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Abstract. In plasma physics, the interaction of radio-frequency waves with a plasma

is described by a Fokker-Planck equation with an added quasilinear term. In nonlinear

filtering with conditional probability density of the state xt given the observation {y(s) :

0 < s < <} is also described by a Fokker-Planck equation with an added first order term.

Method for solving Fokker-Planck equation by means of ordinary differential equations

is discussed.

1. Introduction. Fokker-Planck models are most useful for the study of rf-driven

currents [Fi] or neutral beam heating in tokamaks ontime scales longer than the collisional

time (tcou). In [Ka], Karney took the plasma to be azimuthally symmetric about the

magnetic field and homogeneous (representative of the central portion of a tokamak

plasma). He presented some numerical methods to solve the Fokker-Planck equation in

time and two velocity (or momentum) dimensions only. However, a complete Fokker-

Planck treatment of rf or neutral beam heating in tokamaks generally requires solution

of an equation which is at least two dimensions in momentum/velocity space and two

dimensions in configuration space. A reduction in dimensionality occurs in cases where

the bounce/transit time of the particles, T&, is shorter when compared to the collision

time, i.e. n tcoh- The present generation of larger tokamak experimental devices often

operate with most of the plasma in this low-collisionality "banana" regime. Moreover,

it is usually the case that the non-Maxwellian particles generated by auxiliary heating

and current drive are in the low-collisionality regime. In such cases, a "bounce-average"

over the bounce or toroidal transit motion of the particle is appropriate, reducing the

Fokker-Planck equation to be essentially three-dimensional since the particle distributions

as a function of poloidal angle become constant when expressed as a function of the

collisionless constants of motion. In [Ke-Mc], Kerbel and McCoy developed a numerical

solution scheme for the 3-dimensional Fokker-Planck equation. Therefore in plasma
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physics, it remains very desirable to solve the Fokker-Planck equation for dimensions

larger than 3.

On the other hand, nonlinear filtering is concerned with making estimates of quantities

associated with a stochastic process {xt} on the basis of information gleaned from a

related process {yt}- The process {xt} is called the signal or state process and {yt} is

called the observation process. The goal is the computation, for each t, of least square

estimates of functions of the signal {xt} given the observation history {ys : 0 < s < f},

i.e., the computation of conditional expectations of the form E[<p(xt)\ys '■ 0 < s < f],

or perhaps even the computation of the entire conditional distribution p(t,x) of xt. It

is well known that p(t,x) is given by normalizing a function a(t,x) which satisfies a

Duncan-Mortensen-Zakai (DMZ) equation. By gauge transformation, one can show that

it is sufficient to solve the robust DMZ equation, which is essentially the Fokker-Planck

equation with an added first order term. In [Ya-Ya], it is shown that in order to get a

numerical solution of the robust DMZ equation, it is sufficient to find numerical solution

of the Fokker-Planck equation. Hence from the point of view of nonlinear filtering, it is

also very desirable to solve the Fokker-Planck equation for dimensions larger than 3.

The purpose of this paper is to present an ODE method to solve the Fokker-Planck

equation. These ODEs are of first order. The total number of ODEs is n + n2, where

n is the state space dimension of the Fokker-Planck equation. Since there are many

well-known ODE solvers, the Fokker-Planck equation can be solved very efficiently, even

for very large n.

In Sec. 2, we recall the background of the Fokker-Planck equation from the viewpoints

of plasma physics and nonlinear filtering. In Sec. 3, we show that certain kinds of

Fokker-Planck equations can be solved easily by means of solution of system of first-

order ordinary differential equations.

2. Preliminaries.

2.1. The Fokker-Planck equation in plasma physics. We first recall the Fokker-Planck

equation from the point of view of plasma physics. The Fokker-Planck equation for the

electron e can be written as

(2.1.1) ^ ~ E c{/- f>) + V' = °>
CJl TYlf>

s

where qs and ms are the charge and mass of species s, C(fa,fb) is the collision term

for species a colliding off species b, the sum extends over all the species of the plasma

(typically electrons and ions), Sw is the wave (tu)-induced quasilinear flux, and E= E V||

is the electric field (assumed to be parallel to the magnetic field). The quantity qs carries

the sign of the charge, thus qe = —e. The subscript || refers to the direction parallel to

the magnetic field. The V = d/d V operator operates in velocity space.

Because collisions in a plasma are primarily due to small-angle scattering, the collision

term can be written as the divergence of a flux

(2.1.2) C(faJb) = -V-Sac/b



COMPUTATION OF FOKKER-PLANCK EQUATION 645

in which Eq. (2.1.1) can be expressed as

(2.1.3) ^ + V-5= 0,

where

S — Sc + Sw + Se

is the total flux in velocity space, and

(2.1.4) Sc = XXe/s

S

(2.1.5) Se = ~~~ fe
me

are the collisional (c)- and electric-field (e) - induced electron fluxes.

Typically, two types of terms appear in S■ a diffusion term and a friction term

(2.1.6) S= ~D ■ V/e+ F fe-

Combining (2.1.3) and (2.1.6), we see that the Fokker-Planck equation in plasma physics

looks like:

(2.1.7) ^ = V(D- V/e) + V-(F/e).

2.2. Fokker-Planck equation in nonlinear filtering. The filtering problem considered

here is based on the following signal observation model:

(2.2.1)
( dx(t) = f(x(t))dt + g(x(t))dv(t) x(0) = xo

\ dy(t) = h{x{t))dt + dw(t) y(0) = 0

in which x,v,y, and w are respectively R™,Kp,Km, and Km valued processes and v and

w have components that are independent, standard Brownian processes. We further

assume that n = p; /, g, and h are vector-valued, matrix-valued, and vector-valued C°°

smooth functions. We shall refer to x(t) as the state of this system at time t and to y{t)

as the observation at time t.

Let p(t, x) denote the conditional probability density of the state given the observation

{y(s) : 0 < s < t}. It is well known that p(t, x) is given by normalizing a function a(t, x)

that satisfies the following Duncan-Mortensen-Zakai equation:

m

^2 2 9) > dcT(t'X)^L0<T{t,x)dt+Y,Licr(t,x)dyi(t)

where

1 " f)2 a " at i

L° = 2 £ [9W«tW]« - E - E aj: - 2 E
i,j=1 1 J i=l 1 i= 1 1 i=1

for i = 1,.., , rn, Lt is the zero degree differential operator of multiplication by hi, and <to

is the probability density of the initial point xq. In most of the applications, \g{x)gT(x)\ i.
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are assumed to be constants Gij, 1 < i, j < n. Note that Gij = Gji. Then

ln ^2 n a n A f 1 771

<223» ^\Ec,^-Ef^rEdl\2E>t-
1,3 = 1 2=1 2=1 2=1

Equation (2.2.2) is a stochastic partial differential equation in the sense of

Stratonovich. Define a new unnormalized density

(2.2.4) u(t, x) = exp ^ hi(x)yi(t)*j a(t, x).

Then we can reduce (2.2.2) to the following time varying partial differential equation

(2.2.5)

|j(t,x) = L0u(t,x) + J2 yi(t)[L0,Li]u(t,x)
i= 1

m

+\ E yi(t)yj(t)[[L0,Li],Lj\u(t,x)
i,j=1

u(0, x) = <To(x),

where [Lo,L,] denotes the commutator of the differential operators.

Using the similar technique developed in [Ya-Ya], one can show that it is enough to

solve the Fokker-Planck equation of the following form:

r\ -t TTl r\0 TL <->

, ^ OU . . 1 ^ OU . . /. / X Ou ,

(2.2.6) aj(i,x)=2
i,j=l 13 2=1 1

\i=i 1 i=i /

2.3. Fokker-Planck equation in general form. In view of (2.1.7) and (2.2.6), we shall

consider the following general form of the Fokker-Planck equation on Mn:

(2.3.1)

§f(t,x) = Y1 Gijg^^i^x) - £ fi(x)§£(t,x) + q(x)u(t,x)
i,j=l J i=i

u(O.x) = Uq(x)

where Gij = Gji are constants.

3. Explicit solution of the Fokker-Planck equation in terms of solutions of

ODEs. We shall solve the Fokker-Planck equation (2.3.1) where fi(x) are degree one

polynomials and Q(x) is a degree 2 polynomial:

n

(3.1) fi{x) = £i(x) = Y: djjXj + dj, 1 <i<n

i=i

(3.2) q(x) = xTQx + pTx + r,

where Q = (qij) is an n x n symmetric matrix, pT = (pi,... ,pn) and xT = (xi,... , xn)

are 1 xn matrices, and r is a scalar.

It is well known that any distribution is well approximated by a finite linear combina-

tion of Gaussians of the form a\G\ + • • ■ + a-fcGfc, where s are real numbers and GVs
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are Gaussian distributions. Let Ui be the solution of (2.3.1) with initial distribution G;.

Since (2.3.1) is a linear partial differential equation, it follows that the solution of (2.3.1)

is of the form aiui + ■ ■ ■+aicUk- Therefore it remains to solve (2.3.1) with Gaussian initial

distribution. The following theorem gives an explicit solution of (2.3.1) with Gaussian

initial distribution in terms of solutions of ODEs.

Theorem 3.1. Consider the Fokker-Planck equation on R™ with Gaussian initial dis-

tribution

(3.3)

If(£,£■)= E - £ e,{x)§^{t,x) + q(x)u(t,x)
i,j=1 i=1

U(0 X)= ex A(0)x+B (0)x+C(0) ^

where G^ = Gjt are constants, A(0) = (.Ajj(O)) is an nxn matrix, BT(0) = (Bi(0),... ,

Bn(0)), and xT = (xi,... ,xn) are 1 x n matrices, and C(0) is a scalar. Suppose

conditions (3.1) and (3.2) hold. Then the solution of (3.3) is of the following form:

(3.4) u(t, x) = e*Tm*+BT(t)x+c5

where A(t) is annxn symmetric matrix valued function oft, BT (t) = (B\(t),... , Bn(t))

is a 1 x n matrix valued function of t, and C(t) is a scalar function of t. Moreover, A(t),

BT(t), and C(t) satisfy the following system of ODEs:

(I A(3.5) — = AtGA + 2AGA + AGTAT - (AT + A)D + Q

(3.6) ^ = BtGA + 2BtGtAt + BTGTA - BTD - dTA - dTAT + pT
at

(3.7) ^ = 2 tr(GA) + BTGB-dTB + r.

PROOF: Differentiating (3.4) with respect to t and x,j, we get the following equations:

. du ( TdA dBT dC\
(3-8) — = [xT—x + —j—x + —)u

dt \ dt dt dt

du

dxj

ST A (dxi , dxk \ , R
^ ik ( dx3Xk + Xldx3 i '

i,k=1

AJkXk + AiiXi + bj u

\k=l i=1 /

V/ = [(Ax)t + xT A + BT] u = (xtAt + xtA + Bt)i
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d2u
= Aji + Aij +

k-\ k=l k= 1

n

+Aki%k+

/c=l

n n n

Aji + Aij + ^2 AjkAiexkxe+ ^2 AjkAHxkX( + B, ^ A.jkxk
k,e=l k,t= 1 fc=l

n n n

+ AkjAi(XkX( + AkjAgxkxe + Bj AkjXk

k,e=i k,e=i k=i

EG>.lJ dxidx-i
i,j=i

+SJ E Aikxk t" lij ^ ^ Akixk -t- BjBi
fc=i fc=i

<92u "
E GijAji + E ^ij Aij ~j- E G ij AjkA^XkXe

i,j=1 *>.7=1 i,j,k,£=l

n

+ ^ ^ GijAjkAnXkXt

i,j,k,£=l

n n n

-f- ^ ^ GijBiAjkXk H- ^ ^ GijAkjAiiXkXe ~f- ^ ^ GijA^jAgix^xp
i,j,k=1 i,j,k,£= 1 i,j,k,£= 1

n n n

+ ^ ^ GtjBiAkjXk + ^ ^ GtjBjAikXk ~b E Gij Bj AkiXk
i,j,k= 1 2,j,/c=l 2,j,/c=l

+ Gij BjBi
i,j=l

n n

El Gij Aji + GjiAij + A^xe) ( GijAjkxk)
2, J = 1 2,J = 1 2=1 £=1 J,fc=l

n n

jfcZfc)

2—1 £=1 J,fc=l

n n

-|- ̂  ^ Bi ^ ^ GijAjkXk "I- ^ ^ XkAkjGji

i=l j,fc=l i,j,h,£=l

+ El (El XkAkj) ( xeAaGij)
j=i fc=i i/=i

n n n n n n

+DE ^)(E G^) + DE G^)(E Aik%k)
j — 1 k— 1 2=1 2=1 j = l /c=1

El (El %kAki)(sy^/ GjjBj) + y~i Gl]BjBi
2=1 fc= 1 J = 1 2, J = 1
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= [2 tr(GA) + {Ax)t{GAx) + (xTA)(GAx) + BTGAx + xT AGAx

+xTA{xTAG)T + (xTA)GB + {GB)t Ax + (xTA){GB) + BTGB}u

= [xt(AtGA + AG A + AG A + AGTAT)x + (BTGA + BTGTAT

+BtGtA + BTGTAT)x + 2 tr(GA) + BTGB]u

= [xT(ATGA + 2 AG A + AGtAt) + (BTGA + 2BTGTAT + BTGTA)x

+2 tr{GA) + BtGB}u.

Let D = (dij) be an n x n matrix and dT = (d\,... , dn) be a 1 x n matrix. Then

n r-v n n o n ^

E*w£ - EE^+E*£
i—1 2—1 j=1 i—1

= S7uTDx + dTVu

= (xtAt + xT A + Bt)uDx + dT (Ax + ATx + B)u

= [xT(AT + A)Dx + (BtD + dT A + dTAT)x + dT B]u.

Thus the L.H.S. of (3.3) is given by

(3.9) Gii qx.qx. {-t- x) ' Hl^r)ol {L*) + ^
i,j = 1 * i i—1 1

= [a:T(ATG^ + 2AGA + AGTAT - (AT + A)D + Q)x + (BTGA + 2BTGTAT

+BtGtA - BTD - dTA - dTAt + pT)x + 2tr{GA) + BTGB - dTB + r]u.

Equating (3.8) and (3.9) and comparing terms, we get equations (3.5), (3.6), and (3.7).

Q.E.D.

Theorem 3.2. The solution of the following Fokker-Planck equation on R™ can be found

by the method described above.

(3.10)

cJu, , v—d2 u (v-^ ^ . . „ , , \ Ou . . / \ / \

0, {'-r] - a,J „.,./<■■■■> ■ «(*)«(*>*)
i,j = 1 i=l \j = l /

where Gij = Gji are constants; (i[.r) are degree one polynomials; F(x) and q(x) are C°

functions on K™ such that

, v 1 A ^ &2F 1 dF, ,dF, ,
(3.11) q(x) := - Y Gij——-—(x) + - 7 ——M——(x)
\ I H\ > 2 *3qx qx \ ) 4 i)x v (>.r, ;

i,j=i 1 3 ij=i 1

1 ^ a ri I ^ W

51 Vr) 4 '/M I -'/(*)
2 \ ' <9x

i=i \i=i

is a polynomial of degree two. In fact, let

(3.12) u(l.x) -• - e^' ^'uil.x).

3
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Then (3.10) can be reduced to the following equation:

(3.13)

On. . v—"v O^u . ^—-v . du . . .   .
~(t,:v) -Y.G^ih. i)r (*<x)

i,j 1 1 i=l 1

Pfioof: By putting (3.12) into (3.10), one deduces that (3.13) holds. Q.E.D.
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