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Abstract

An algorithm for the computation of steady and
unsteady inviscid, compressible, two-dimensional
flows is presented. Grid generation utilizes the
quadtree spatial subdivision algorithm, allowing
automatic meshing of boundaries of arbitrary ge-
ometry, and allowing h-adaptivity to geometric
and solution features. Internal boundaries and in-
terfaces may move, deform, coalesce, and disinte-
grate arbitrarily. The flow-solver is based on the
MUSCL scheme. For moving boundaries, a novel
feature of the algorithm is that the grid is sta-
tionary and boundaries are allowed to move across
grid-lines. This is enabled by merging cells in the
vicinity of boundaries to form composite cells that
are topologically invariant during individual mo-
tion steps. This merging also eliminates the small-
cell time-step constraint introduced by grid non-
conformality. The motion of boundaries is tracked
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by a Lagrangian scheme that eliminates any dif-
fusive distortion of the geometry. The motion of
boundaries may be prescribed, or computed from
aerodynamic, body, or contact forces in a coupled
fashion. The capacity for exact preservation of
the geometry makes the technique suitable for ac-
curate solution of problems with aero-elasticity or
large-scale rigid-body motion. Computations il-
lustrating the capabilities and some potential ap-
plications are presented.

1 Introduction

Moving boundary problems arise in a large va-
riety of physical situations. Examples include in-
teraction of fluid interfaces, free-surface flows, so-
lidification, and fluid-structure interactions. The
characteristic feature is the presence of relative
motion between different parts of a boundary or
between different boundaries. This could addi-
tionally result in topologic changes such as co-
alescence, or formation of enclosures. Adequate
simulation of such problems frequently demands
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high accuracy in the computation of the location
of boundaries and of the solution in their vicinity.

In regard to computing the location and mo-
tion of boundaries, the techniques developed so far
have tended to either follow a predominantly Eu-
lerian formulation, or a predominantly Lagrangian
one. The advantage of the Eulerian formula-
tion is that it allows interfaces to undergo arbi-
trary motion, deformation, and topologic trans-
formation (such as merging, formation of voids,
or disintegration). Its disadvantage is that in-
terfaces are represented diffusely, and their shape
cannot be well-preserved during advection. The
Lagrangian representation (which includes fixed-
topology grids [1} and chimera grids [2]) is com-
putationally efficient and allows accurate preser-
vation of the interface geometry, but cannot han-
dle arbitrary motions, deformations, or topo-
logic transformations, except if remeshing is used
[5, 6, 7].

The work presented here attempts to combine
the strengths of both approaches. A Lagrangian
scheme that allows exact definition and preserva-
tion of interfaces is used for modeling the interface
motion. However, instead of using a moving-grid
that remains attached to the interface as with tra-
ditional Lagrangian approaches, a single station-
ary grid is used as with traditional Eulerian ap-
proaches. This requires interfaces to freely move
across grid-lines, and this is enabled by use of a
cell-merging procedure that combines cells in the
vicinity of boundaries into composite cells that
undergo a change in area but remain intersected
along the same edges during a motion step. The
use of a flexible data-structure for representing
boundaries allows large-scale geometric and topo-
logic transformations to be handled generally, and
allows precise control over interface behavior dur-
ing topologic transformations, offering a good op-
portunity to model the actual physical mecha-
nisms involved.

2 Algorithm Description

2.1 Spatial Discretization

The spatial discretization algorithm is based on
the Quadtree idea: an initial square cell contain-
ing all boundaries and the entire solution domain
is subdivided into four equal cells. Each resulting
cell is similarly subdivided until every boundary
segment within each cell is sufficiently resolved.
This is achieved when the segment within each cell
is adequately approximated by the straight line
joining the points of intersection of the segment
with the cell. This algorithm can robustly gen-
erate grids for boundaries of arbitrary complex-
ity. The discretization of the geometry is locally
second-order accurate, and the grid quality is sat-
isfactory for isotropic flows.

If boundaries move, their intersection pattern
with the grid is re-evaluated after every discrete
motion step and, depending on this, cells in the
vicinity of boundaries may be coarsened or sub-
divided. In this manner, the geometry remains
represented within the required order of trunca-
tion error at all times while the number of cells is
kept to the minimum possible. The grid genera-
tion procedure imposes no restrictions on changes
in the grid topology neither between nor along
boundaries, in common with the traditional Eu-
lerian approaches.

Use of a tree data-structure and use of cells
that have simple shapes offers two main ad-
vantages over traditional unstructured-grid ap-
proaches; namely, reduced storage requirements,
and more economical computation of geometric
properties.

2.2 Representation of Boundaries

Each boundary in the grid is specified by a set
of coordinate pairs and the continuities (either
C° C', or C?) thereat. These defining points
are then interpolated by a Composite Parametric
Cubic Spline. The representation of a boundary
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on the Cartesian grid is then obtained by com-
puting the intersections of all its spline segments
with the Cartesian cells, and connecting the in-
tersection points by straight line segments. For
moving boundaries, a separate representation is
needed for each of the positions required by the
time-integration scheme; for example, for a two-
step scheme, only two positions (the initial and
final ones) are required.

Boundary motion is specified by specifying the
motion of the defining points of the boundary,
without any regard to the intersection points. The
defining points may be moved by specifying in-
dividual velocity or displacement functions, or in
the case of flow-coupled motion, by computing the
force on each of the points and solving a kinetic
equation. In the latter case, the force on each
point is obtained by integrating the force along
the two spline segments connected to it.

The points and spline segments are retained in a
link-list data-structure. This data-structure read-
ily allows the introduction or deletion of points,
as may be necessary during large deformations. It
also allows automatic disruption and reconnection
of spline segments (either along the same bound-
ary or between different boundaries) during a com-
putation, as shown in figure 1. Since the spline
interpolation satisfies coordinate invariance, rigid
body motion preserves the original geometry to
the truncation error of the representation of the
geometry on the grid.

2.3 Discretization and Solution of
the Governing Equations

The governing equations for an arbitrary, mov-
ing, control-volume can be expressed as

ij}y—)-i-j{f‘n-(fs:ﬁ (1)

where V is the volume enclosed by the control-
surface, Fy, the flux tensor (formulated to account
for control-surface velocity), U the state-vector,
ie. (p,pu,pv, pE)T, and the other symbols have
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Figure 1: Link-list data-structure for splines,
showing boundary disruption and reconnec-
tion.

their usual denotations. The discrete analog em-
ployed has the form
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where Fy, is an appropriate time-average of the
flux tensor, and the other symbols are as above.

Interface fluxes are computed either by exact or
approximate Riemann solvers, except on bound-
aries, where the following formula is used to eval-
uate the flux

0
- o A
I Py (3)
pAzx

pUz Ay — pvyAz

where v; and vy are the local velocity compo-
nents of the boundary, and Az and Ay are the
components of ds.
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Second order temporal accuracy is accom-
plished by Predictor-Corrector time-stepping, a
two-step scheme; viz.:

(0) (n)
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Second-order spatial accuracy is accomplished
by piece-wise linear reconstruction of the primi-
tive variables, using either a Least-Squares or a
Green-Gauss evaluation. At boundary segments,
the value of the pressure, p, in equation (3) is
extrapolated from the interior of the domain to
the segment’s mid-point, using the reconstructed
gradients in the cell cut by the segment. Mono-
tonicity is enforced by limiting the reconstruction
gradients near discontinuities and extrema. The
overall scheme satisfies the High-Resolution defi-
nition.

2.4 Solution-Adaptation and Cell-
Merging

Spatial solution-adaptation is accomplished by
subdivision or coarsening of cells. If the gradi-
ents (of the primitive variables) in a cell are too
high, the cell is subdivided; if they are too low,
the cell is coarsened. Refinement and coarsening
is performed as needed after each time step to en-
sure that rapidly evolving geometric and solution
features remain captured within the required res-
olution levels.

During a motion-step, the topologic status of
cells in the vicinity of boundaries may switch from
one of the three possible states (in, out, or inter-
sected) to another. Satisfactory handling of the
solution in such cells is the major obstacle to al-
lowing motion of boundaries across grid-lines. The
approach adopted in this work is to merge cells in
the vicinity of boundaries to form polygonal com-
posite cells that straddle the boundary and that

remain topologically invariant during individual
motion steps.

Figure 2 illustrates the merging process in the
vicinity of a moving boundary. There, the shading
indicates which cells are combined together into
composite computational cells. The cells that re-
main un-intersected throughout the motion step
are shown by dotted lines.

interior

| e il position
e final position

| & non-envelope cell merged
: to satisfy area constraints

Figure 2: Cell merging in the motion envelope
of a moving boundary.

The figure illustrates how although the indi-
vidual components of composite cells may change
their topologic status during a motion step, none
of the composite cells do so. The figure also in-
dicates how merging can be used to meet pre-
specified requirements on the minimum area of
computational cells at the start and end of the
motion step, eliminating any time-step restrictions
imposed by small cells that arise from the non-
boundary-conformality.

Within each composite cell, the fluid-dynamic
problem is reduced to the motion of an imperme-
able boundary across a variable-area cell. The up-
date procedure and boundary conditions for this
problem are easily implemented within the Finite-
Volume method, as outlined above.
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After the discrete motion step is completed, the
updated solution in each composite cell is pro-
jected back conservatively to its member cells ac-
cording to their final areas and topologic status,
and the solution gradient in the composite cell.
This sequence of operations is repeated for every
motion step.

By sufficiently refining the grid in the vicinity
of any geometric feature, the merging procedure
described above can always be carried out for any
boundary geometry.

While merging must locally increase the trun-
cation error, grid convergence studies of specific
flow-fields, as in [3], provide strong evidence that
the effect on the order of accuracy is small.

3 Demonstrative Results

3.1 Shock-Cylinder Interaction

An experimental investigation of the collision of
planar shocks with a stationary cylinder was re-
ported in [4]. Figure 3 shows the grid and density
contour plots for the two times shown in [4] for
the Mach 2.81-2.82 case. However, in the compu-
tation, an arbitrary Galilean transformation was
imposed on the velocity of the initial flow-field and
the cylinder. Throughout the flow-field, the com-
putation agrees to within a few percent with the
results of another computation with a stationary
cylinder, and the computational results are in ex-
cellent agreement with the experimental ones.

3.2 Supersonic Inlet Flow

Figure 4 shows the Mach number contours and
corresponding grids at three times during the pre-
scribed deformation of a variable-geometry super-
sonic inlet in a free-stream with Mach number
2.54. The first figure in the sequence shows the
initial inlet geometry while the last shows the ter-
minal geometry; the geometries for intermediate
times were obtained by linear interpolation be-
tween these two. The final figure shows the con-
figuration with the fully-ingested shock pattern,

with the flow successfully decelerated through a
series of oblique shocks to the required Mach 1.45
at the exit.

3.3 Store Separation

Figure 5 shows a computation in which the mo-
tion of a store away from an airfoil is determined
by the applied aerodynamic and (the much less
significant) gravitational force. In order to in-
crease the drag on the store, its trailing edge de-
forms gradually to a prescribed shape during the
initial phase of the motion. Other than for this,
the airfoil and the store are treated as rigid bodies,
and motion starts from rest.

3.4 Projectile Impact

Figure 6 shows a projectile penetrating an
elasto-plastic target. The projectile is accelerated
from rest under the aerodynamic forces due to the
pressurized gas in its rear cavity. Upon attaining
a speed of Mach 3, the pressure and temperature
of the gas in the projectile’s front cavity instanta-
neously rise causing the projectile to fracture and
its front and rear parts to separate and accelerate
apart. The front part subsequently collides with,
breaches, and enters a rectangular enclosure. The
motion of the enclosure’s walls is computed from
the applied aerodynamic and impact forces using
a simplified structural-dynamic model. The fig-
ure shows density contour and grid plots at three
stages in the simulation. This problem demon-
strates the automatic handling of boundaries that
move, deform, and undergo topological changes.
It also demonstrates the ability to simulate separa-
tion, impact, and fluid-structure interaction prob-
lems.

4 Computational Require-
ments

For stationary boundaries, 29 4-byte words of
memory are required per leaf cell of the tree. The
corresponding figure for moving boundaries is 39.
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On a workstation rated at SPEC{p92:150.6, cur-
rent processing speeds are approximately 3,000
and 2,000 cells per second for stationary and mov-
ing boundaries respectively. For typical aerody-
namic applications, roughly half the total com-
putational effort is consumed in computation of
fluxes and reconstruction of gradients.

5. Concluding Remarks

The main feature of the approach adopted in
this work is that a Lagrangian technique is used for
tracking interfaces, while an Eulerian technique is
used for computing the flowfield. This is enabled
by using a stationary grid, while allowing bound-
aries to move across grid-lines. The major ben-
efits of this approach include elimination of the
need to re-evaluate geometric properties of mov-
ing or deforming cells, and simplification of the
enforcement of Geometric Conservation Laws [8].
The major drawback of this approach is the need
for additional geometric computations to deter-
mine composite cells. In terms of capabilities, the
algorithm presented here differs from those that
have appeared in the literature in its truly auto-
matic handling of arbitrary geometries, motions,
and changes in boundary topology.

The technique and capabilities described above
have been demonstrated for 2-D unsteady flows
and for 3-D space marching applications and only
for interfaces between ideal gases, or between ideal
gases and solids (which may be rigid, elastic, plas-
tic, or elasto-plastic). Although the emphasis in
this paper was on moving-boundary applications,
the algorithm is applicable to unsteady problems
with stationary boundaries, as well as to steady-
state problems.
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Figure 1: Density Contours and Grids for a Projectile Impact Problem.
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Density Line Contours.
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