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Computation of Faber Series With Application
to Numerical Polynomial Approximation

in the Complex Plane
By S. W. Ellacott*

Abstract. Kövari and Pommerenke [19], and Elliott [8], have shown that the truncated Faber
series gives a polynomial approximation which (for practical values of the degree of the
polynomial) is very close to the best approximation. In this paper we discuss efficient Fast
Fourier Transform (FFT) and recursive methods for the computation of Faber polynomials,
and point out that the FFT method described by Geddes [13], for computing Chebyshev
coefficients can be generalized to compute Faber coefficients.

We also give a corrected bound for the norm of the Faber projection (that given in Elliott
[8], being unfortunately slightly in error) and very briefly discuss a possible extension of the
method to the case when the mapping function, which is required to compute the Faber series,
is not known explicitly.

1. Introduction. Several algorithms for numerical minimax approximation which
are applicable in the complex plane have been proposed (e.g. Ellacott and Williams
[6]; Barrodale, Delves and Mason [2]; Blatt [3]; Gutknecht [17]; Opfer [25]; Elliott
[8]; Streit and Nuttall [28]; Glashoff and Roleff [14], are some of the most recent).
The earlier of these methods seem expensive computationally. Although later ones
appear possibly to be more efficient, it is natural to look for expansion methods,
analogous to the Chebyshev series for real approximation which give "nearly best"
polynomial approximations when the expansion is truncated. The Faber series
provides such an expansion (Kövari and Pommerenke [19]; Elliott [8]), and the main
purpose of this paper is to discuss the efficient numerical computation of such series.
(For a rather different approach to "near best" polynomial approximation, see
Trefethen [31]; Gutknecht and Trefethen [18]).

To make the notion of near best approximation more precise, we may employ the
ideas of Cheney and Price [4], and Mason [24]; see also Geddes and Mason [12], and
Geddes [13], for the application to complex approximation. Let D be a bounded,
closed continuum in the complex plane with boundary T such that the complement
of D is simply connected in the extended plane and contains the point at oo. We
denote by A(D) the space of functions which are continuous at every point of D and
analytic at every interior point. A(D) will denote the subspace of functions which
are analytic at every point of D. Now let P„ denote the space of complex polynomi-
als of degree < n. Given / G A(D), it is well known that there exists a unique best
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576 S. W. ELLACOTT

minimax approximation/>„ to /from Pn, i.e.

Il7-AIL<II/-/»II«    forain G 7>„,
where || || x denotes the uniform norm, Il / Il ̂  = maxzeD \f(z) | .

Suppose we have a projection C„: A(D) -» Pn (i.e. C„ is a bounded linear operator
which satisfies C„(p) = p, p G P„). We have

f-Cn(f)=f-pn + Cn(p„-f)
whence

(1.1) H/-Cn(/)ll00<(l + l|CJ|)||/-/;J|00.
Thus if ||C„|| is reasonably small, Cn(f) will be almost as good an approximation to
/ as the best approximation pn (e.g., if || C„ II < 9, we will not lose more than one
decimal place accuracy in accepting Cn(f) as an approximation to/, rather than/>„).

Bounds on the norms of the projections obtained by truncating the Maclaurin
expansion on the unit disc, and Chebyshev series on ellipses, were given in Geddes
and Mason [12], and Geddes [13], respectively. Elliott [8], pointed out that a natural
generalization of these ideas to an arbitrary D is given by the Faber expansion, and
that, moreover, the bounds given by Geddes and Mason, and Geddes, are rather
similar (although actually somewhat sharper for the special cases considered) to
known results on truncated Faber series (Kövari and Pommerenke [19]). We shall
give a further discussion of these results in the next section.

2. Definition and Properties of the Faber Series. A general description of the
Faber series is given in Markushevich [22] (Chapter 3 of vol. 3). See also Curtiss [5];
and Gaier [11]. For a region** D as defined in Section 1, we have a mapping <p
which maps the complement of D conformally onto the complement of a closed disc
of radius p with center at the origin, and which satisfies the condition
lim ̂ oo (p(z)/z = 1. Here p is the so-called logarithmic capacity, or transfini te
diameter, of D. Let \p be the inverse of <p.

The level curves TR (R> p) oí D aie the images under t// of the circles | w | = 7?,
and we denote by IR the closed Jordan region with boundary TR. The nth Faber
polynomial % is the polynomial part of the Laurent expansion at oo of (<p)". Thus
<p0 = 1 and <p„ is a monic polynomial of degree n.

Given/ G Â(D), the Faber coefficient an is defined by

{1A^ a"=2^l¿in J,,
1    f        /(*(*))

«+iw \ = R     W
dw.

where R > p is sufficiently small that/can be extended analytically to IR. If $ can
be extended continuously to the boundary | w \ — p (e.g. this is the case if T is a
Jordan curve)***, then the value 7? = p is also acceptable. The Faber series 2°°=0 a <p
converges uniformly and absolutely to / on every IR to which / can be extended

**The term region here and elsewhere is convenient for describing D. It is not, of course, used in the
sense of some authors to denote a specifically open connected set.

***Here and below, where such an extension is possible, we refer also to the extended function as \¡i.
(The requirement that \p be continuous, can, of course, be considerably weakened.) Similarly we do not
distinguish between/and its analytic extension to IK.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COMPUTATION OF FABER SERIES 577

analytically. For/ G A(D) — A(D), the Faber coefficient can be defined by replac-
ing R by p in (2.1) provided the integral exists. (For a discussion of the convergence
of the Faber series in this case, see e.g. Kövari and Pommerenke [19].)

The Faber projection Fn is, of course, obtained by truncating the series, i.e.
F„(f) = 2,"=0aj<pj. We require (compare (1.1)) bounds on \\Fn\\. It is possible to
obtain at least qualitative bounds without further restriction on D (Kövari and
Pommerenke [19]), but asymptotically sharper results as n -» oo are obtained if we
assume that T is of bounded total rotation; moreover the bounds are then easily
made quantitative. If 7) is a closed Jordan region and T is rectifiable, there exists at
almost every point z ET a tangent vector which makes an angle 0(z) with the
positive real axis. T has (bounded) total rotation V if the quantity

V= (\d6(z)\•T

is finite. Clearly V > 2-n and V = 2ir if D is convex. More generally if T is made up
of simple arcs, V is often easy to calculate. The results discussed below remain true
for the case in which D degenerates to a Jordan arc. In this case all integrals must be
interpreted as being along both "sides" of the arc and "round" the ends. Given any
fixed point z0 G T, we have (Radon [27])

(2-2) f\dzarg(z-z0)\^V,

where the subscript z signifies that arg(z — z0) is to be considered as a function of z,
and where the jump in arg(z — z0) at z = z0 is equal to the exterior angle of T at z0.

We now give several other representations of the Faber polynomials <¡d„ which we
collect together as a single theorem.

Theorem 2.1. (a) For a general region D the following representations of yn are
valid.

(i) <P„(z) = 2"=0 Cjzf where

'        1<ïï'J\z\ = R      ZJ+X

with R chosen sufficiently large so that D is contained in the interior of the region
bounded by the circle \z\— R. Alternatively,

(2.4) C, = T~        —^—rrdw,      s > p.
'     2^JH=s{x¡/(w)y+x

(ii) <f>„(z) is the coefficient of w~("+l) in the expansion at oo of the generating
function \¡i'(w)/(\¡/(w) — z).

(iii)
n-\

(2.5) <P„+,(z) = z<p„(z)-  2 bk%_k(z) - (I + n)bn,       n^O,
k = 0

where bk is the coefficient ofw'k in the expansion ofip(w)at oo.
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578 S. W. ELLACOTT

(b) If D is a Jordan region whose boundary T is of bounded total rotation (or for the
degenerate case when D is an arc as described above), we have for each z0 = \p(pe'e°)

(2.6) %(HPeie)) =^-Ç'me'"6dev(d, 80),       n > 1,
IT   J0

where v(0, 00) = arg(^(pe'e) - ip(pei0a)).

Proofs, (ai) (2.3) is simply the expression for the Laurent coefficient in the
expansion of (<p)". (2.4) is obtained by the substitution z = ^(w).

(aii) See e.g. Markushevich [22].
(aiii) (2.5) is obtained by comparing coefficients in (aii).

It may be found, for example, in the proof of Theorem 1 in Kövari and Pommerenke
[19]; or in Curtiss [5]; but its potential usefulness as a computational device does not
appear to have been previously considered.

(b) See Pommerenke [26]. The proof there is given only for the case p = 1, but
modification for the general case is straightforward.

Theorem 2.1(b) leads to a simple bound on || <p„ || 00. This can be used to obtain an
a priori bound on the error of the truncated series which is, at least in principle,
computable.

(For a bound on llmjl^ when T is not of bounded total rotation seee Kövari and
Pommerenke [19]).

Corollary 2.2. (a) Let D and T be as in Theorem 2.1(b), and let V be the total
rotation ofT (interpretedappropriately in the case when D degenerates to an arc). Then
we have for n 3= 1,

This bound is best possible in the sense that when D = [-1,1], equality holds.
(b) Iff G Â(IR), R> p,we have, for n > 0,

u-F(f)w ^WHp/*r+1
117      W)»«*        -it 1 - p/R  '

where Mr(R) = max.er |/(z) | .

Proof, (a) In view of the maximum principle, |<p„(z)|, z G D, achieves its
maximum value at some z0 G T. The bound then follows from (2.6), noting (2.2).

When D = [-1,1], V= 2it and (see e.g. Markushevich [22, p. 106]), <p„ = TJ2n'x
where Tn is the n th degree Chebyshev polynomial of the first kind. For this region D,
p = { and equality is indeed achieved since 11 Tn \\ x = 1.

(b) follows straightforwardly from (a) and the bound | a„ |< Mf(R)/R" (see
Markushevich [22, vol. 3, p. 109]).

Now we conclude this section by discussing \\Fn\\. (Note that since A(D) is dense
in A(D), it does not matter which space we consider here.)

The result given below is essentially due qualitatively to Kövari and Pommerenke
[ 19], and quantitatively to Elliott [8] (although not actually expressed as a bound on
II Fn ||). However, we give part of the proof for two reasons. First, it is not entirely
clear in the former paper whether the authors are discussing a general region or one
of logarithmic capacity p = 1, and in fact the proof as it stands is only correct for
this latter special case. (It so happens, however, that the effect of a different p
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COMPUTATION OF FABER SERIES 579

cancels out.) More seriously, Kövari and Pommerenke do not consider the fact that
(2.6) is not valid for n = 0. In this case we have

l   n-n
(2.7) <Po= i=^-fvdev(e,e0).

¿IT Jq

Consequently, the proof requires a minor modification to deal with this case, with
the result that the numerical interpretation of the bound given by Elliott also needs
slight modification to the bounded part, although the dominant logarithmic term
remains unchanged.

Theorem 2.3. Let D be a Jordan region whose boundary T is of total rotation V
(with the usual modification if D degenerates to an arc). We have

V Í 4
(2.8) \\Fn\\<^\—\nn + B\,       » > 1,

where B is a certain absolute constant which (from numerical values computed in
Geddes and Mason [12]) has the value 1.773 to 3 decimal places.

Proof. We recall that \\F„\\ = supfeA(D). nfK = x \\F„(f)\\x. Thus, letfEA(D),
II /1| x = 1. | Fn(f)(z) \ ,z ED, must, in view of the maximum principle, achieve its
greatest value at some point z0 = ^(pe'e°) G T. Thus from (2.1)

K(/)ll« 2
7-0

2-ttI,

2 77/K\=p  wJ+l
dw<pj(z0)

y  <Pj(z0)

J=0 H"

dw

since II / II    = 1. Hence (2.6) and (2.7) yield

5/   ]   PJ f2"u
¿ttJm= wJ  it J0

dw

\W\=P ;=0

where ' signifies that the first term in the sum is to be halved. Thus

—n i(p—\2lT2J0    JM = p j~0\    w    I2-TT    J0     J\w\=p

The substitution w = pe~'('~8) yields

dw
dev(o,eQ)\.

•'Im
2'
7 = 0H=p

whence from (2.2)

IIFJK

pjT
w

dw\_   (2
W Jn 2'«

7 = 0

.'/' dt = r2n

Jn
?>)<

7 = 0
dt,

IT  \
+ T„ where t„

1   nit
2-n )0

,i(n+\)t

1
dt.

The value of the integral t„ has been extensively discussed by Geddes and Mason
[12], and in particular (2.8) follows readily from their results.

Remark. In the case that D is convex (so that V— 2tt) we obtain immediately
from (2.8) that || Fn II < 9 for n < 835.
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580 S. W. ELLACOTT

3. Numerical Methods for Faber Series. Elliott [8], computes the Faber polynomi-
als for certain regions directly from the definition, i.e. by obtaining the series for <p
and then using it to compute explicitly the series for (<p)". However, as it stands, this
technique is not really suited to automatic computation, and we propose either the
use of Fast Fourier Transform (FFT) methods or recursive techniques. The idea of
using the FFT to evaluate Laurent coefficients appears to have been first proposed
by Lyness and Sande [21]. FFT methods were also used by Geddes and Mason [12],
and Geddes [13], to compute Maclaurin and Chebyshev coefficients. The use of
recursive formulae to generate sequences of orthogonal polynomials on the real line
is, of course, commonplace (see e.g. Fox and Parker [9]). The Faber series has many
analogies with such orthogonal expansions.

We first propose two methods for the construction of the Faber polynomials
themselves, and report on some numerical experiments. Provided \¡j is known,
computation of the Faber coefficients for a given function / is straightforward, and
we defer this until later.

3.1. Computation of Faber Polynomials Using the FFT. If <p„(z) = 27!=0c,z7, we
have (2.3)

e, - it— /       -——dz.
1       ^'J\z\ = R      ZJ + X

Following Lyness and Sande [21], we first rewrite this as

277^0        (Rei9)J

Replacing this integral by its TV-point trapezium rule approximation, we obtain

(3.1) c^-^21 {ç(lto**)}V>"*,
NRJ k=0

where 6k = 2-nk/N.
Thus all the coefficients c,,f = 0,...,«, can be computed simultaneously using the

FFT. (Since in fact we know that cn= 1, we have a useful check on the accuracy.) In
view of the cheapness of this computation, one may as well take N fairly large, and a
suitable value on the CDC installation at ETH-Zentrum, Zürich, was found to be
N = 512. The IMSL subroutine FFT2C was used for the FFT. In practice it was
found that some care has to be taken with the choice of R. If i? is too large, the
values of {(p(Re'9k)}" lie relatively nearly on a circle, and accuracy is lost due to
cancellation of figures for small j and large n. On the other hand if R is too small, so
that the circle | z | = R only just encloses D, singularities of <p on the boundary T may
destroy the accuracy of the trapezium rule approximation. Somewhat surprisingly,
we found that the former effect was much stronger than the latter, and a good rule
for choosing R has been found to be

R = 1.1 X max | z | .
zer

We note in passing that it is often not convenient in practice to scale tp so that
lim._00<p(z)/z = 1 (e.g. we may have the mapping onto the exterior of the unit
circle). A simple modification of the program enables this scaling to be done
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COMPUTATION OF FABER SERIES 581

automatically. If <p is scaled so that the coefficient of z in its expansion at oo is a
instead of 1, then the leading coefficient of (<p)" is a", instead of 1. If (3.1) is applied
without rescaling <jp, the value of a can be obtained from c, with n = I, and for each
n — 1,2,... the coefficients c need only be divided by a".

Several numerical examples have been computed to test the effectiveness of this
method. (The values used for N and R are those given above, except where otherwise
stated.)

Example I. D = {z\\z + l\< I). Thus cp(z) = z + 1 and the coefficients of <p„
are simply the nth binomial coefficients. Since <p is entire, any value of R may in
theory be used, but in practice the lack of singularities appears to be a positive
disadvantage, and, of all the examples tried, this proved to be the most dependent on
R. With 7? = 1, however, it was possible to obtain the coefficients to at least 10
significant figures for « < 10; about 9 figures for n = 20 and about 6 figures for
n — 31, the largest value of n tried.

Example 2. D = [-1,1]. In this case (see e.g. Markushevich [22]) the polynomials
<p„ are suitably normalized Chebyshev polynomials. For n = 12 (the highest value of
n for which Tn is given in Abramowitz and Stegun [1]) the coefficients obtained were
virtually exact. For n = 30, the correct value of c0 is -1/229 = -1.8626 • • • X 10~9,
and the program produced the value -1.87117 • • • X 10~9.

Example 3. D is the unit semidisc, i.e. D = (z 11 z |< 1, Re(z) 5s 0). The mapping
<p is

.,_._ \ß(z-ir-ß(z+ir\
\    (z + i)     -(z-i)        I

where ß = ei7r/3. (Elliott [8] gives the value of p as 4/(3/^), but as pointed out
above, using the FFT method, p is not required explicitly.) The coefficients obtained
for <p„ agree to at least 7 figures with those obtained by Elliott for n < 9 (these are
only given to 8 decimal places).

Example 4. We have used this method to calculate the Faber polynomials for the
unit square and for various rectangles, using the Schwarz-Christoffel transformation
which gives \¡/'. The main difficulty here is in actually obtaining the values of <p. We
achieved this by using the IMSL automatic differential equation subroutine DGEAR
to solve

dz__      1
dw     \¡/'(w) '

we will not give more details here since in practice it would appear to be better to
use Method 2 (see below) for this problem. The results obtained using this method
and that described below were in most cases virtually identical. However, for the
unit square, D = (z 11 Re(z) |< 1, | Im(z) |< 1}, and with n = 16, some of the c,
differed in the 8th decimal place from those given by Elliott. This slight discrepancy
may be due to the fact that we used a more accurate value for the normalizing
constant in the mapping (see below).

Before discussing the recursive method, we note that (2.4) provides a possible
alternative formula for calculating the Cj if ip is very much simpler than <p. However,
we have performed no numerical experiments with this formula.
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582 S. W. ELLACOTT

3.2. Recursive Computation of Faber Polynomials. We recall (2.5)
n-i

«P„+i(*) = zfn(z) - 2 °k%-k(z) - (1 + n)b„,       n > 0,
Ar = 0

where bk is the coefficient of w~k in the expansion of ^ at oo. Since <p0 = 1, this
expression provides a recursive method of generating the Faber polynomials. Given
\p, it would, of course, be possible to generate the coefficients bk using the FFT, but
in view of the possible dangers of instability or cancellation inherent in a recurrence,
Method 1 would seem to be preferable in general. However, in the case when D is a
polygon, the Schwarz-Christoffel transformation can be used to obtain i|/, and the
expansion of \j/ is then obtained rather easily. The mapping from the exterior of the
unit circle onto the exterior of a polygon with exterior angles 7r£,, i — 1,2,...,m, can
be expressed as

<»> .^.)==r/(.-ir(.-?r-(.-ir*.
The ratio of the lengths of the sides is determined by the tj,: sometimes the values
required to obtain a given polygon can be calculated explicitly (e.g., by considera-
tions of symmetry) but in general a numerical method must be used (see e.g.,
Trefethen [29]; Trefethen [30]). The position, size and orientation of the polygon are
determined by K and the constant of integration. We note that hmu^xz/u = K.
Thus substitution of w = Ku gives the required mapping \p and p =\ K\ . Expansion
of each bracket, collection of powers of l/w and termwise integration gives the
expansion for \p. Details of the calculation in the general case can be found in
Nepritvorennaja [23]. Here we treat the important special case of a rectangle since
this permits the expansion to be considerably simplified. Further simplification
occurs for a square and since this problem is considered by Elliott [8], we deal first
with this case. It will be readily verified that for a square (3.2) becomes

(3.3) z = 7v/(l+-^)      du.

For the unit square D = {z \\ Re(z) | =£ 1, | Im(z) | < 1} Elliott gave the value of K to
9 figures, obtained by applying the Euler transform to the series at u = 1. This was
not sufficiently accurate for our purposes, and using the numerical integration
method described below for a general rectangle, we obtained the value K =
1.1803405990161. Substituting w = Ku in (3.3) gives

2=/(1+£!)i/!¿„=/(1+ai_a;+^....w
J\        w* j J \        2w4      8h>8      16w12        /

Integrating with respect to w and noting that, in view of the symmetry of the unit
square about the origin, the constant term must be zero, gives

,,   ,_ 7v4        K» KX2
\p(w) — w- H-— + • • •

6w3      56w7      176w"
whence by definition

b =bx=b2 = 0,   b3 = -K4/6,   ¿>4 = ¿>5 = ¿>6 = 0,   b1 = Ks/56, etc.
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COMPUTATION OF FABER SERIES 583

The recurrence (2.5) then yields immediately

<p0(z) = l,   <px(z) = z,   <p2(z) = z2,   <p3(z) = z3,

<p4(z) = z4 + 2K*/3,   <P5(z) =z5 + (5K*/6)z, etc.

It will be seen that this calculation is very much simpler than that used by Elliott for
this problem, which, following the method described by Nepritvorennaja, involves
determining the power series for <p.

We turn now to the case of the rectangle

D= {z||Re(z)|<i4,|Im(z)|<fi},

for which (3.2) becomes
/        C       1  \l/2

(3.4) z = y(u) = KJn+ — + — \     du,       -2<C<2.

We must first determine the constants K and C. Note that by symmetry, the points 1
and i on the unit circle are mapped to A and iB, respectively. Thus if

1(C) := fli+£ + \)du,
J\ \       u       u  I

where the path of integration satisfies | u | > 1,

A _ Re(-7(C))
B      im(/(C)) '

and the required value of C can easily be determined using the secant rule in terms
of the variable t defined by C = 2(1 - t2)/(l + t2), 0 < t < oo. In practice we
chose the path of integration to be the circular arc

2 2'        4 4
and the integration was performed using the IMSL automatic quadrature subroutine
DCADRE. K is then determined from the known values of the mapping at 1 and /'
on the unit circle, and the value of 7(C). We now proceed as described above by
substituting w = Ku, and expanding to obtain

™-i(Y)Î(i)ffî®~
(Here and below, C° is interpreted as 1 if C = 0.) Collecting powers of l/w,
followed by termwise integration (again making use of the fact that by symmetry the
constant term in the expansion of ^ is zero), yields b- = 0,j even, and

K2k k (\/2)(mXC2'"-k

"-  i-2^=[(r+,)/21(2^-^)!(^--)''
where [ ] denotes the integer part and

(I/2r:=i(H(H...( i-m+l

Since the b>.'s are real, there is no serious inconvenience in computing them and the
recurrence (2.5) to double precision.
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584 S. W. ELLACOTT

With this precaution, no sign of instability was observed, and the method proved
both effective and efficient.

3.3. Computation of the Faber Coefficients. We have (2.1) for the Faber coefficients
ïorfEÂ(D):

We may simply replace the integral by its TV-point trapezium rule approximation and
evaluate as many of the an as we require using the FFT (compare Geddes [13]). In
general the choice of R in this formula does not appear to be critical. If T is a
smooth curve, one might as well choose R — p, but, if not, 7? should be chosen
slightly greater than p (e.g., 1 • lp) to avoid a singular integrand. The only problem is
ensuring that the level curve TR does not enclose or pass too close to a singularity of
/: generally this is not immediately obvious. The simplest way out of this difficulty
is to guess a suitable value of R, plot or print out points on TR and then check its
position in relation to the singularities of /. On the examples tried, we have not
found any difficulty in practice in choosing R, and we have successfully produced
expansions of several functions on the semidisc; ellipses (the case considered by
Geddes [13]); the unit square and various rectangles. For the semidisc D = (z 11 z |<
1, Re(z) > 0}, the errors can in some cases be compared with some best approxima-
tion errors En computed by Elliott [8]. For instance, we have ||ez — FA(ez)\\x = .45
X 10"2 compared with E4 = .38 X 10"2; \\ez - F6(ez)\\x = .65 X 10"4 compared
with E6 = .51 X 10"4. For this example, the computed values of \\ez — Fn(ez)\\x
decreased smoothly with n down to a value of .23 X 10"" at n = 13, after which no
significant improvement occurred: the smallest value obtained was II ez — FX4(ez)\\x
= .19 X 10"". (These smallest relative values of around 10"" to 10~12 were fairly
typical of those that could be achieved on the CDC machine with the values of the
parameters discussed above.) With/(z) = (1 + 2z)"1/2, we obtained \\f—FA(f)\\ao
= .64 X 10"! (7f4 = .42 X 10"1), and II /- F6(f)\\x = .26 X 10"' (E6 = .17 X
10 "' ). Convergence for this example is quite slow due to the singularity of/at z — -\
(compare Corollary 2.2(b)), and the errors obtained decreased smoothly down to
II/- •f3i(/)Hoo = -12 X 10"5, the largest value of «tried.

It will be noted that a difficulty arises in evaluating ^(w) when the Schwarz-
Christoffel transformation is used. However since values are required only around
the circle w = Re'8, 0 < 8 < 2-n, we can once again use the FFT to sum the series for
ty at all the required points simultaneously. In order to do this one requires rather a
lot of values of bk (we used 512 terms). These could be computed by the method
discussed above but for this purpose we do not require quite such high accuracy,
particularly for large k, so it is preferable to compute the Laurent coefficients of t//
using the FFT and then get the bk by termwise integration: in this way evaluation of
\p can be made quite efficient.

Finally we consider the computation of expansions for/ G A(D) — Â(D). In this
case the degree of polynomial approximation is unlikely to be sufficiently good to
make polynomial approximation an attractive proposition. Nevertheless Theorem
2.3 remains valid, and the expansion will still produce polynomial approximations
very close to the best one (for reasonable values of n) should these be required for
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some purpose. In this case one is obliged to take 7? = p in (2.3) (i.e., integrate round
T itself) and the integrand is (by definition) singular, so rather than use the FFT
method described above, it would be better to compute the coefficients an individu-
ally using an adaptive quadrature program.

3.4. Evaluation of the Faber Series. Orthogonal polynomials on intervals of the real
line satisfy a three term recurrence which can be used to set up a backward
recurrence to evaluate the orthogonal expansion. (See e.g. Fox and Parker [9, p. 56].)
In principle, (2.5) can be used in the same way, but if all the bk are nonzero this
would be very expensive computationally since the recurrence in this case is of
infinite order, so in general it is better to express the truncated series Fn( f ) in terms
of powers of z for the actual evaluation. However for regions such as the unit square,
where only every fourth bk is nonzero, direct evaluation using (2.5) may be useful.

3.5. Using Approximate or Numerical Conformai Mapping. For a general region D,
the mapping qp may not be known and numerical conformai mapping must be used.
See Gaier [10], for a general survey of methods up to that date. As discussed below,
methods yielding analytic approximations to <p or ip, rather than integral equation
methods, are more appropriate here. For recent work on such methods, see Levin,
Papamichael and Sideridis [20]; Ellacott [7]; Hoidn [16]. (This last paper actually
describes the author's method for doubly connected regions, but also contains
improvements in the technique over the original description in Grassmann [15], of
the method for the simply connected case.) These methods are all described for the
problem of mapping the region inside a Jordan curve onto the interior of the disc:
To obtain our mapping <p an initial inversion in an interior point of D and a final
inversion in the origin must be performed. Unfortunately, however, unless the region
D is fairly simple, the methods are not sufficiently good to get the <p„'s accurately,
and we must adopt a slightly different point of view. The conformai mapping
method must be regarded as producing a mapping <p which maps the complement of
a region D D D onto \w\> p> p. Most conformai mapping algorithms based on
approximations have the property of giving mappings which are eventually confor-
mai (for an approximation of sufficiently high order) on compact subsets not
intersecting the boundary, so if an approximation is produced for which the
deviation from constant modulus of the image of T is reasonably small (say about
1%) we will not require to take p very much larger than p for <p to be conformai, and
hence D will be a good fit around D. A Faber expansion of our given function / on
D should thus provide a good approximation to / on D. One may identify three
desirable properties for the mapping algorithm.

(i) The method should reliably generate a reasonably good approximation even for
difficult regions. (On the other hand, very high accuracy is not required.)

(ii) The inverse of the approximate mapping should be readily available.
(iii) In view of Theorem 2.3, one would like to have some form of variation

diminishing property on the boundary T.
We are aware of no method satisfying property (iii) (but see below); on the

contrary most methods tend to introduce boundary oscillations. On the other hand
(i) and (ii) are satisfied by the Hoidn-Grassmann method and this would seem to be
the most hopeful; the relatively poor asymptotic properties of the method are not
significant here. With an initial inversion in the point 1.5, 20 iterations of the
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Hoidn-Grassmann method, and a final inversion in the origin applied to the
"semiannulus"

D= {z\\ =s|z|<2,Re(z) > 0},

we have computed expansions of ez and In z. For ez, we were able to obtain an
approximation with an error (on the exact region D) of 1.4 X 10~10. Convergence
for In z is quite slow: evaluation of the approximate mapping at z = 0 indicates that
this point lies on a level curve for which R/p (see Corollary 2.2(b)) is only about
1.17. With « = 31, an approximation with error (on D) of .14 X 10"2 was achieved.

A disadvantage with the Hoidn-Grassmann method is that symmetry about the
real axis is not preserved. Thus the resulting approximations may have complex
coefficients. However, it is easily verified that if/and D are symmetric about the real
axis (i.e. z E D -* z E D,f(z) = f(z)), then for any polynomial/? = 2"=0 OjZJ,

/-¿Re(a7y      <II/-/>IL.
7 = 0

Before leaving this problem we note that a possible alternative approach to
obtaining D is to interpolate or otherwise approximate T by a polygon. This method
would satisfy property (iii) but would present other problems in determining the
coefficients of the Schwarz-Christoffel mapping etc.

4. Concluding Remarks. It has been found that the Faber series provides an
effective and efficient method for producing near best approximations to analytic
functions in the complex plane, especially when the mapping <p for the required
domain D is available. However, the method can still be used even if <p is not known
explicitly.
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