus Distance (A)  for a 0.5 Proton Point-Charge in the Vicinity of 
a 1.5-A Neutral Cavity. 

case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA case B case C case D 

dist (A) analyt QEF DBF QEF DBF QEF DBF QEF DBF 

3.0 0.03 0.03 -0.00 0.03 -0.01 0.03 -0.02 0.03 0.00 
2.8 0.04 0.05 -0.00 0.05 -0.02 0.04 -0.03 0.04 0.00 
2.6 0.06 0.08 -0.0 1 0.08 -0.03 0.07 -0.06 0.07 -0.01 

2.4 0.12 0.14 -0.02 0.16 -0.04 0.13 -0.10 0.13 -0.02 

2.0 0.56 0.67 -0.06 1.15 -0.16 0.66 -0.33 0.72 -0.15 
2.2 0.23 0.29 -0.04 0.36 -0.08 0.27 -0.17 0.27 -0.05 

1.8 1.94 1.96 -0.12 4.70 -0.41 2.44 -0.62 2.87 -0.67 
1.6 22.24 2.10 -0.22 284.20 -165.44 14.77 -1.67 80.56 -1 29.62 
1.4 2024.30 323.12 -292.64 392.35 - I  848.41 337.50 -383.74 448.10 -1899.10 
1.2 222.79 190.79 -225.22 292.46 -252.10 224.08 -244.43 198.44 -209.42 
I .o 78.05 82.95 -79.76 84.84 -8 1.37 76.92 -77.99 77.58 -77.05 

0.6 20.5 1 20.83 -20.67 20.74 -20.8 I 20.51 -20.28 20.54 -20.54 
0.8 37.67 37.78 -38.1 1 38.77 -38.45 37.62 -37.57 37.54 -37.44 

0.4 11.19 11.29 -1 1.25 1 1.26 - I  1.34 11.20 -1 1.03 11.20 -1 1.20 
0.2 5.00 5.03 -5.02 5.04 -5.07 5 .OO -4.92 5.00 -4.99 

0 Second column: analytic result. Cases A, B, C ,  and D: direct force calculations for four different orientations and positions on the finite difference 
grid (see text). QEF: charge-reaction field force on the point charge. DBF: dielectric boundary force. 

boundary force per unit area of 

N 

dF/dA = -AkTx[(e-4t”’’T - l)ci] (24) 
I 

where A is the outward surface normal. What makes the 
calculation easy numerically is that neither the electrostatic 
potential nor the field are discontinuous at  the ionic boundary, 
unless this boundary happens to coincide with the dielectric 
boundary. Therefore, as long as a Stern layer whose thickness 
is one or more grid spacings is used, the ionic boundary will be 
sufficiently far from the dielectric boundary that the ion-boundary 
potentials will be accurate. As a consequence, the ionic pressure, 
which depends directly upon potential, will be accurate. 

In practice, these forces are readily calculated by spreading an 
even distribution of surface points over the ionic boundary, and 
computing the ionic force at  each point. Since the ionic boundary 
is customarily treated as the locus of points accessible to the 
center of an ion-sized probe sphere, each surface point is clearly 
associated with a solute atom, and the ionic force on each atom 
is obtained by summing the force associated with each of its 
surface points. 

2.3. Accuracy Tests. The Results section presents a series of 
accuracy tests for the methods just described. The parameters 
and software used in these computations are as follows. Except 
as otherwise specified, all finite difference Poisson-Boltzmann 
(FDPB) calculations use a 58 X 58  X 58 grid with grid spacing 
0.2 1 A, internal dielectric constant 1, external dielectric constant 
80, and ionic strength 0. Probe-accessible dielectric maps are 
calculated using a probe of radius 1.4 A and approximately 4000 
initial probe sphere locations per atom (see above). Grid boundary 
potentials are set using Coulomb’s law for all fixed charges in the 
system, with the solvent dielectric constant, and Debye-Huckel 
ionic screening if the ionic strength is not zero. Although the 
methodsdescribed here are in principle valid for both the linearized 
and the nonlinear PBE, the present calculations are limited to the 
linearized case. The calculations are performed with a modified 
version of the program UHBD.35 

The calculation on triose phosphate isomerase is based upon 
the Protein Data Bank3(’ file 1TIM.3’ Polar hydrogens are placed 
using the program CHARMM38 without altering thecoordinates 
of non-hydrogen atoms. The atomic charges are thoseof 0 P L S 9  
and the radii those of MIDASJO 

3. Results 

3.1. Accuracy of Numerical Methods. 3.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. I .  Analyric Test 
of QE and Dielectric Boundary Forces. The first test case is one 
for which an analytic expression is available. A point charge of 

+ O S  proton charges is moved from the solvent into a 1.5-A 
spherical low dielectriccavity in 0.2-A steps, starting at  a distance 
of 3.0 A from the center of the cavity. The ionic strength is zero. 
To assess the stability of the results as the system is moved about 
the dielectric grid, four separate runs are performed. In the first 
two, the line joining the cavity and the charge lies on the x axis, 
while in the second two, it lies along the ( l , l , l )  vector from the 
center of the neutral sphere. In the first and third, the center of 
the grid coincides with the center of the neutral cavity, and in the 
second and fourth the grid center is offset from the cavity center 
by 0.1 A (zone-half grid branch) along each axis. These 
calculations use thevan der Waals surfacedefinition, as described 
in Methods. Table Icompares both theqEanddielectricboundary 
force results of these four calculations with the analytic results. 
The forces presented are the components along the axes joining 
the charge and the origin; other force components are negligible. 
Note that the forces on the cavity and the point charge should 
be equal and opposite, and equal in magnitude to the analytic 
force on the charge. 

Recalling that the dielectric boundary is a t  1.5 8, and that the 
grid spacing is 0.21 A, the qE forces are quite accurate when the 
charge is greater than 3-4 grid spacings away from the boundary. 
The dielectric boundary forces are not particularly accurate when 
the charge is outside the cavity. However, the results are 
remarkably accurate when the charge is inside the cavity. In 
fact, the boundary forces agree with the analytic result somewhat 
better than do the qE forces, especially a t  the 1.0-A distance. 
Although one might wish for better results for thecase where the 
charge is outside the sphere, the inaccuracy need not be 
particularly problematic because the forces are weak in any case. 
By the same token, the accuracy of the forces for the internal 
charge is encouraging, because these forces are quite strong. It 
should also be noted that in most practical calculations, every 
point charge will be at  least 1.0 A away from any dielectric 
boundary, because point charges are placed at  atom centers. 

3.1.2. Analytic Test of QE and Ionic Boundary Forces. 
Analytic expressions are also available for electrostatic potentials 
in the case of a point charge inside a spherical ion-excluding 
region surrounded by an electrolyte described by the linearized 
PBE,4’ when the internal and external dielectric constants are 
equal. Forces for this case may therefore beobtained by numerical 
differentiation. Table I1 presents comparisons of such ‘semi- 
analytic” forces with ionic boundary forces computed as described 
in Methods. The charge is located 0-1.3 A from the center of 
a 2.5-A radius ion-excluding sphere in a 150 mM electrolyte a t  
300 K. Calculations are performed for the same four positions 
and orientations relative to the finite difference grid described in 
the previous section. Note that in  this two atom system, the 
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TABLE II: 'Semianal tic" versus Numerical Forces (kcal/(mol A)) as a Function of Distance A for a 0.5 Proton Point Charge 
in the Vicinity of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.5-i ton-Exclusion Sphere 
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case A case B case C case D 

dist (A) analyt QEF IBF QEF IBF QEF IBF QEF IBF 

1.3 0.248 0.250 -0.247 0.253 -0.249 0.25 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 -0.246 0.249 -0.247 
1.2 0.223 0.225 -0.222 0.227 -0.224 0.226 -0.221 0.224 -0.222 
1.1 0.200 0.202 -0.199 0.203 -0.200 0.202 -0.198 0.201 -0.198 
1 .o 0.178 0.180 -0.177 0.181 -0.178 0.180 -0.176 0.179 -0.177 
0.9 0.157 0.159 -0.157 0.160 -0. I57 0.160 -0. I56 0.158 -0.156 
0.8 0.138 0.140 -0.137 0.140 -0.138 0.140 -0.136 0.138 -0.137 
0.7 0.1 19 0.121 -0.1 I8 0.120 -0.119 0.121 -0.118 0.1 I9 -0.118 
0.6 0.101 0.102 -0.100 0.102 -0.101 0.102 -0.100 0.101 -0.100 
0.5 0.083 0.084 -0.083 0.084 -0.083 0.085 -0.082 0.083 4.082 
0.4 0.066 0.067 -0.066 0.066 -0.066 0.067 -0,065 0.066 -0.065 
0.3 0.049 0.050 -0.049 0.049 -0.049 0.050 -0.040 0.049 -0,049 
0.2 0.033 0.033 -0.033 0.032 -0.033 0.033 -0.032 0.032 -0.032 
0.1 0.016 0.017 -0.016 0.016 -0.016 0.017 -0.016 0.015 -0.016 
0.0 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 0.002 0.000 

" IBF: ionic boundary force. See Table I caption for definitions of other terms. All forces in this table have been multiplied by 100. 

boundary force should be equal and opposite to the qE force on 
the point charge. Both the numerical qE forces and the ionic 
boundary forces agree extremely well with the analytic results 
for all four orientations. Note also that the values in the table 
are very small, despite the fact that they have been multiplied by 
100, for presentation. 

Although analytic expressions for ionic forces are not available 
for the case where a dielectric boundary is also present, it is of 
interest to examine the stability of the results in such a case. 
When the above calculations were repeated with a low dielectric 
cavity of radius 1.5 A concentric with the ion-exclusion cavity, 
the results for the four positions and orientations on a finite 
difference grid agreed with each other extremely well. The largest 
percentage difference between any two of these calculations is 
4%. This suggests that the numerical instability a t  the dielectric 
boundary does not substantially affect the potentials computed 
at  the Stern layer boundary 1 A away. 

Another notable result of these calculations is that the ionic 
boundary forces are essentially negligible in comparison with the 
dielectric boundary forces, especially given the numerical un- 
certainty associated with the latter. Therefore, in many appli- 
cations it should be possible to neglect the contributions of ionic 
boundary forces. 

3.1.3. Two Cavities: Comparison with Virtual Work Forces 
and Analytic Transfer Energies. The first case examined is that 
of the complete burial of a small charged atom in a somewhat 
larger neutral atom. The charged atom bears 0.5 proton charges 
and is surrounded by a low dielectric cavity of 1-A radius. The 
neutral atom is a low dielectric cavity of radius 1.5 A, located 
at  the origin. The charged atom is initially placed 5.0 A away 
from the origin, and is moved to the origin in steps of 0.2 A. The 
overall work of the process may be estimated as cf l .2F, ,  where 
i indexes the step, and Fi is the atomic force along the axis joining 
the two atoms. The force on the neutral atom is simply the 
dielectric cavity force acting on it. The force on the charged 
atom is the sum of its qE force and its dielectric boundary force. 
The analytic transfer energy is the difference between the solvation 
energy of a Born ion of radius 1 .O A and a Born ion of radius 1.5 
A, both having 0.5 proton charges. The analytic result is 13.7 
kcal/mol. 

Calculations were performed for the same four positions and 
orientations with respect to the finite difference grid as in the 
previous tests. When the transfer works were calculated for the 
four different runs, the results range between 1 1.9 and 12.9 kcal/ 
mol, in good agreement with the analytic result. The force balance 
in these calculations is excellent; that is, as required by Newton's 
third law of motion, the net force on the system is consistently 
small. The largest net force found in any of the calculations 
described in the previous paragraph is 0.71 kcal/(mol A), and 
the average net force is closer to 0.3 kcal/(mol A). 
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Figure 2. Graphs of force (kcal/(mol A)) versus distance (A) for a 1 .O-A 
dielectric cavity of charge 0.5 protons in the vicinity of a 1.5-A cavity. 
Dots: virtual work forces. Solid lines: direct force calculations, for four 
different locations and orientations relative to the finite difference grid. 

These calculations are further validated by comparison with 
"virtual work" forces computed for the neutral cavity. For each 
relative positionof thetwoatoms, theneutralcavity wasdisplaced 
by +0.02 and -0.02 A along the axis joining the atoms, and an 
FDPB calculation was performed for each of the two positions, 
yielding an energy difference AG. The force on the cavity is then 
computed as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF = -AG/0.04 kcal/(mol A). Figure 2 plots force 
versus distance between the two atoms as computed by this virtual 
work technique. The forces computed by the four runs described 
in this section are plotted as well, to permit comparison. (The 
plotted forces are actually the dot product of the computed force 
on the neutral cavity with the unit vector along the lineconnecting 
the two atoms.) The agreement is excellent for the most part, 
and the discrepancies a t  2.6 and near 1.4 A appear to result from 
numerical errors in the virtual work calculations, rather than in 
the rapid force calculations. Significant discrepancies are seem 
at  about 0.5 A, but this distance is very small compared to an 
actual bond length, and therefore the errors in this range should 
not arise in calculations on actual molecules. These results 
demonstrate that the forces along the axis joining the two atoms 
are accurate. It should also be noted that the force components 
off this axis are generally small. The largest off-axis force 
component found was 0.92 kcal/(mol A), for the case of a net 
forceof 4.6 kcal/(mol A). the off-axis forcesaremorecommonly 
on the order of 0.2 kcal/(mol A). 

3.1.4. Three Cavity Transfer Energy. The method used here 
for converting boundary forces into atomic forces is not rigorous 
for those surface regions which are defined by a probe contacting 
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TABLE 111: Atomic Forces (kcal/(mol A))  Due to Solvent on the Atoms of a Salt Bridge in Triose Phosphate Isomerase. 
Columns Present the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx-, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy-, and z-Force Components and the Force Magnitudes 
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(a) Results of Virtual Work Calculations 

atom F, F, F: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI FI 
Asp C,j 0.50 0.51 -0.50 0.87 

3.00 -0.01 4.99 5.83 

Asp Oni - I  2.99 -2.50 -2.99 13.56 

Asp Oiz -9.01 -1 1 .oo -3.00 14.53 
Asp net -1 8.50 -13.00 -1.50 22.66 

LYS c, -1.49 2.49 1 .oo 3.07 
-4.49 -5.51 -2.00 7.38 

LYS Hri 7.51 1.01 0.0 1 7.58 

LYS Hi! 10.50 6.49 1.99 12.50 
Lys net 19.04 12.99 2.50 23.18 

system net 0.54 -0.0 I 1 .oo 1.14 

(bl Results of Direct Force Calculation Method, for Two Locations (Cases A and B) on the Finite Difference Grid 

ASP c, 

LYS Nf 

LYS Hn 7.01 8.51 1.50 11.12 

~~~~ ~ ~ 

case A case B 

atom F, Fi F: I FI F, Fl F, IF1 

0.52 0.63 -0.27 
2.68 

-1 2.99 
-9.40 

-19.19 

-0.34 
-4.37 

7.36 
6.66 
9.97 

19.28 

0.09 

0.04 
-2.50 

-1 1.91 
-13.74 

1.79 
-5.33 

1.62 
8.34 
7.19 

13.61 

-0.13 

3.65 
-3.44 
-3.1 1 
-3.17 

1.81 

0.62 
0.87 
2.34 
3.24 

0.07 

-2.40 

three or moreatoms at  the same time (see Methods). The present 
section describes a three-atom-transfer process involving such 
surface regions. A neutral 1.5-A cavity is located at  the origin, 
and a neutral 2.0-A cavity is initially positioned at  (0,-1.5,O). A 
1 .O-A cavity having charge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.5 protons begins a t  (5,0,0) and is 
moved to (O,O,O) in 0.2-A steps. Then the 2-A sphere is moved 
to (O,O,O) in 0.2-A steps. The net result is that the charge is 
transferred from a 1.0-8, to a 2.0-A cavity. The analytic energy 
difference is 20.5 kcal/mol. When the transfer work is obtained 
by forcedistance for the translated cavities, using the methods 
described in this paper, the result is 19.0 kcal/mol. The excellent 
agreement implies that the treatment of the convex surface shared 
by the three atoms at  a certain stage of the process is reasonably 
accurate. 

3.2. Protein Salt Bridge: Force Analysis and Comparison with 
Virtual Work Forces. The final test case is that of the salt bridge 
between Lys 158 and Asp 155 of chicken triose phosphate 
isomerase. The distance between the Asp C, and the Lys N, is 
3.5 A. To generate a small test system, the four side chain atoms 
of the Asp (net charge -1 proton), and the four Lys side chain 
atoms including and distal to C, (net charge +1  proton), were 
excised from the remainder of the protein and treated artificially 
as a nine-atom solute, immersed in water. Every.atom in this 
system carries charge, and all but one have exposed probe 
accessible surface. Force calculations with the grid center a t  
(38.4,25.3,-13.84),and (38.5,25.4,-13.83), (casesA and B) were 
performed to test the stability of the results with respect to grid 
position. (See Methods for further details.) 

As described in Methods, the qE force on each atom can be 
separated into the sum of a reaction field force, due to the solvent, 
and the grid’s version of the Coulomb’s law force. To eliminate 
any inaccuracy which might result from the latter, the grid 
Coulombic forces were computed separately and subtracted from 
those of the FDPB runs. The resulting qE forces are those due 
to the solvent reaction field alone. Because the dielectric boundary 
forces are also due solely to the presence of solvent, the resulting 

0.86 0.55 0.60 -0.3 1 0.88 
4.53 2.54 -0.06 3.62 4.42 

13.67 -1 2.78 -2.66 -3.45 13.50 
15.49 -9.4 1 -1 1.79 -3.10 15.40 
23.81 -19.10 -13.91 -3.24 23.85 

2.57 -0.38 1.91 1.79 2.64 
7.30 -4.37 -5.34 -2.40 7.31 
7.57 7.34 1.74 0.56 7.57 

10.71 6.72 8.40 0.99 10.81 
12.51 9.98 7.26 2.30 12.55 
23.82 19.29 13.97 3.24 24.04 

0.17 0.19 0.06 0.00 0.20 

force on each atom, computed in this way, is just that exerted by 
the solvent. There is no atom-atom Coulomb force. 

For comparison, virtual work force calculations were performed. 
Each atom in turn was translated by +0.01 and then -0.01 A in 
the x- ,  they-, and the z-directions. The FDPB energy, G, was 
calculated for each translation. Then additional “reference” 
energies were computed with the entire grid set to the dielectric 
constant of the molecular interior. These reference energies were 
subtracted from the initial energies to yield charge-solvent 
interaction energies, Gso,. The force exerted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby rhe soluent on 
each atom is calculated as -AGs0,/0.02, where the AGs,,, values 
aredifferences for +0.01- and -0.01-A translations of each atom. 
These virtual work solvent forces are directly comparable with 
the solvent forces computed as the sum of qE and dielectric 
boundary forces, as described in the previous paragraph. 

Table 111 present the results of the virtual work calculations, 
and of the two direct force calculations. The agreement among 
the tables is excellent. The largest discrepancy is for Lys C,, 
where the virtual work F, differs from both rapid force results 
by about 1.1 kcal/(mol A). Because the virtual work method is 
not exact, it is not certain which method is in error here. The 
net force on the system, which should be zero, is very small for 
both direct force calculations. The magnitudes of the net forces 
are 0.20 and 0.17 kcal/(mol A). 

Because this is a realistic test case, it is of interest to examine 
the salt bridge forces more closely. From Table IIIb, the net 
solvent force on the Asp is (-19.2,-13.7,-3.2) (in units of kcal/ 
(mol A)), and the net solvent force on the Lys is equal and opposite. 
(This force balance is required by the need for the net force to 
be zero, together with the fact that the only additional force 
term, the Coulombic term, also nets to zero.) The net solvent 
force tends to separate the two side chains. However, when 
analytic Coulomb’s law forces are added back, the total force on 
the Asp is (5.2,4.9,-0.2), and again the Lys force is equal and 
opposite. This total electrostatic forceacts to push the twogroups 
together, as expected for a salt bridge. When dielectric boundary 
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forces are neglected, the only remaining atomic forces are the qE 
forces, which are the sum of the Coulomb’s law and reaction field 
forces. This net qE force on the Asp is (8.9’8.2,-3.8), while the 
net qE force on the Lys is (-8.4,-1.8,3.3). Thus, the net qE force 
is (0.5,6.4,46). This is clearly not equal to zero. As noted in 
the Introduction, there is no guarantee that the net qE force will 
equal zero in a system described by the PBE. Force balance will 
be obtained in general only if the dielectric boundary forces are 
included. 

4. Discussion 

As derived in the Methods section, the electrostatic forces in 
a system governed by the PBE may be separated into three 
components: qE forces, resulting from the action of the electric 
field on ‘fixed” charges; dielectric boundary forces, which always 
act as a pressure on dielectric boundaries, directed into the lower 
dielectric region; and ionic boundary forces, which also represent 
a pure pressure. The qE forces, in turn, may be expressed as the 
sum of Coulombic forces and reaction field forces. The net effect 
of solvent, then is the sum of reaction field forces, dielectric 
boundary forces, and ionic forces. However, the ionic forces 
should be negligibly small in most calculations in which dielectric 
boundaries are present. 

In contrast, the dielectric boundary forces are far from 
negligible. There is no reason to expect that calculated forces on 
atoms which form part of a dielectric boundary will be accurate 
if this force contribution is neglected. In fact, neglecting boundary 
forces will lead to a nonzero net force on the system, as described 
above. 

The fact that Coulombic forces may be separated from reaction 
field forces has already been exploited in a molecular dynamics 
simulation using the FDPB method.6 Coulombic forces were 
updated as usual in this simulation, but the reaction field force 
was recalculated only every N steps of the simulation. It should 
be clear that the same procedure can be used for the dielectric 
boundary forces. Thus, a molecular dynamics simulation may 
update Coulombic forces as usual, while the net solvent force on 
each atom-the sum of the reaction field force and the dielectric 
boundary force-may be recalculated only every N steps. As 
previously noted: such a procedure is physically justified by the 
fact that the dielectric relaxation time of water is much greater 
than the standard molecular dynamics time step. The incorpo- 
ration of an FDPB calculation in a molecular simulation also 
raises the possibility that long-range Coulombic interactions may 
be includedvia the grid solution, without the need for a Coulombic 
interaction cutoff. Such an approach would resemble the particle- 
particle and particle-mesh method for treating ionic 

The computer time for the calculations presented here is 
dominated by the process of generating the dielectric maps and 
then solving the PBE on the finite difference grid. The force 
calculations themselves are quite rapid. For example, setting up 
and executing the FDPB calculation for the 9-atom triose 
phosphate isomerase salt bridge calculation here requires about 
30 CPU seconds on a CRAY YMP, but the force calculations 
require less than 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs. Much of the 30 s is spent in generating an 
accurate dielectric map, because many probe spheres are required. 
Optimization of this segment of code should yield significant 
acceleration. 

One potentially significant limitation of the present method 
has to do with the probe-accessible surface definition. Consider 
the case of a large molecule containing a cavity just large enough 
to accommodate a single solvent probe. Such a cavity will be set 
to the dielectric constant of the solvent in the standard imple- 
mentation of the PBE method. In this special case, it is possible 
that theentirecavity will beobliterated by an infinitesmal atomic 
displacement. Because changing the cavity permittivity suddenly 
from ts to c, produces a discontinuous energy change, the force 
on atoms bounding the cavity is infinite. This may not be entirely 

nonphysical, given that measurements of forces between two mica 
plates separated by a thin layer of water show sharp forcevariations 
on the size scale of a water m~lecule .~)  On the other hand, some 
practical method of dealing with such cases is needed. In the 
present method, no sharp force increase will be observed in such 
a case, because the method is capable of treating only small 
distortions in an existing boundary; not the sudden appearance 
or disappearance of an entire boundary surface. The boundary 
element technique will perform similarly. It should be possible 
to devise algorithms which will tie atomic movements to dielectric 
constant changes in such cavities and therefore provide reasonable 
forces. For now, however, it would seem that caution should be 
used in treating systems containing many atoms, where this 
problem may arise. Note that this problem is not limited to the 
calculation of electrostatic forces: any energy term which depends 
upon the probe-accessible surface will have discontinuous de- 
rivatives with respect to atomic positions. Ultimately, the best 
solution may be to use a different definition of the surface. 

Another limitation of the method is that it yields relatively 
inaccurate dielectric boundary forces for cavities which contain 
no charges (see section 3.1.1). This appears to be related to the 
fact that in such cases, the electrostatic field a t  the boundary 
tends to run tangent to the boundary. In contrast, the field 
produced by an internal charge will be nearly perpendicular to 
the boundary. Improved methods for treating such cases are 
under development. For now, however, given that the dielectric 
boundary forces produced by internal charges are much stronger 
than those produced by external charges, the method should work 
well in most molecular simulations. It should be used cautiously, 
however, in computing the effects of external fields on molecules 
in solution. 

In conclusion, the methods presented here should make it 
possible to begin incorporating the predictions of the PBE 
rigorously into molecular mechanics simulations. For now, the 
limits of computational time and the problem of cavities in the 
probe-accessible surface are likely to limit the range of appli- 
cability to systems containing a modest number of atoms. It will 
be of interest to examine the predictions of this approach for the 
conformational preferences of hydrated molecules. This method 
should also be of help in predicting reaction coordinates for small 
solvated systems. Such studies are now under way. With further 
development of the algorithms, it should be possible to use these 
methods to study larger, biomolecular systems, such as proteins, 
nucleic acids, and lipid bilayers. 
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