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Computation of Flow Noise Using Source Terms
in Linearized Euler’s Equations

Christophe Bogey,¤ Christophe Bailly,† and Daniel Juvé‡

Ecole Centrale de Lyon, 69131 Ecully, France

An acoustic analogy using linearized Euler’s equations (LEE) forced with aerodynamic source terms is investi-
gated to compute the acoustic far � eld. This hybrid method is applied to three model problems simulatedby solving
Navier–Stokes equations. In this way, its validity is estimated by comparing the predicted acoustic � eld with the
reference solution given directly by the Navier–Stokes equations. The noise radiated by two corotating vortices is
studied: � rst, in a medium at rest and, second, in a mean sheared � ow with no convection velocity. Then the sound
� eld generated by vortex pairings in a subsonic mixing layer is investigated. In this case, a simpli� ed formulation
of LEE is proposed to prevent the exponential growth of instability waves. The acoustic � elds obtained by solving
LEE are in good agreement with the reference solution. This study shows that the source terms introduced into
the LEE are appropriate for free sheared � ows and that acoustic–mean � ow interactions are properly taken into
account in the wave operator.

Nomenclature
b = half-width of the monopolar source
c = sound velocity
E; F; H = vectors in linearized Euler’s equations (LEE)
f = frequency
f0 = fundamental frequency of the mixing layer
k = complex wave number, kr C iki

M = Mach number
p = pressure
Re = Reynolds number
rc = vortex core radius
r0 = initial half distance between the two vortices
S = sound source vector in LEE
Si = source terms in the momentum equations
T = period
Ti j = Lighthill’s tensor
t = time
U = unknown vector in LEE
U1 = slow stream velocity of the mixing layer
U2 = rapid stream velocity of the mixing layer
u = velocity vector, .u1; u2/
Vµ = initial tangential velocity of vortices
x = radial distance,

p
.x2

1 C x2
2/

x = Cartesian coordinate vector, .x1; x2/
y = Cartesian coordinate vector
0 = vortex circulation
° = speci� c heat ratio
1 = grid size
1t = time step
1U = velocity of the two opposite streams for the sheared

mean � ow
±! = vorticity thickness
² = amplitude of the monopolar source
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2 = dilatation,r ¢ u
3 = source term in Lilley’s equation
¸ = acoustic wavelength
º = kinematic molecular viscosity
½ = density
! = angular frequency

Subscripts

a = acoustic
i; j = indices
p = pairing
r = rotation
0 = ambient

Superscripts

t = vector transpose
0 = � uctuating value
N = mean value

I. Introduction

R ECENT andspectacularachievementsof computationalaeroa-
coustics (CAA) in aerodynamicnoise prediction are based on

the direct calculation of the acoustic � eld by solving the unsteady
compressibleNavier–Stokes equations.Carrying on the work of the
Stanford research group, Freund1 has performed the direct numeri-
cal simulation(DNS)of a Machnumber M D 0:9 jetwith a Reynolds
numberbasedon the jet diameterRe D 3:6 £ 103, providingdirectly
an acoustic far � eld conformable to measurements. Direct compu-
tation of the noise radiated by a subsonic three-dimensional jet,
however, remains dif� cult becauseof the large computingresources
required and also because of numerical issues inherent in CAA. In
DNS, all turbulent scales, namely, from the integral length scale to
Kolmogorov’s scale, are to be described. Colonius2 has estimated
the cost of a DNS of a subsonic turbulent jet providing both local
� ow� eld and acoustic � eld: The total cost of an ef� cient numerical
algorithm is proportional to Re3=M 4. In the same manner, the cost
of a direct acoustic calculationusing a large-eddysimulation (LES),
assumingthat the size of the resolvedsmallest eddies is givenby the
Taylor length scale, is proportional to Re2=M 4. In that way, Bogey3

and Bogey et al.4 have calculateddirectlyby LES the noise radiated
by a Mach 0.9 jet with a Reynolds number Re D 6:5 £ 104.

Direct calculation of noise is quite expensive for � ows of practi-
cal interest with high Reynolds numbers and often moderate Mach
numbers. In many engineering problems, only the time-dependent
� ow� eld can be determined. To investigate the sound � eld in this
case, a hybridmethod is necessary.It consists in separatingthe treat-
ments of sound generation and of sound propagation. Among the
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� rst hybrid methods, the most famous is based on Lighthill’s wave
equation,5 simply derived from the conservation laws of motion.
The acoustic� eld is then obtainedby solvinga classicalwave equa-
tion in which the source term is written as a function of the local
� ow� eld. A dif� culty of Lighthill’s equation is the interpretationof
the source term where mean � ow effects on the wave propagation
are included.6 Therefore, to take into account all of these effects,
applicationofLighthill’s equationrequiresa sourcevolumecontain-
ing all acoustic–� ow interactionsand not only the turbulent region.7

With this in view, the velocity � eld used to build up source terms
must be compressible.

To describeacousticpropagationexactlyin unidirectionalsheared
mean � ows, a third-order wave operator was developed, particu-
larly by Lilley8 and Pridmore-Brown.9 The associated source term
is mainly a nonlinear function of the � uctuating velocity � ow� eld.
Many studies have been devoted to the resolution of Lilley’s equa-
tion: analytically,10 by using geometrical methods,11 or more re-
cently, numerically.12 A time resolution can be performed by trans-
forming Lilley’s equation into a system of � rst-order equations. In
this way, Berman and Ramos13 have calculated the radiation of a
monopolar source in a jet mean � ow provided by a Navier–Stokes
codewith k–² turbulentclosure.This ideawas developedbyBéchara
et al.14 with an approach using linearized Euler’s equations (LEE),
which account for refraction and convection effects in any sheared
mean � ows. In this approach, a source term is added into the right-
hand side of LEE and is built up from a synthesized turbulent � eld.
The source term expression and the construction of a stochastic
space-time turbulent � eld were improved later15 and extended to
three-dimensionalgeometries.16;17

The primary objective of this paper is to show that an acoustic
analogy combining LEE with the source terms de� ned by Bailly
et al.15 is able to predict aerodynamic noise. The validity of this
hybrid approach is checked by investigatingthe sound radiation for
three � ow con� gurations, in the following way. First, a reference
solution of the acoustic far � eld is determined directly from the
Navier–Stokes equations. The local � ow� eld of this simulation is
then used to buildup the source terms introducedinto LEE and to es-
timate the mean � ow. Finally, the acoustic � eld obtained by solving
LEE is compared to the reference solution to evaluate the accuracy
of the hybrid approach,with regard to both the expressionof source
termsandacoustic–mean � ow interactions.LEE supportbothacous-
tic disturbancesand instabilitywaves, which are not decoupled in a
sheared mean � ow. As a result, physical growing instability waves
can be excited by the source terms. We then propose to remove this
coupling by considering a simpli� ed formulation of LEE, without
signi� cant effects on noise propagation.

In Sec. II, we present the formulation of the source terms intro-
ducedin two-dimensionalLEE. Next, threebuildingblockproblems
are considered.Sound � eld generated by two corotating vortices in
a medium at rest is studied in Sec. III. In Sec. IV, the same problem
is investigated in the presence of a sheared mean � ow with zero
convection velocity. In this way, development of instability waves
is neutralized. The noise generated by a mixing layer is then inves-
tigated in Sec. V. In� uence of some quantities, such as the mean
value of source terms, and the removal of instabilitywaves are also
discussed. De� nition of source terms for LEE and connection with
Lilley’s equationare given in AppendixA. An analysisof simpli� ed
LEE is shown in Appendix B, and a sound propagation problem is
solved in Appendix C using the physical parameters of the mixing
layer.

II. Hybrid Method Based on LEE
A. Formulation

Considersmall perturbationsarounda steadymean � ow with den-
sity N½, velocity Nu D . Nu1; Nu2/, and pressure Np. The behavior of these
perturbations is governed by LEE, written in a two-dimensional
conservative form, as

@U
@t

C @E
@x1

C @F
@x2

C H D S (1)

where U D [½ 0; N½u0
1; N½u 0

2; p0]t is the unknown vector. The prime de-
notes the perturbation variable. Complete expressions of vectors

E; F, and H are given in Appendix A, and S represents a possible
source term.

Assumingisentropic� ows, noisegenerationis providedby source
terms in the momentum equations of LEE. Additional source terms
will be required to take into account entropic sound sources. In the
present hybrid approach, vector S is written as15
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This expression of source terms Si in LEE is found by anal-
ogy with Lilley’s equation: The reasoning used is presented in Ap-
pendix A. The source terms Si are nonlinearin velocity � uctuations,
and their mean values Si are subtracted.The motivations for the lat-
ter point will be presented in the test cases reported in the present
paper. Data provided by incompressible or compressible simula-
tions can be used to estimate Si . In the compressible case, however,
the acoustic � eld is included in the source terms, through density
and � uctuating velocity, but this acoustic component is very small
compared to aerodynamic � uctuations. The cross terms involving
acousticandaerodynamicperturbationsareassociatedtosoundscat-
tering by turbulence, which is generally small. Note that using the
mean density value instead of the instantaneousone does not matter
because the terms ½ 0u0

i u
0
j involving three � uctuating quantities are

negligible.
For the three applications presented in Secs. III–V, the Navier–

Stokes equations are solved using the ALESIA code to obtain the
reference acoustic far � eld. LEE are then solved separately by the
SPRINT code, using the mean velocity � eld and source terms (2)
evaluated from the Navier–Stokes computation, and the resulting
acoustic � eld is compared to the referencesolution.The two solvers
will be brie� y described in the next subsections. Source terms cal-
culated from the Navier–Stokes simulation are stored once the � ow
is well established,into � les around 200 megaoctets.The recording
time is long enough that the sound radiationgiven by LEE can prop-
agate in the whole computationaldomain and that a possible initial
acoustic transient can exit. It also contains several � ow periods so
that the mean source terms converge.In the Navier–Stokes and LEE
simulationsperformedin this work, computationaldomainsare sim-
ilar to allow the comparisonbetween the two computedsound� elds.
CPU time and memory requirements are, thus, of the same order.
For the two corotating vortices, the grids are identical, and the nu-
merical ef� ciency is the same. However, for the mixing layer case,
where only every other point of the LES grid is kept for LEE, the
resolutionof LEE is eight times more ef� cient. More generally, the
gains realizedwith the hybrid approach are importantwhen the grid
used for solving LEE is coarser than the Navier–Stokes grid.

B. Flow Simulation
A two-dimensional and three-dimensionalcode, ALESIA, solv-

ing unsteady compressible Navier–Stokes equations has been
developed3 to provide directly both the local � ow� eld and the ra-
diated sound � eld. It can be run to perform DNS. A turbulence
modeling is also implemented to carry out LES of � ows at a high
Reynolds number. In this case, only the larger structures are re-
solved, and effects of the smaller scales are taken into account via
the Smagorinsky subgrid-scale model. Equations are solved in a
conservative form on a Cartesian grid. The space derivatives are
discretized with the dispersion-relation-preserving (DRP) scheme
of Tam and Webb,18 and the time integration is performed by a
fourth-step Runge–Kutta algorithm. Great care is taken to exploit
directly the computed acoustic � eld. The nonre� ecting boundary
conditions of Tam and Dong,19 based on the asymptotic expres-
sion of Euler’s equations in the far � eld, are implemented. Out� ow
boundaryconditionscombinedwith a sponge zone are used to allow
the exit of vorticalstructureswithout generatingsigni� cant spurious
waves. More details are given by Bogey3 and Bogey et al.20
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C. Resolution of LEE
A two- and three-dimensionalLEE solver,SPRINT, hasbeenbuilt

usingCAA techniques.21 An outlineof the numericalprocedurewill
follow. LEE are solved using the DRP scheme of Tam and Webb18

to evaluatespatial derivatives.The solution is advanced in time with
a fourth-order Runge–Kutta integration. The radiation and out� ow
boundary conditions are based on the asymptotic formulation of
LEE19 in the acoustic far � eld. A sponge zone is also used when
linear instabilitywaves are convectedby the mean � ow to dissipate
aerodynamic � uctuations and to avoid the generation of acoustic
re� ections at the out� ow boundary.

III. Sound Field Generated by Two Corotating
Vortices in a Medium at Rest

A. Flow Simulation
In this � rst application, the noise generated by two corotating

vortices in a medium at rest is investigated. The initial tangen-
tial velocity distribution of each vortex is given by the following
expression22:

Vµ .r / D ¡
0r

2¼
¡
r 2

c C r 2
¢

wherer is the radialdistancefrom thevortexcenter.The two vortices
are separated by a distance of 2r0 , as shown in Fig. 1. The angular
frequency of the whole swirling � ow is23 !r D 2¼ fr D 0=.4¼r 2

0 /,
the period is Tr D 8¼ 2r 2

0 = 0, and the rotation Mach number is
Mr D 0=.4¼r0c0/. In this study, the Mach number based on the
maximum tangential velocity 0=.4¼rc/ is 0:5; rc=r0 D 2

9 ; Mr D 1
9 ,

and the Reynolds number Re D 0=º is 1:14 £ 105.
The acoustic � eld is calculateddirectly by a DNS using ALESIA

without turbulence modeling. The square computational mesh has
281 £ 281 points with a regular step size 1 D r0=18 for the � rst
30 points in each direction from the mesh center and extends to
104r0. The time step is 1t D 0:81=c0, which gives a rotationperiod
Tr ’ 12721t. The acoustic source associated with the two vortices
is a rotatingquadrupole,23 and the acoustic frequencyis fa D 2 £ fr

because of the source symmetry. The mesh is stretched so that at
least seven points are in the acoustic wavelength ¸a D 28:3r0. The
simulation runs for 12 £ 103 iterations.

As described by Mitchell et al.,24 the two vortices have a time
period of corotation, during 6Tr , before a sudden merger. Then the
two cores coalescewith productionof vorticity � laments and � nally
evolve into a single circular vortex. The resultingsound � eld during
the corotationperiod is, after a transientwave, an acoustic radiation
at the frequency fa . The amplitude of the acoustic signal increases
when the vortices begin to merge and reaches a peak when they
coalesce. After merger, it diminishes signi� cantly.

A snapshotof the near � eld dilatation 2 D r ¢ u during the coro-
tation period is shown in Fig. 2. The dilatation is directly connected
to the time derivative of the acoustic pressure in a medium at rest
by the relation 2 D ¡1=.½0c2

0/@p=@t . The use of the dilatation as
acoustic variable allows getting rid of the low-frequencysmall drift
of the mean pressure � eld.12 There is actually no pressure drift in

Fig. 1 Two corotating vortices.

Fig. 2 Two corotating vor-
tices in a medium at rest;
snapshot of the near vorticity
� eld surrounded by seven iso-
contours of the dilatation � eld
de� ned from 8 to 56 s ¡ 1 with
constant increment: ——,
positive values and – – – , neg-
ative values.

a) c)

b) d)

Fig. 3 Two corotating vortices in a medium at rest; representation
of source terms; ——, positive values and – – –, negative values: a) S1
and b) S2 with six contours from 6 £ £ 105 to 1:1 £ £ 107s ¡ 1 following a
geometrical ratio of 1.8, and c) S1 and d) S2 with the � rst four contours
de� ned earlier from 6 £ £ 105 to 3:5 £ £ 106 s ¡ 1.

this � rst application, but dilatation will be used to represent the
acoustic � eld in all of the paper. The typical double spiral pattern of
a rotating quadrupolar source, found analytically by Powell23 and
numerically by Lee and Koo22 and Mitchell et al.,24 is obtained.

B. Application of LEE
1. Source Terms

Aerodynamic � uctuations provided by the DNS are now used
to build up the source terms (2). They are recorded every itera-
tion from t D 20001t to 60001t , on a square domain of size 9:5r0

corresponding to an 121 £ 121 grid, and stored into 240-megaoctet
� les. The source domain is large enough to avoid signi� cant trunca-
tion of the source terms. Their amplitudeson the boundariesare less
than 1% of their maximum amplitude reached in the source domain.
LEE (1) are then solved on the same mesh as the earlier DNS, with
the same time step because the numerical algorithms are identical.

The two source term components,instantaneousSi andaverageSi

calculated from the 4000 recording time steps, are shown in Fig. 3.
The value of the averageof the source terms is not negligible,of the
order of one-third of the value of the instantaneous source terms.
LEE are solved with source terms Si , then with Si ¡ Si . The two
dilatation pro� les obtained in this way at t D 28001t are presented
in Fig. 4. The main differenceis that an acoustic transientsignalwith
amplitudehigher than one of physicalradiation is observedby using
Si but not with Si ¡ Si . This transient may generate spurious waves
when hitting the boundaries:Centering the source terms introduced
into LEE allows avoiding this numerical dif� culty.
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Fig. 4 Two corotating vortices in a medium at rest. Dilatation pro� les
obtained at t = 2800D t, in s ¡ 1 , at x2 = 0 with x1 >0, by solving LEE, with
source terms: – – – , Si and ——, Si ¡ Si.

Fig. 5 Noise generated by two corotating vortices in a medium at rest;
snapshot of the dilatation � eld obtained at t = 6000D t by solving LEE
with source terms (2), levels from ¡¡ 15 to 15 s ¡ 1 .

Fig. 6 Two corotating vortices in a medium at rest; dilatation pro� les
obtained at t = 6000D t, s ¡ 1, along the line x1 = x2 with x1 >0: – – –, by
solving LEE with source terms (2) and ——, by DNS.

2. Results
The dilatation � eld predicted by LEE at t D 60001t is presented

in Fig. 5. It is in good agreement with the reference solution.3 To
provide a more quantitativecomparison,dilatationpro� les obtained
by solving LEE and from the DNS are shown in Fig. 6, and they are
superposable.This simple example shows that the acoustic analogy
based on LEE with the source term (2) is able to provide correctly
the radiated acoustic � eld when there is no mean � ow and thus no
acoustic–mean � ow interactions. In this case, the result obtained
by solving Lighthill’s equation with the same source region would
have been the same.

IV. Sound Field Generated by Two Corotating
Vortices in a Sheared Mean Flow

A. Flow Simulation
To study how mean � ow effects on propagation are accounted

for by the hybrid method, the vorticity distribution de� ned earlier
in Sec. III, consisting of two corotating vortices, is simply super-
imposed on a sheared mean � ow with a zero convection velocity,

Fig. 7 Sheared mean � ow with a zero convection velocity; two � ow
velocities §§ D U and rotation of two corotating vortices shown by !r .

Fig. 8 Two corotatingvortices placed in a sheared mean � ow; snapshot
of the dilatation � eld obtained at t = 2500D t by DNS; levels from ¡ ¡ 50
to 50 s ¡ 1.

shown in Fig. 7. The following hyperbolic tangent pro� le is chosen
for the mean � ow:

Nu1.x2/ D 1U tanh.2x2=±!/ (3)

with 1U D 0:125c0 . The vorticity thickness is taken as ±! D 4r0,
where r0 is half the distance between the two vortices. Thus, the
Reynolds number based on the velocity difference 21U and the
vorticity thickness is 0:816 £ 105. Mean density and mean pressure
are constant. The acoustic reference solution is again calculated
directly by DNS. The middle part of the mesh given in Sec. III.A is
used to obtain a Cartesian grid of 251 £ 251 points, which extends
to 55r0 in each direction.

The vorticity � eld shows the usual steps of the merging process,
given earlier in Sec. III.A: a time of corotation of the two vor-
tices, followed by a sudden merger, and � nally by the formation
of a single circular vortex. In this con� guration, however, the ro-
tation induced by the sheared mean � ow is added to the natural
rotation of the two spinning vortices. Thus, the period of rotation
is smaller, Tr ’ 7501t , and corresponds to an acoustic wavelength
of ¸a ’ 16:7r0 . Moreover, there are only three periods of corotation
before the merger. The dilatation � eld obtained by DNS at time
t D 25001t is shown in Fig. 8. The dilatation variable is related to
the acoustic pressure by

2 D ¡ 1

½0c2
0

³
@p

@t
§ 1U

@p

@x1

´

for the upper stream and lower stream, respectively. In comparison
with Fig. 6, wave fronts are ovalized due to mean � ow convection
effects. There are also refraction effects, but they are not important
because the shear layer vorticity thickness 4r0 is small with respect
to the acoustic wavelength ¸a .



BOGEY, BAILLY, AND JUVÉ 239

Fig.9 Two corotatingvortices placed ina sheared mean � ow; dilatation
pro� les obtainedat t = 2500D t; s¡ 1, along the line x1 = x2 with x1 >0, by
solving LEE with source terms (2): – – – , with mean � ow, – ¢ – ¢ , without
mean � ow, and ——, by DNS.

B. Application of LEE
Source terms are recordedevery iterationbetween t D 2001t and

25001t on the same square domain as in Sec. III.2, and stored into
130-megaoctet � les. LEE are solved by using the analytic mean ve-
locity pro� le (3). The transverse mean velocity is zero and mean
pressure and density are taken to be constant, with the same values
used to initialize the DNS. No instabilitywave is observed because
the shear � ow has no convection velocity. It is numerically very
favorable because the exponentialgrowth of instabilitywaves clas-
sically found in a uniform shear � ow would have made the noise
calculation impossible.

The dilatation � eld predicted by solving LEE is consistent with
the DNS � eld shown in Fig. 8. The dilatationpro� le obtained along
a diagonal line of the computationaldomain is plotted in Fig. 9, and
it is in very good agreement with the DNS pro� le. Acoustic–mean
� ow interactions are, thus, properly taken into account in the LEE.
The importance of mean � ow effects on wave propagation in this
� ow con� gurationcan be underlinedby solving LEE without mean
velocity � eld, by setting Nu1 D 0. This is clearly illustrated by the
correspondingdilatation pro� le shown in Fig. 9, which is wrong in
amplitude and in phase.

V. Sound Field Generated by a Mixing Layer
A. Flow Simulation

In this last application, the noise generated by a subsonic mix-
ing layer between two � ows at U1 D 40 and U2 D 160 m ¢ s¡1 is
studied, the sound velocity being c0 ’ 340 m ¢ s¡1 (Fig. 10). The
mixing layer correspondsto a more general � ow than the two earlier
con� gurations. The in� ow hyperbolic tangent pro� le is given by

u1.x2/ D .U1 C U2/=2 C [.U2 ¡ U1/=2] tanh[2x2=±!.0/] (4)

where ±!.0/ is the initial vorticity thickness. One also de� nes the
convection velocity as Uc D .U1 C U2/=2 D 100 m ¢ s¡1, and the
Reynolds number Re D .U2 ¡ U1/±!.0/=º D 1:28£ 104 . The � ow
is forced at its fundamental frequency f0 and its � rst subharmonic
f0=2 to � x the locationof vortex pairings in the mixing layer around
x1 ’ 70±!.0/. The acoustic � eld is calculated directly by a LES
using ALESIA. Details of the simulation as well as acoustic re-
sults and comparisons with Lighthill’s analogy can be found in
Bogey3 and Bogey et al.7;20 The dilatation � eld is shown in Fig. 11
on the whole physical computational domain. Wave fronts are ob-
served coming from the location of pairings with an acoustic wave-
length ¸p D 51:5±!.0/, corresponding to the frequency of pairings
f p D f0=2. Convectioneffects are visible and are well marked in the
upper rapid � ow.

B. Application of LEE
1. Source Terms

The source region extends from 5±!.0/ to 235±!.0/ in the axial
directionand from ¡50±!.0/ to 50±!.0/ in the transversaldirection.
The mesh used in the source region is coarser because only every
other point of the LES grid in the two coordinatedirections is kept.
Source terms are recorded every other time step, during the last
5400 LES iterationscorrespondingto 16 pairing periods, and stored

Fig. 10 Mixing layer; two � ow veloc-
ities U1 and U2.

Fig. 11 Noise generated by a mixing
layer; snapshot of the dilatation � eld
obtained by LES, levels from ¡ 1:6 to
1.6 s ¡ 1 .

Fig. 12 Mean axial velocity contours obtained by LES in the mix-
ing layer; contours from bottom to top: 44, 52, 68, 100, 132, 148, and
156 m ¢ s ¡ 1 .

into 250-megaoctet � les. In this way, 1tLEE D 21tLES , and space or
time interpolationsof source terms are avoided. The mean velocity
� eld is providedby the LES, whereas mean density and pressureare
constant. Figure 12 shows the mean axial velocity contours in the
shear � ow region and shows clearly the location of vortex pairings
around x1 ’ 70±!.0/ with a doubling of the shear layer thickness.

2. Simpli� ed Formulation of LEE
Growing instabilitywaves are excitedby source terms introduced

into LEE, through the mean shear @ Nu1=@x2 in the vector H (see ex-
pressionin AppendixA). To prevent the exponentialdevelopmentof
linear instabilitywaves,we setH D 0. This simpli� ed formulationof
LEE allows us to consider only the acoustic mode (see Appendix B
for a discussionof this assumption). A test case is also performed in
Appendix C to show that acoustic propagation is not signi� cantly
modi� ed in the case of a monopolar source at frequency f p placed
in the mean velocity � eld of the mixing layer.

3. Contribution of the Average of Source Terms
The source terms in Eq. (2) are decomposed as Si ¡ Si . The two

components Si and Si are presented in Fig. 13, and they have simi-
lar amplitude. To investigate the contribution of the average of the
source terms to the pressure � eld, in addition to the acoustic tran-
sient found in the � rst application, LEE are solved with the mean
velocity � eld taken as zero and with three source terms, Si ¡ Si ; Si ,
and Si successively.Figure 14 shows the transversepressurepro� les
found with the three source terms. The time average of the source
terms generates a steady pressure � eld.
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a)

b)

c)

d)

Fig. 13 Noise generated by a mixing layer; snapshot of source terms,
levels from ¡ 1:8 to 1.8 kg ¢ m ¡ 2 ¢ s ¡ 2 : a) S1 ¡ S1, b) S2 ¡ S2, c) S1,
and d) S2 .

Fig. 14 Noise generated by a mixing layer; transverse pressure pro-
� les obtained at x1 = 90±!(0) by solving LEE with source terms: ——,
Si ¡ Si, – – –, Si, and ¢ ¢ ¢ ¢ , Si.

To understandthis,we considerthe integralsolutionof Lighthill’s
equation in three-dimensional free space, writing the density � eld
as

½.x; t/ ¡ ½0 D 1

4¼c2
0

Z

Vs

1
jx ¡ yj

@2Ti j

@yi @y j

³
y; t ¡

jx ¡ yj
c0

´
dy

where Ti j is Lighthill’s tensor, Ti j D ½u i u j , in a unheated � ow at
a high Reynolds number, and Vs is the sound source volume. The
time average of Lighthill’s tensor Ti j induces a density � eld given
by

N½.x/ ¡ ½0 D 1

4¼c2
0

Z

Vs

1
jx ¡ yj

@2Ti j

@yi @y j
.y/ dy

and using properties of the convolution product

N½.x/ ¡ ½0 ’ 1

4¼c2
0

@2

@xi @x j

³
1
x

´ Z

Vs

Ti j .y/ dy

as x ! 1. Therefore, in the far � eld, this steady compressible � eld
decreasesas 1=x3 , faster than acousticwaves, and is negligible.This
reasoning has been made in three dimensions for simplicity, but a
similar behavior is expected in two dimensions. To get the correct
radiated � eld in the near � eld, it is thus recommended to subtract
the time average of source terms introduced into LEE.

4. Results
LEE are now solved with the source term givenby expression(2),

and the calculateddilatation� eld is comparedwith the LES result in
Fig. 15. Recall that the mean velocity � eld provided by LES is used
to linearize Euler’s equations and that the term H is canceled. The

a) b)

Fig. 15 Noise generated by a mixing layer; snapshots of the dilatation
� eld obtained at the same time, levels from ¡ 1:4 to 1.4 s ¡ 1: a) from
LEE with source terms (2) and b) by LES.

Fig. 16 Noise generated by a mixing layer; transverse dilatation pro-
� les obtained at the pairing location x1 = 70±! (0): – – –, from LEE with
source term (2) and ——, by LES.

a)

b)

Fig. 17 Noise generated by a mixing layer; snapshots of the dilatation
� eld obtained by solving LEE, levels from ¡ 1:4 to 1.4 s ¡ 1: a) without
taking into account mean � ow by setting Åu1 = Åu2 = 0 in LEE and b) with
the mean � ow in LEE.
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two acoustic � elds are quite consistent, and this point is made clear
in Fig. 16 by comparisonof correspondingtransversedilatationpro-
� les. The two pro� les are in excellent agreement in amplitude and
in phase, except in the source region, where the acoustic � eld is
greatly dominated by the local � ow� eld. Thus, the hybrid method
based on LEE has provided the correct acoustic radiation for this
� ow con� guration representativeof � ows usually studied. The im-
portance of mean � ow effects is shown in Fig. 17. LEE are solved
using the source term (2), without mean velocity � eld and with the
mean velocity� eld. Mean � ow effects,especiallyconvectioneffects
in the upper � ow, stronglyaffect the radiated � eld and are well taken
into account by the wave operator.

VI. Conclusions
This study shows that an acousticanalogybasedon LEE is able to

provide aerodynamic noise, accounting for the major part of mean
� ow effects. The expression of source terms is validated without
usingadhocassumptionsbecauseboth thevelocity� ow� eld and the
referenceacousticfar � eldare givendirectlyby solvingthe unsteady
compressible Navier–Stokes equations. This supports the form of
the source terms used in previous works15 combining LEE with a
stochastic velocity � eld. In this analogy, all mean � ow effects on
wave propagationare taken into account through the wave operator,
and only noise generation is included into the source terms, which
are quadratic in velocity � uctuations.Growing instabilitywaves are
removed by considering a simpli� ed formulation of LEE, in which
the mean shear term corresponding to the second derivative of the
velocity pro� le in Rayleigh’s stability equation is canceled. This
modi� cation of LEE is a good approximation of high-frequency
sound propagationand does not modify propagationsigni� cantly in
the low-frequency case. Further studies are also needed to analyze
the associated stability equation.

Appendix A: De� nition of Source Terms for LEE
The three vectorsE; F, and H of LEE (1) written in the following

two-dimensionalconservative form:

@U
@t

C @E
@x1

C @F
@x2

C H D S

are given, respectively, by

E D
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.° ¡ 1/p0 r ¢ Nu ¡ .° ¡ 1/u0 ¢ r Np
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CCCCCA

The term H is zero for a uniformmean � ow� eld. It containsa part
of the refraction effects. The vector S D .0; S1; S2; 0/t is a possible
aerodynamic source term.

To derivea wave equationon the pressure� uctuation p0 including
all acoustic–mean � ow interactions,LEE must be combinedto elim-
inate all of the terms involvingvelocity � uctuations.In this way, the
simplest nontrivial differential equation written on the pressure is
obtained in the case of a strictlyparallelmean � ow, with Nu1 D Nu1.x2/
and Nu2 D 0. Becausethe steadymean � owsatis� esEuler’s equations,
the mean pressure is necessarily constant with Np D p0 , whereas the
mean density and speed of sound are only function of the trans-
verse coordinate x2; N½ D N½.x2/, and Nc D Nc.x2/. Moreover, entropy
� uctuationsare simply convectedby the mean � ow without produc-
tion, and if we assume no entropy � uctuation at a given time, then
p0 ’ Nc2½0. Applying the convective derivative based on the mean
� ow velocity ND= NDt D @=@t C Nu1@=@x1 to the continuity equation,

taking the divergence of the momentum equation, and subtracting
the two expressions lead to Phillips’ wave equation:

1
Nc2

ND2 p0

NDt2
¡ r 2 p0 ¡ 2 N½

@u0
2

@x1

d Nu1

dx2
D ¡ r ¢ S (A1)

To eliminate the term linear in u 0
2, the operator ND= NDt is again ap-

plied to Eq. (A1). Using an appropriatecombinationof the resulting
expression with the transverse momentum equation differentiated
with respect to x1 , one � nds

ND
NDt

µ
1
Nc2

ND2 p0

NDt 2
¡ r 2 p0

¶
C 2

d Nu1

dx2

@ 2 p0

@x1@x2
D 3 (A2)

where the source term is

3 D ¡
ND
NDt

r ¢ S C 2
d Nu1

dx2

@S2

@x1

Equation (A2) is derived from LEE using the � uctuating
pressure25 for simplicity, but a similar equation could be obtained
with the logarithmic pressure. It takes the form of Lilley’s wave
equationwhosean unambiguousinterpretationcanbe providedonly
for a unidirectionalsheared mean � ow. In this case, Goldstein25 has
given a simpli� ed formulation of Lilley’s equation, recently sup-
ported by DNS results of Colonius et al.12 To make Eq. (A2) closely
correspond to Goldstein’s simpli� ed equation, the source term 3
must be written as

3 D
ND
NDt

@2½u0
i u

0
j

@xi @x j
¡ 2

d Nu1

dx2

@2½u 0
2u

0
j

@ x1@x j

(A3)

See, in particular, expressions (1.22) and (6.24) in Ref. 25 corre-
sponding, respectively, to LEE and the simpli� ed Lilley equation.
As a consequence,the correspondingsource terms in LEE are given
rigorously by

Si D ¡
@½u 0

i u
0
j

@x j

Appendix B: Simpli� ed LEE
The simpli� ed wave operator used in Sec. V to avoid the growth

of instability waves is obtained by cancelling the vector H in LEE.
This vector is written as [0; N½u 0

2 d Nu1=dx1; 0; 0]t for a strictlyparallel
mean � ow. The effects of the removal of H on Rayleigh’s equation
governinginstabilitywavesandon soundpropagationareof interest.

Instabilitywaves are governedby the homogeneousLEE (1). For
a strictly parallel mean � ow Nu1 D Nu1.x2/, assuming incompressible
perturbationsto keep the problem as simple as possible and writing
the transversevelocityu 0

2 as the real part of Ou2.x2/ exp[i.kx1 ¡ !t/],
Rayleigh’s stability equation is given by

³
Nu1 ¡ !

k

´µ
d2 Ou2

dx2
2

¡ k2 Ou2

¶
¡ d2 Nu1

dx2
2

Ou2 D 0 (B1)

For spatial stability analysis, the axial wave number k D kr C iki is
complex, whereas the angular frequency ! is real. Thus, perturba-
tions are unstable when the imaginary part of the wave number is
negative, for ki < 0.

The new stability equation corresponding to the simpli� ed LEE
is written as

³
Nu1 ¡ !

k

´µ
d2 Ou2

dx2
2

¡ k2 Ou2

¶
C d Nu1

dx2

d Ou2

dx2
D 0 (B2)

and the associated homogeneous wave equation is

ND
NDt

µ
1
Nc2

ND2 p0

NDt2
¡ r 2 p0

¶
C

d Nu1

dx2

@2 p0

@x1@x2
D 3 (B3)

Compare the two new equations [Eqs. (B2) and (B3)] to the clas-
sical ones for full LEE [Eqs. (B1) and (A2), respectively].The sec-
ond derivative of the mean velocity Nu1 does not appear in Eq. (B2)
governing instability wave developments.This term plays a crucial
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role in Rayleigh’s equation (B1) with the in� exion point theorem.
No simple rule can be applied for the stability analysisof simpli� ed
LEE, but this formulation seems to be stable in our numerical ex-
periences as well as in the numerical tests performed by one of the
referees. The consequence for acoustic propagation of the removal
of H is that the refraction term proportional to d Nu1=dx2 in Eq. (B3)
differs by a factor two with respect to Lilley’s Eq. (A2). This term
becomes small compared to the higher derivative terms as the fre-
quency increases.11;25 Thus, Eq. (B3) is a good approximation for
the high-frequency case. The low-frequency case is more ambigu-
ous, and to clarify this point, a numerical example is provided in
Appendix C.

Appendix C: Sound Propagation Problem
Solved by Simpli� ed LEE

The response of simpli� ed LEE to time-harmonic forcing of the
mixing layer mean � ow studied in Sec. V is now investigated.The
mean axial velocity is expressed as

Nu1.x1; x2/ D .U1 CU2/=2C [.U2 ¡U1/=2] tanh[2x2=±!.x1/] (C1)

where the vorticity thickness is taken as

±!.x1/ D ±!.0/
©

3
2

C 1
2 tanh[.x1 ¡ 70/=10]

ª

to � t the LES result shown in Fig. 12. The vector S represents a
monopolar source:

S D ² sin.!t/ exp

"
¡ .2/

¡
x2

1 C x2
2

¢

b2

#
2

6664

1
¯

c2
0

0

0

1

3

7775

with the angular frequency ! D 2¼ f p corresponding to the vor-
tex pairing frequency, located at x1 D 70±!.0/. The amplitude of
the source is ² D 10¡4 . The half-width of the Gaussian pro� le is
b D 3 £ 1; 1 D 0:24±!.0/ being the step size in the shear region.
The mesh grid is composed of 651 £ 501 points to obtain a compu-
tationaldomain similar to the domainused in Sec. V, but larger in the
downstream direction to avoid growing instability waves reaching
the out� ow boundary conditions and then deterioratingthe acoustic
� eld.

The pressure � eld obtained by solving simpli� ed LEE is repre-
sentedin Fig.C1. Wavesfrontsareovalizedby the two uniform� ows
Ui by convectioneffects, and no instabilitywaves are observed.The
difference between the pressure � elds provided by simpli� ed LEE

Fig. C1 Monopolar source in a
sheared mean � ow; pressure � eld
obtained using simpli� ed LEE with
H = 0, levels from ¡ 2:6 £ £ 10¡ 6 to
2:6 £ £ 10¡ 6 .

Fig. C2 Monopolar source
in a sheared mean � ow; dif-
ference between the pressure
� elds obtained using simpli-
� ed LEE and full LEE, con-
tours: – – – , [0:5; 1; 2; 4] £ £
10¡ 7 and ——, [1; 2; 4] £ £
10¡ 6.

a)

b)

Fig. C3 Monopolarsource in a sheared mean � ow; transverse pressure
pro� les obtainedusing ——, simpli� ed LEE and – – – , fullLEE: a)x1 = 0
and b) x1 = 300±! (0).

and full LEE is plotted in Fig. C2. As expected, using full LEE,
instability waves are generated and convected in the downstream
direction. Resulting errors for the acoustic � eld are limited to two
opposite regions close to the � ow axis, where refraction effects ap-
pear typicallyfor a shearedmean � ow. However, theyare small,with
a difference of one order of magnitude with respect to the acoustic
� eld, in spite of a ratio ¸p=±!.0/ D 51:5. Transverse pressure pro-
� les obtainedupstreamand downstreamfrom the monopolarsource
at x1 D 0 and 300±!.0/ are shown in Fig. C3 and con� rm more quan-
titatively the good approximation of sound propagationeven in this
low-frequency case.
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modèles acoustiques hybrides,”Ph.D. Dissertation, No. 2000-11,Ecole Cen-
trale de Lyon, Ecully, France, 2000.
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