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Summary. An algorithm for the computation of travel times, ray ampl- 

itudes and ray synthetic seismograms in 3-D laterally inhomogeneous 

media composed of isotropic and anisotropic layers is described. All 

21 independent elastic parameters may vary within the anisotropic 

layers. Rays and travel times are evaluated by numerical solution of 

the ray tracing equations. Ray amplitudes are determined by evaluat- 

ing reflection/ transmission coefficients and the geometrical spread- 

ing along individual rays. The geometrical spreading is computed 

approximately by numerical measurement of the cross-sectional area of 

the ray tube formed by three neighbouring rays. A similar approx- 

imate procedure is used for the determination of the coefficients of 

the paraxial ray approximation. The ray paraxial approximation makes 

computation of synthetic seismograms on the surface of the model very 

efficient. Examples of ray synthetic seismograms computed with a 

program package based on the described algorithm are presented. 

1 Introduction 

For years, the interest in the propagation of seismic waves in anisotropic 

media was mostly theoretical. A t  present, however, the importance of the 

practical aspects is considerably increasing. A large quantity of data 

which indicates the presence of anisotropy in the Earth's crust and the 

upper mantle has been collected in many regions of the world. The anisot- 

ropy of a medium is often closely connected with complex inhomogeneity of 

the medium. Thus methods which allow the study of seismic wave propagation 

in complex laterally varying layered structures, containing combinations 

of isotropic and anisotropic layers, are highly desirable. 

Various high-frequency asymptotic methods have a good record in 

investigations of laterally inhomogeneous isotropic structures. It is 
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therefore natural to apply the most widespread of them zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- the ray method - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t o  the problems of the propagation of seismic waves in inhomogeneous 

anisotropic media. 

The ray method is a high-frequency asymptotic technique, which can only 

be applied if the wave and medium parameters vary slowly within a wave- 

length. The results obtained with the ray method are of limited accuracy 

in singular regions, such as in the vicinity of a caustic, cusp point or 

critical point, a transition from the illuminated to the shadow region, or 

a region where the velocities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof two quasi-shear waves are locally almost 

identical. The results Obtained with the ray method are also sensitive to 

some extent to the way in which the approximation of the model parameters 

is done. On the other hand, the ray method can be applied to more complex 

models where other methods fail. The computations based on the ray method 

are usually the fastest when compared with other methods. A very valuable 

property of the ray method is its ability to single out individual parts 

of the total wave field and investigate them independently. This gives a 

clear insight into the formation of the total wave field. 

If the limitations of the method are kept in mind, the ray method can 

very effectively give important results concerning the propagation of 

seismic waves in inhomogeneous isotropic and anisotropic media. 

The ray theory of the propagation of seismic waves in laterally inhomo- 

geneous anisotropic media has been known for a long time. The papers by 

Babich (1961) and ?erveny/ (1972) represent the pioneering work in this 

field. For a long time the theory in these papers was only applied to 

specific simplified problems, mostly to the computation of travel times. 

It was also used in an approach based on linearization for the computation 

of travel times in weakly anisotropic media (Eervenf and Firbas 1984). An 

algorithm for the computation of travel times and vectorial ray amplitudes 

in 3D inhomogeneous anisotropic media has been suggested and described 

only recently by Petrashen and Kashtan (1984). 

In this paper we describe an algorithm based mostly on the formulae 

derived by Babich (1961) and Ferven9 (1972). The programs based on the 

algorithm may be used to compute travel times, ray amplitudes and ray 

synthetic seismograms of seismic body waves propagating in 3D laterally 

inhomogeneous models composed of perfectly elastic isotropic and aniso- 

tropic layers. parameters may vary within the anisotropic 

layers. No assumption of weak anisotropy, and therefore, no linearization 

is used. A similar algorithm and programs for models composed of isotropic 

and transversely isotropic inhomogeneous layers were developed recently by 

Hanyga (1986a). 

All 21 elastic 

Since the theory of the propagation of high-frequency seismic waves in 
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inhomogeneous isotropic and anisotropic media has been described in 

sufficient detail in many papers and textbooks (Babich zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1961, Eerveny’ 1972, 

Cerveny’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe t  al. 1977, cerveny’ & Firbas 1984, Crampin 1981, Petrashen and 

Kashtan 1984, Cerveny’ 1985, Hanyga 1986b), only the final, most important 

formulae are presented without derivation. 

The basic formulae of the ray theory of propagation of seismic waves in 

inhomogeneous, anisotropic media can be found in Section 2. The most 

important steps in the algorithm for the computation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof ray synthetic 

seismograms are described in Section 3, which contains a description of 

the possible types of model, the computation of rays and amplitudes, the 

approximate methods of evaluation of geometrical spreading, and the parax- 

ial ray approximation. Simple examples of results obtained with program 

packages based on the described algorithm for a model of anisotropic sub- 

crustal lithosphere are presented in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 (results of more extensive 

computations for the same model of the lithosphere can be found in 

Gajewski and PZenEik 1987). In Section 5, the possibilities of the 

algorithm, and the programs based on i t ,  are summarized and possible 

further generalizations are briefly discussed. 

The component notation for vectors and matrices is used throughout the 

paper, the components often being referred t o  as vectors or matrices. The 

indices have always the form of righthand suffices. The lower-case 

indices take values 1, 2 and 3, the capital-letter indices take values 1 

and 2. The Einstein summation convention applies over repeated indices. 

Partial derivatives with respect to the Cartesian coordinates x and time 

t may be denoted as follows: ui,j = aui/axj, u i l t  = aui/at. 
j 

2 Ray method for anisotropic laterally varying layered media 

2.1 BASIC EQUATIONS 

The equation of motion in an inhomogeneous, perfectly elastic anisotropic 

medium has the following form 

where ui is a displacement vector, cijkl = c ijkl (xm) is a fourth order 

tensor of elastic parameters, p = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(x ) is the density, m=1,2,3 and t is 

time. 
m 

We seek an approximate solution of Eq. (2.1) in the form common to 

high-frequency asymptotic methods (zero order ray approximation): 
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386 D.Gajewski and I.PSenEik zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(2 .2)  

The amplitude vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU (x.), which may be generally complex-valued, and 

the phase function (eikonal) T(x.) are the quantities to be determined. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw 

is the circular frequency. To determine U. and T, (2.2) is inserted into 

(2.1). This yields the basic system of equations of the ray method for 

inhomogeneous anisotropic media, 

i J  

J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

The following notation is used in (2.3) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 . 4 ) :  

The partial derivatives of the phase with respect to xi are the 

components of the slowness vector pi, the vector perpendicular to the 

wavefront T(x.) = t ,  and thus parallel to the wave normal vector. The 

matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr is positive definite. 

function 

J 

jk 
It is obvious that a necessary condition for the solution of (2.3) is 

det(rjk-Ajk) = 0. 

The condition (2.6) is satisfied if at least one of the eigenvalues 

G(xj,pj) of the matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr j k ,  is equal to one; 

The eigenvector gi(x,,p.) corresponding to the eigenvalue (2.7) determines 

the orientation of the corresponding amplitude vector U 
J J  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i' 

Ui(x.) = A(x.)gi(x.,p.). (2.8) J J J J  

The eigenvector g may also be called a polarization vector, and is 

defined as a unit vector. If the slowness vector corresponding to gi is 

complex (this occurs in the case of over-critical incidence of a wave at 

an interface), the polarization vector also becomes complex. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA ( x  ) is a 

scalar amplitude. 

i 

.j 

If the matrix r has three different eigenvalues, then three independ- 

ent waves exist: one quasi-P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( q P )  wave, and twc; quasi-shear waves, (qS1 

and qS2) .  At a point in a medium, for one wave normal direction (specified 

jk 
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by the slowness vector pi), these three waves have mutually perpendicular 

polarization vectors. This is a very special situation, however, as 

generally the three waves propagate independently along different paths 

with different wave normal directions. Thus at points where all three 

waves can be observed, the polarization vectors are usually not 

perpendicular. 

Generally, the polarization vector of a qP-wave is not perpendicular to 

the wavefront, and the polarization vectors of qS-waves are not situated 

in the tangential plane to the wavefront. The qP-wave is always faster 

than the @-waves, independent of the orientation of its polarization 

vector. The definition of the qP-wave as the fastest wave is preferable 

to the definition of the qP-wave as the wave with the polarization vector 

closest to the wave normal (Fedorov 1968). Dellinger and Muir (1986) 

showed that even in highly symmetric anisotropic media the polarization 

vector of a qP-wave could be, in principle, perpendicular to the wave 

normal. 

The fact that the two qS-waves propagate independently is referred to 

as shear-wave splitting or shear-wave double refraction. 

If the matrix r has two coinciding eigenvalues, the two qS-waves 

propagate with the same phase velocity (not more than two eigenvalues may 

coincide, and they are always the eigenvalues corresponding to qS-waves, 

see Musgrave (1970), p102). Such a situation may occur locally when the 

slowness vector coincides with a symmetry axis (Fedorov 1968). In an iso- 

tropic medium i t  occurs everywhere. The isotropic medium represents a 

degenerate case of an anisotropic medium, in which any direction rep- 

resents a symmetry axis. In the isotropic medium, the polarization vector 

of a qP-wave is parallel to the corresponding slowness vector, and is thus 

perpendicular to the wavefront. The polarization vectors of the shear 

waves are perpendicular to the corresponding slowness vector, and thus 

situated in the plane tangential to the wavefront. The orientation of the 

polarization vectors of qS-waves in this plane is non-uniquely determined zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( s o  called degenerate polarization, see Kravtsov zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Orlov 1980). Thus, in 

this case any two mutually orthogonal unit vectors situated in the plane 

tangential to the wavefront may be chosen as polarization vectors of 

qb-waves. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

j k  

2.2 COMPUTATION OF RAYS, PHASE FUNCTIONS AND AMPLITUDES 

Solving the eikonal equation (2.7) leads to the ray tracing system for 

anisotropic media (Ferveng & Firbas 1984): 
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388 D.Gajewski and I.PJenEik 

The phase function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, which plays a role of a parameter along a ray in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( 2 . 9 ) ,  gives the travel time along the ray. The elastic parameters aijkl 

are assumed to be known at all points in the medium. The eigenvectors gi 

can be determined in the way described in Section 3.3 .2 .  Equations (2 .9 )  

yield the values of phase velocity V, V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p p )-‘I2, and of the group 

velocity v, v = (v v ) l I2,  where v are the components of the group 

vj = dx / d r  (the group velocity vector specifies the velocity vector, 

direction of the energy flux). 

The ray tracing system (2 .9 )  can be rewritten in a different form if 

by Ferveng (1972) ,  Cerveng et al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
j j  

j j  j 

j 

explicit expressions for g g suggested 

(1977) are used: 
j k  

(2 .10 )  

where 

A disadvantage of this formulation is that (2 .11)  cannot be used in 

situations in which r has two identical eigenvalues, for example in 

isotropic media, since then D = 0. In isotropic media the ray tracing 

system (2 .9 )  with the right hand sides expressed using (2 .10 )  and (2 .11)  

is substituted by the following ray tracing system (Cerven$ et al. 1977) :  

jk 

(2 .12)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL 

P i  ’ dx /dr = v pi, dp /dr = -v-’v i i 

with v = V. 

The ray tracing system (2 .9 )  or (2 .12 )  can be solved numerically if the 

appropriate initial conditions are specified. They can be specified as 

follows : 

where xoi are the coordinates of the initial point of the ray (the source) 

and poi are the components of the The slowness vector at the same point. 
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quantities p must satisfy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2 .7 ) .  Oi 
The second basic equation of the ray method, (2.4) can be transformed 

into a transport equation and solved with the use of the ray coordinates. 

The The coordin- 

ates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyl, y2 are the ray parameters specifying a ray, They may be chosen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e . g .  as take-off angles at the source. The third ray coordinate is the 

travel time along the ray. In an isotropic medium, the coordinate line 

specified by fixed yl, y2 (the ray) is perpendicular to the coordinate 

surface specified by fixed T (the wavefront). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI n  an anisotropic medium 

this is generally not the case. 

ray coordinates yl, y2, -t can be introduced as follows. 

The solution of the transport equation may be written as follows, 

(2 .14)  -1 /2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A ( T )  = Y ( Y ~ , Y ~ )  [ p ( - t ) V ( T ) J ( T ) I  * 

This relation holds in both anisotropic and isotropic media. It 

determines the scalar amplitude along a ray specified by the ray 

parameters y 1, y2. The space dependence of the functions A ,  V, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ is 

expressed in (2 .14 )  through the space dependence of the phase function T = 

T ( X  ) along the ray. 
j 
The product of the phase velocity V and the function J in (2.14) is the 

Jacobian of the transformation from ray coordinates yl, y2, y3 = T to 

Cartesian coordinates x i' 

VJ = det (axi/ag ). (2.15) 
j 

Function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ itself is a measure of the size of the cross-section of the ray 

tube with the wavefront. 

Function Y is constant along a ray, but its value generally differs for 

different rays. Using this property of Y, we can rewrite (2 .14)  in 

another useful form, 

A(T)  = 

where 

L(T) = 

(2.16) 

he quantity L(T), 

is the geometrical spreading. If L = 1 is inserted into (2.16),  Equation 

(2.16) gives the expression for the scalar spreading-free amplitude. 

2.3 INFLUENCE OF INTERFACES 

Additional formulae must be supplied to those presented in the preceding 
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section if the considered models contain interfaces of the first order, 

i.e. interfaces at which at least one of the elastic parameters or the 

density changes discontinuously. These additional formulae describe the 

transformation of the computed quantities across interfaces. The quantit- 

ies to be transformed are the slowness vector and scalar amplitudes. 

A body wave incident on an interface of the first order in an anisot- 

ropic medium may generate three reflected and three transmitted waves, in 

an isotropic medium only two waves of each kind. A s  for isotropic media, 

in the high-frequency approximation the problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof reflection/transmission 

of an arbitrary body wave at a curved interface separating anisotropic 

media reduces to the problem of reflection/ transmission of a plane wave 

at a plane interface. The latter problem is well covered in the 

literature and 

therefore i t  will be only briefly described. 

(Fedorov zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1968, Musgrave 1970, Henneke 1972, Silenf 1981) , 

The selection of the type of the generated wave is controlled by the 

numerical code. 

2.3.1 Transformation of the slowness vector across an interface 

The slowness vector of a generated wave is sought in the form (Fedorov 

1968) ; 

pi = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbi + €pi. (2.17) 

In (2 .17))  ni is the unit normal vector to the interface, pointing into 

the medium in which the incident wave propagates. The vector bi is the 

vectorial component of the slowness vector in the plane tangential to the 

interface. The vector b is the same for all generated waves, as well as 

the incident wave. The quantity <, representing the projection of the 

slowness vector on the normal to the interface ni) is to be determined. 

Inserting (2.17) into (2.6) with the elastic parameters from the medium in 

which the generated waves propagate, yields a sixth order polynomial 

equation in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE .  Some of its roots may be complex, and these correspond to 

generated inhomogeneous waves. The roots belonging to the homogeneous 

waves are real. The selection of the root corresponding to each generated 

wave is described in Section 3.3.3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i 

The above procedure is used if the generated wave propagates in an 

anisotropic medium. If the generated wave propagates in an isotropic 

medium, simple explicit expressions for the slowness vector of the 

generated wave may be used (Eervenj et al. 1977), 
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where 

--2 -2 2 1 / 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C = pjnjl E = (v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-V +C ) . 

(2 .18 )  

(2 .19)  

In (2 .18)  and ( 2 . 1 9 ) ,  a tilde denotes the quantities on the side of the 

interface where the generated wave propagates. In the considered case, 

the group velocity v" is equal to the phase velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv". The upper sign in 

(2 .18)  corresponds to the transmitted wave, the lower one to the reflected 

wave. The square root for E in (2 .19 )  is taken positive. 

2.3.2 Transformation of scalar amplitudes across an interface 

The scalar amplitude of a generated wave at the point of incidence is 

given by the relation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A" = RA, (2 .20 )  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA is the scalar amplitude of the incident wave at the same point. 

The quantity R in (2 .20 )  denotes a plane wave reflection/transmission 

coefficient. The coefficient is obtained by solving a system of six 

linear algebraic equations resulting from the conditions of continuity of 

displacement and stress across the interface (Fedorov 1968) :  

R2 R2 R 3  R3 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuI 
i 

T1 T1 + RT2 T2 + RT3uT3 - RR1ufl - R ui - R ui 
ui R ai 

for i = 1, 2 ,  3 .  Here gi are the Cartesian components of a polarization 

vector, and ui on the R.H.S., and on the L.H.S. of (2 .21)  are the I 

Cartesian components of the vector projection of the stress tensor 

corresponding to the incident wave, and a generated wave respectively, on 

the normal ni to the interface, 

(2 .22 )  

Indices T1, T2, T3 denote the quantities corresponding to the two trans- 

mitted qS-waves and one transmitted qP-wavet R 1 ,  R2, R 3  to the two refl- 

ected qS-waves and one reflected qP-wave. Index I corresponds to the 

incident wave which may be any one of the three types of wave. 

In the case of reflection from the free surface, the system reduces to 
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F1 

three linear algebraic equations for three reflection coefficients R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, 
RF2, RF3 from the free surface; 

F1 R 1  + RF2vR2+ RF3 R 3  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i Oi = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-a i R ai (2 .23 )  

for i = 1, 2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 .  

The solution of system (2 .21 )  or (2 .23 )  requires knowledge of the 

parameters of the medium and the parameters of the incident wave, as well 

as knowledge of the eigenvectors of the generated waves at the point of 

reflection/transmission, and these may be determined as described in 

Section 3 .3 .2 .  If any eigenvector is complex-valued, the reflection/ 

transmission coefficients will also be complex-valued. System (2 .21 )  or 

(2 .23)  may be used universally for any combination of anisotropic and 

isotropic media separated by an interface. 

For isotropic media the reflection/transmission coeffients are avail- 

able in an explicit form (Eerveny’ et al. 1977, Aki & Rjchards 1980) .  If 

the explicit expressions are used in 3-D isotropic media, one must perform 

a rotation of the ray-centred coordinate system and its base vectors 

(polarization vectors) into the local interface coordinate system (in 

which the coefficients are specified). This transformation must be done 

once or possibly twice at each point of incidence (cerveny’ 1985) .  This 

problem does not arise if the coefficients of reflection/transmission are 

evaluated by solving ( 2 . 2 1 )  or (2 .23 )  at each interface, which simplifies 

the procedure of the evaluation of amplitudes. 

Note that the explicit expressions for reflection/transmission coeff- 

icients are available even for some types of anisotropic media. For 

example, Daley and Hron (1977)  presented reflection/transmission coeff- 

icients for transversely isotropic media. 

If the receivers are situated on the surface of the model (which is the 

case in the algorithm which is used), the free surface conversion coeff- 

icients must be evaluated to take into account the waves reflected from 

the free surface. The conversion coefficients are the components of the 

conversion vector q in the appropriate coordinate system. The conversion 

vector corresponding to an incident wave I has the form, 
i 

(2 .24)  

In ( 2 . 2 4 ) ,  RF1, RF2,  RF3 are again coefficients of the reflection from the 

free surface corresponding respectively to the two generated qS-waves 

and one qP-wave in an anisotropic subsurface layer. In the case of an 
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R1 R2may be chosen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 

isotropic subsurface layer, the polarization vectors g 

in such a way that the reflection coefficients RF1 and iF'icorrespond to 

the transformation of the incident wave into reflected SV- and SH-waves. 

2.4 PARAXIAL RAY APPROXIMATION 

The formulae presented in the preceding sections allow the evaluation of 

the wave field of an elementary wave only at points on a ray. To construct 

ray synthetic seismograms at a system of receivers distributed on the 

surface of a model, i t  is necessary to solve the two-point ray tracing 

problem, i.e. to construct rays connecting the source with individual 

receivers. The two-point ray tracing is a complicated and time-consuming 

procedure, especially in 3-D problems. In 2-D problems, i t  consists of a 

search for one ray parameter specifying the required ray, while in 3-D 

problems it is necessary to search for two independent ray parameters. The 

number of the ray parameters sought may be reduced to one even in 3-D 

problems, if instead of the ray connecting the source with a receiver, a 

ray connecting the source with an arbitrary point of a profile on the 

surface of the model is sought. This is called boundary-value ray tracing. 

If initial-value ray tracing is performed, where the rays are specified 

only by the position of the source and their direction at the source, with 

the position of the endpoints being a priori unknown, no search for the 

ray parameters is required. For the evaluation of the wavefield at 

specified receivers in the last two cases mentioned, i t  is necessary to 

use a procedure which makes possible the evaluation of the wavefield in 

the vicinity of computed rays. This procedure is the paraxial ray 

approximation (Eerveng et al. 1984, Cervenf 1985). 

The formulae for the paraxial ray approximation may be obtained by 

expanding (2.2) in the vicinity of a ray Q. For the phase function T at 

a point xi situated in the vicinity of a point xi on the ray 9, the Taylor 

expansion of the phase function T gives 

T(x.) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= T(%.) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp (;.).(x~-?~) + 1 Nik(S.).(x -x ).(x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-3 ) 
- J i i  k k  

J J k J  2 
(2.25) 

x ) = h/ax are the components of the slowness vector, In (2.25), Pk(-j k l x  

N are the elements of a matrix of the second partial 

derivatives of the travel time field with respect to the Cartesian 

coordinates. 

2 j 
( 3 . )  = 3 r/ax ax I- k i x  

j 
ik J 

For the determination of the amplitude vector in the vicinity of the 

ray Q, equation (2.8) is used in the same form as before. The polariz- 

ation vector gi(x.,p ),  however, is to be determined from (2.3) with Uk 
J j  
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substituted by gk, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr is specified as follows, 
jk 

(2.26a) 

(2.26b) 

In an isotropic medium, the approximate expressions for the polariz- 

ation vectors may be obtained in an explicit form. 

For P-waves: 

gi(x.,p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) = v(X.).pi(X ) + v(x.).N. (2  ).(xk-Xk), 
J j  .J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj J I k  j 

which immediately follows from (2.26b). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFOL- S-waves, 

(2.27a) 

(2.27b) 

In (2.27), eIk are the components of the I-th unit vector of the vectorial 

base of the ray-centred coordinate system, situated in the plane perpen- 

dicular to the slowness vector at xj, or, in other words, in the plane 

tangent to the wavefront at x (Fervenq et al. 1984, Cervenf 1985). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
j 

2.5 COMPUTATION OF RAY SYNTHETIC SEISMOGRAMS 

Up to now we have only considered a single elementary wave and shown how 

the characteristics of this wave may be computed. From the phase function 

T(x.) and complex-valued vectorial amplitude U (x ), an elementary seis- 

mogram may be constructed for the given source-time function in several 

ways (Eervenj et al. 1977, Fervenf 1985). Summing up all elementary 

seismograms corresponding to elementary waves arriving at a receiver, we 

obtain the ray synthetic seismogram at the receiver. 

J k j  

3 Algorithm 

The algorithm of the computation of travel times, vectorial amplitudes, 

and ray synthetic seismograms for 3-D laterally inhomogeneous media 

composed of isotropic and anisotropic layers with the use of the formulae 

presented in the preceding sections, consists of the following main steps: 

(1) Specification of the model; (2) Specification of the source; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 3 )  Ray 

tracing including the determination of the phase function along the 

computed rays from the source to the region where the receivers are 

situated; ( 4 )  The evaluation of complex-valued vectorial spreading-free 

amplitudes along the rays; (5) The evaluation of the geometrical spreading 
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for each ray and the paraxial ray approximation to determine the travel 

times and complex-valued vectorial amplitudes at specified receivers; 

(6) The construction of the ray synthetic seismograms. 

In the following sections each of these steps is described in some 

detail. 

3.1 SPECIFICATION OF THE MODEL 

A 3-D model of a laterally inhomogeneous structure composed of isotropic 

and anisotropic layers separated by curved non-intersecting interfaces is 

considered. The model is situated in a rrbox" specified in Cartesian 

coordinates by the relations 

min max zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< xm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 xm m -  x , m = 1, 2, 3. 

The coordinate axes xl, x2 are situated in the horizontal plane, the 

x -axis is vertical. The anisotropic layers are described by the distrib- 

ution of, in general, 21 elastic parameters cijkl(xm) and density p(x,). 

Instead of the parameters cijkl, the aijkl, defined in (2.5), 

are used, and also called elastic parameters. The isotropic layers are 

described by the distribution of P- and S-wave velocities, vp(xm), v (x ), 

and density p(x,). Inside the layers, the parameters aijkl, velocities 

vp, vs and density p vary continuously with their first and second partial 

derivatives. The layers are separated by curved interfaces at which 

a ijkl, vp, vs, p,  or their first or second derivatives may change dis- 

continuously. 

3 

parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S m  

The interfaces are smooth surfaces 

x3 = f(x x ), 1' 2 

defined zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the whole intersection of the model rrboxrr with a horizontal 

plane. The functions f(x1,x2) are continuous together with their first 

and second partial derivatives in the whole region of definition. The 

interfaces may neither intersect each other nor the horizontal boundaries 

of the model (x3 = x3 Each interface is specified on an 

independent horizontal rectangular grid. Bicubic splines (possibly with 

smoothing) are used to approximate the interfaces. 

min max and x3 = x3 ). 

The elastic parameters aijkl may be specified in a coordinate system 

whose axes coincide with the principal axes of the elasticity tensor. Such 

a system is very practical since in i t  many of the elastic parameters are 

zero. Thus, the amount of input data can be considerably reduced. Together 

with the elastic parameters, the angles specifying the orientation of the 
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principal axes with respect to the general Cartesian coordinate system 

must be specified. 

The variation of elastic parameters or velocities of P- and S-waves, 

and the density inside the layers may be specified in two ways: 

1. Variation with depth only; 2 .  Linear variation along vertical lines 

between interfaces representing isosurfaces of elastic parameters. 

In the first case, the parameters are specified at several depths in 

each layer and then approximated by cubic splines. In this way the distri- 

bution of elastic parameters is laterally homogeneous, only the thickness 

of the layers may vary due to the curved or inclined interfaces. 

In the second case, the elastic parameters are specified as constant 

along interfaces, the interfaces thus being isosurfaces of the parameters. 

Linear interpolation of the parameters along vertical lines is used 

between interfaces bounding a layer. In this way, the distribution of the 

parameters in the layers with curved interfaces is laterally inhomogenous. 

Vertical gradients are larger in regions where the layers .are thinner, and 

smaller, A broad variety of 

models may be simulated by this approximation. This approximation 

requires a considerably reduced amount of data storage in comparison with 

other 3-D approximations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(e.g. approximations on 3-D grids). For each 

layer, only two sets of parameters are required while in grid approx- 

imations one set must be specified for each grid point. There is a 

disadvantage with this approach in that the isosurfaces represent inter- 

faces of the second order, the existence of which influences the behaviour zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
of  ray amplitudes. However, that may be controlled and corrected. The 

fact that the interfaces represent isosurfaces of elastic parameters 

limits the range of application of this approximation with respect to 

models of realistic structures. It is, however, not difficult to remove 

this problem for future applications. 

where the thickness of the layers is larger. 

The density at any point of the model is determined from the relation 

p = a i b v  P’ ( 3 . 3 )  

where a and b are constants generally different for each layer, vp is the 

P-wave velocity in an isotropic layer or square root of the elastic 

parameter all l l  in an anisotropic layer. 

3 . 2  SPECIFICATION OF THE SOURCE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A point source, which may be situated at any point of the model is 

considered. The computation of rays and travel times from such a source 

is performed as described in Section 3.3.1. The computation of amplitudes 
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from the point source situated in an anisotropic medium can be performed 

in the way described e.g. by Hanyga (1984) .  Here, for simplicity, we 

present only formulae for a point source situated in an isotropic medium. 

The function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY from ( 2 . 1 4 )  has in this case the following form: 

The 

specifying the initial direction of the wave normal N .  at the source, 

ray parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ol zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbo are the take-off angles (O<+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<2n, -n /2<b0<n/2)  0- 

N1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= C O S + ~  C O S ~ ~ ,  N 2 -  - sin+ 0 cosbo, N3 = sin8 0’ ( 3 . 5 )  

In isotropic media, the take-off angles also specify the initial direction 

of the ray at the source. In anisotropic media, however, the initial 

direction of the ray differs from that specified by the take-off angles. 

The quantities p(-rO), v ( T ~ ) = V ( T ~ )  in ( 3 . 4 )  are the density and velocity 

of the corresponding wave at the source. The function g(+olbo) specifies 

the frequency-independent radiation pattern. Radiation patterns of 

various sources of seismological importance may be used, and appropriate 

expressions can be found, for example, in Aki & Richards (1980) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a 

source-time function, we use the Gaussian envelope signal 

f(t) = eXp[(2KfM/y) ] cos(2nfMt + v) ,  ( 3 . 6 )  
2 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfM, y and v are the parameters of the signal. f is its dominant 

frequency. 

For testing purposes, an artificial point source, situated in an 

isotropic layer and radiating both P- and S-waves is used. The radiation 

pattern g(+o,bo) is constant and different for P- and S-waves. The 

orientation of the polarization vector of P-waves at the source is 

specified to be parallel to the slowness vector. The polarization vector 

of S-waves at the source may be chosen arbitrarily in the plane perpen- 

dicular to the slowness vector. 

M 

3 . 3  COMPUTATION OF RAYS AND TRAVEL TIMES 

3 . 3 . 1  Start of the computation of rays 

To start the computation of rays, the initial conditions ( 2 . 1 3 )  must be 

specified. For this purpose, the components of the slowness vector may be 

expressed through the components of the wave normal Ni, 
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pi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Ni/V ( 3 . 7 )  

Here, V is the phase velocity of the considered wave. In isotropic 

media, V depends only on the position in the medium, and equals the group 

velocity v. It may be immediately determined from the distribution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP- 

and S-wave velocities in the model. In anisotropic media, V depends not 

only on the position in the medium but also on the orientation of the wave 

normal. It may be determined from the equation 

det(aijklNiN1-VLb zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj k  ) = 0 ,  ( 3 . 8 )  

which follows from (2 .6) ,  where ( 3 . 7 )  was used for p i .  The wave normal at 

the source is determined from ( 3 . 5 ) .  Equation ( 3 . 8 )  is a cubic equation 

for the squares of the phase velocity. Since r is positive definite, 

its roots are always real and positive. To solve ( 3 . 8 ) ,  Cardano's method 

of solving cubic equations is used. From the three determined velocities, 

the proper one is selected according to the numerical code, which spec- 

ifies the type of the wave on its way from the source. The selection of 

qP-wave phase velocity is straightforward. There is, however, a certain 

problem with the selection of the proper zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqS phase velocity. If necessary, 

the two qS phase velocities may be distinguished by the orientation of the 

corresponding polarization vectors (their determination is described 

below). But generally both qS-waves are equally important in forming 

final synthetics, and should be considered together. This means in 

principle, that the waves propagating in anisotropic media can be 

described by numerical codes designed for isotropic media (which distin- 

guish only two types of waves). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

jk 

3.3.2 Determination of polarization vectors 

In an anisotropic layer, the polarization vectors may be determined from 

the quantities D For a given slowness vector the matrix D can be 

computed from (2.5) and (2 .11) .  Each line or column of the matrix D is 

proportional to the eigenvector, thus to obtain gi, one line of D must 

be normalized to form a unit vector. The above procedure may always be 

used for qP-waves, but for qS-waves i t  fails if the matrix r has two 

identical eigenvalues zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(D=O). In the latter case, we may use the same 

procedure as the following one for isotropic layers. 

ij' ij 

i j  

i j  

jk 

In isotropic layers the determination of the polarization vector of a 

P-wave is straightforward. The polarization vectors of shear waves are 

situated in the plane tangent to the wavefront and any two mutually 
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perpendicular unit vectors in this plane may be chosen as the polarization 

vectors. The most natural procedure is to choose them identical with the 

base vectors of the ray centred coordinate system. A detailed description 

of this coordinate system together with the methods of its determination 

can be found in Cerveny' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1985) ,  see also Cerveny' et al. (1987) .  This 

procedure of the evaluation of the polarization vectors is effective even 

in the case of local singularities of an anisotropic medium, when the 

trace of matrix D is zero. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ij 

3.3.3 Reflection/transmission 

When the ray intersects an interface, an iterative search for the point of 

intersection is performed. The accuracy of the determination of the point 

of intersection can be prescribed. 

At the point of intersection, the procedure described. in Section 2 .3 .1  

is used to determine the slowness vector of  the generated wave. In the 

case that the ray of the generated wave is situated in an isotropic 

medium, explicit formulae (2.18) can be used. If the medium is  aniso- 

tropic, the sixth order polynomial equation in <, see (2 .17)  for <, must 

be solved. Standard procedures for determination of roots of polynomial 

equations may be used. Not all the roots found are acceptable. First, 

all complex roots are excluded since they correspond to generated inhomo- 

geneous waves, which are not considered in the algorithm. From the 

remaining real roots, only those which yield the energy flux vector point- 

ing into the layer in which the generated wave propagates are selected, 

see Henneke (1972) .  This is the case if the expression 

"iVi = 'iai zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAjklPlgjgk (3.9) 

is, for given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ,  positive for reflected waves or negative for transmitted 

waves. 

Note that a situation may occur in which the slowness vector points 

into the layer in which the generated wave is to propagate, but the 

corresponding energy flux vector points into the other layer, and thus the 

corresponding root zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 cannot be accepted. On the other hand i t  may happen 

that the slowness vector points into the other layer than the one in which 

the generated wave should propagate, but the corresponding root F, is 

accepted since the energy flux vector points into the right layer. Special 

situations which may occur during an incidence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a wave at an interface 

between two anisotropic media, such as those described above, are 

discussed in detail in Henneke (1972) and Silenf (1981).  

When the only acceptable roots have been selected, the proper one is 
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chosen in accordance with the numerical code of the investigated wave. The 

selection of the root corresponding to the qP-wave is simple since the 

qP-wave is the fastest one. The same argument as that used at the end zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 

Section 3.3.1 may be used for the selection of the proper root of the two 

qS-waves. The special situations mentioned above must be treated with 

particular care. 

3.3.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARay tracing 

When the take-off angles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, and So are specified, the computation of the 

ray may begin. In the present algorithm we use the ray tracing system 

(2.9) with (2.10) and (2.11) to compute rays in anisotropic layers, and 

(2.12) to compute rays in isotropic layers. Any of the standard 

procedures for solving systems of ordinary differential equations may be 

used to solve the ray tracing system. In the present versions of programs 

based on the described algorithm the Runge-Kutta procedure is used. 

Tests have been made which have shown that i f  the ray paths are mostly 

in anisotropic layers, it is possible to use ray tracing system (2.9) in 

all layers, including isotropic layers. In this case, the polarization 

vectors are evaluated explicitly at each point of the ray instead of using 

(2.10), (2.11) for the evaluation of the right-hand sides of (2.9). 

The rays may be computed from the source to their endpoint, using the 

method described above. It is desirable that the rays end either at or 

near receivers. Hovever, many rays may terminate before they reach this 

region. Some reasons for their early termination may be: the incidence on 

any of the vertical boundaries of the model, overcritical incidence at an 

interface, a shear wave singularity (D=O) on the ray path, and others. 

The procedure described above is initial-value ray tracing, which 

yields rays which start from the source in a specified direction 

(specified by the slowness vector). For the rays starting from the source 

and terminating at a profile on the surface of the model (boundary-value 

ray tracing), the above procedure of the initial-value ray tracing is put 

into an iterative loop. Within the loop, the initial conditions of rays 

are successively modified zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that the rays converge to the ray terminating 

on the profile. To solve this problem, i t  is sufficient to vary only one 

of the two ray parameters. For this purpose, the procedures devised for 

two-point ray tracing in 2-D models are effective. 

3.4 COMPUTATION OF SPREADING-FREE VECTORIAL AMPLITUDES 

The computation of spreading-free vectorial amplitudes along a known ray 

may be performed by means of equations ( 2 . 8 ) ,  (2.14), (2.16), (2.20) and 
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Wavefields in inhomogeneous anisotropic media zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA40 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( 2 . 2 4 ) ,  in which the final value of the geometrical spreading L is 

substituted by a unit. 

The spreading-free vectorial amplitudes contain products of the terms 

of the following type: 

( 3 . 1 0 )  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp,  V represent the density and phase velocity, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi is the acute 

ray incidence angle subtended with the normal to the interface. The 

quantities without a tilde correspond to the incident ray at the point of 

incidence, while the quantities denoted by a tilde have the same meaning 

but refer to the ray of the generated wave. R in ( 3 . 1 0 )  denotes the 

appropriate reflection/transmission coefficient, which can be found by 

solving the system of six or three linear algebraic equations, see (2.21) 

or (2.23). Cramer's method is used to solve the system of equations. 

The spreading-free vectorial amplitudes also contain the function Y, 

see ( 3 . 4 ) ,  and may contain surface conversion coefficients, see ( 2 . 2 4 ) .  

The orientation of the spreading-free vectorial amplitudes is specified by 

the polarization vectors gi. Their computation is described in Section 

3.3.2.  

3.5 GEOMETRICAL SPREADING AND PARAXIAL RAY APPROXIMATION 

The determination of the geometrical spreading and the matrix of the 

second derivatives of the travel time field Nik are related problems. One 

possible method of their determination is the application of dynamic ray 

tracing along the computed rays: for isotropic media see e.g. Eervenq 

(1985), Cerveny' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe t  al. (1987); for anisotropic media, this approach is 

described in Ferven$ (1972), Hanyga (1985b) and applied by Hanyga (1986a). 

In the algorithm which is presented here, a different approach is 

chosen. spreading and the matrix Nik are determined 

approximately from the travel time information on three neighbouring rays. 

The partial derivatives which appear in the expressions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the geometrical 

spreading This 

approach, only applied to the evaluation of the geometrical spreading, has 

been used quite successfully for isotropic media in earlier versions of 

package SEIS83, (Eerven: and PSenZik 1984), and also by McMechan and 

Mooney (1980). 

Both the geometrical 

and the matrix Nik are substituted by finite differences. 

The approach is expected to be faster than dynamic ray tracing, and 

gives sufficiently accurate results if the grouping of endpoints of rays 

in the investigated region is dense enough. The approach is very 

efficient i f  the wave field is evaluated at receivers in groups. Its 
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efficiency decreases if the receivers are isolated, and for the deter- 

mination of the geometrical spreading and the matrix Nik at each receiver 

two extra rays must be computed. The approach allows the detection of the 

effect of a single caustic on the ray path. If a ray touches caustics 

more than once, the resulting phase shift cannot be properly accounted 

for. 

Let us rewrite the matrix Nik in the following form 

(3.11) 

i j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 
The matrix Nik  is in (3.11) expressed in terms of two 3 x 3 matrices X 

3xl/ay and Y - api/ayj, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy are the ray coordinates, So and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. 

We can see that the components Xi3 and Yi3 can be obtained immediately 

from the ray tracing equations since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAij - j 

Xi3 = dxi/dT, Yi3 = dpi/dT. (3.12) 

The determination of the remaining elements is more complex. We evaluate 

them approximately, using two auxiliary rays in the close vicinity of a 

considered ray, called a central ray. The ray coordinates yl,  y2 of the 

two rays only differ by small quantities Ayl, Ay from the ray coordinates 

of the central ray. The elements XiJ, YiJ are the derivatives of xi and 

pi taken at constant y3 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, i.e. along the wavefront. We therefore 

determine first the points and slowness vectors on the auxiliary rays 

which approximately correspond to the time T. For this purpose, we may 

use ray tracing equations (2.9) which yield the approximations (for small 

T-T ) :  

2 

S 

(3.13) 

where -cS denotes the travel time at the endpoint of an auxiliary ray. 

quantities a i j k l ,  pi, gi are all evaluated at this endpoint. 

approximat ion 

The 

For the point xi(T) on one of the auxiliary rays we use the 

(3.14) 

Similar expressions can be written for the point xi(r) on the other 

auxiliary ray and for the components of the slowness vectors  pi(^) on both 

auxiliary rays. The resultant equations form two sets of linear algebraic 
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Wavefields in inhomogeneous anisotropic media 403 

equations for the determination of XiJ and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYiJ. The solution of the 

system may be written explicitly 

(3.15) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 

AziJ = (ziJ-zi), B = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA Y  11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAY 22-Ay12Ay21- (3.16) 

In (3.15) and (3.16), Z and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz stand for either X and x or Y and p. The 

symbols xiJ and piJ denote the i-th coordinate and i-th component of the 

slowness vector on the J-th auxiliary ray for the time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,  see (3.13). The 

symbols xi and pi denote the corresponding quantities on the central ray. 

The symbol AyIJ denotes the difference between the I-th ray parameter of 

the J-th auxiliary ray and the central ray. Formulae (3.15) and (3.16) are 

applicable to both isotropic and anisotropic media. 

The matrix X is very closely related to the function J, see (2.15). 
i j  

It follows immediately from (2.15) that 

-1 J = V det(X. .). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1J 

(3.17) 

A change of the sign of the determinant det(X ) indicates that the 

considered ray touched a caustic. 
i j  

3.6 CONSTRUCTION OF RAY SYNTHETIC SEISMOGRAMS 

To construct ray synthetic seismogram at a given receiver, the following 

quantities must be known at the receiver for each elementary wave: the 

travel time from the source to receiver and the complex vector amplitude 

including geometrical spreading. The evaluation of these quantities at 

the receiver practically always involves the application of the paraxial 

ray approximation. 

The paraxial ray approximation may be applied in many ways. The 

simplest way is the use of the paraxial ray approximation from the end- 

point of the ray which is closest to the desired receiver. Other possibil- 

ities are to use various weighted summations of paraxial ray approximat- 

ions from several points which are closest to the receiver. The latter 

approach is close to the method of summation of Gaussian beams. 

In the first programs based on the described algorithm we adopted the 

first approach. A search is made for all endpoints of rays falling within 

a given radius of each receiver. If such endpoints exist, the endpoint 
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closest to the receiver is used zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor  the application of the paraxial ray 

approximation. If there is no endpoint in the vicinity, the receiver is 

considered to be situated in a shadow region of the investigated 

elementary wave. 

As soon as the travel time and vectorial amplitude are known at the 

receiver, an elementary synthetic seismogram and then a ray synthetic 

seismogram are constructed. A modified program SYNTPL from the ray 

package SEIS83 (Cerveny’ and PBenFik 1984) is used for this purpose. 

4 Numerical examples 

Two program packages based on the algorithm described in the previous 

section have been written: 

The package called ANRAY86 (Gajewski and Psenfik 1986) is designed for 

the computation of travel times and spreading-free vectorial amplitudes 

along rays terminating on straight profiles situated on the model surface 

and passing through the epicentre. The boundary-value ray tracing used to 

find such rays is based on the shooting method. A modified shooting 

procedure from the ray package SEIS83 (Cerveny’ and PSenFik 1984) is used 

for this purpose. 

The package called SEISAN86 is designed for the computation of ray 

synthetic seismograms using the procedure of the paraxial ray approxim- 

ation described in the previous sections. The contributions of individual 

elementary waves to a given receiver are evaluated from the values deter- 

mined along a ray with its endpoint closest to the receiver. To guarantee zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a sufficient density of endpoints of rays in the vicinity of receivers, 

the modified shooting procedure from the ray package SEIS83 is used again. 

In this case the procedure determines the rays that terminate in the 

prescribed vicinity of concentric circles around the source with radii 

equal to the epicentral distances of individual receivers. A t  present, 

the density of endpoints of rays of individual elementary waves is checked 

visually; in places with insufficient density of endpoints, additional 

rays are shot. 

The program package SEISAN86 has been applied to the study of wave 

propagation in the A N V I L  model of an anisotropic subcrustal lithosphere, 

which was proposed by Fuchs (1983) to explain the P-wave travel time and 

amplitude variations in south Germany. Here we use the ANVIL model only 

as a test model in order to present examples of results computed with 

SEISAN86, and no conclusions concerning the lithospheric structure in 

south Germany are made here. A more detailed investigation of the model 

with package SEISAN86, including some preliminary conclusions, can be 

found in Gajewski and PSenFik (1987). 
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Wavefields in inhomogeneous anisotropic media zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
HORIZONTAL PHASE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVELOCITIES 1N KMISEC 

QUASI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP WAVE QUASI S WAVES 

7.0 7.5 8.0 0.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 .O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4.5 

405 

7.5 

8.0 

8.5 

O0 

550 I 
4.5 

90° 

25 km 
----- 35 km 5 5 O  

Figure 1. Anisotropic (orthorhombic) layer of the ANVIL model - a model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the 

continental, subcrustal anisotropic lithosphere suggested by Fuchs (1983). 

Horizontal phase velocities of qP-vaves (on left) and qS-waves (on right) at 25 

km depth (solid lines) and 35 km depth (broken lines). Hatched areas, and 

dotted areas, denote the regions of positive, and negative, vertical gradient 

of horizontal phase velocity, respectively. The crust is homogeneous, Vp = 6.5 

kmlsec, V = 3.75 kdsec, and 25 km thick. Profiles along Oo, 30°, 55O, and 90' 

directions are indicated. 
s 

The part of the ANVIL model used for the computations has the following 

structure. The crust is isotropic, 25 km thick, with constant P- and 

S-wave velocities ( 6 . 5  and 3.75 km/sec). The upper mantle consists of an 

anisotropic orthorhombic layer underlain by an isotropic halfspace with 

constant P- and S-wave velocities (8.1 and 4.67 km/sec). The anisotropic 

layer is 10 km thick. The elastic parameters specified at the top and the 

bottom of the layer vary linearly through the layer. The elasticity 

tensor rotates linearly between the interfaces bounding the layer, making 

the total rotation of 3.6'. Figure 1 shows the azimuthal dependence of 

horizontal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqP and qS phase velocities at depths of 25 km (solid line), and 

35 km (dashed line), corresponding to the top, and bottom of the aniso- 

tropic layer. More details on the whole ANVIL model can be found in Fuchs 

(1983) and Gajewski and PsenEik (1987). 

In Figures 2 and 3, ray synthetic seismograms along profiles 0' and 55' 

(see Fig. 1) are shown. All possible refracted and primary reflected 

waves including those with conversion at the point of reflection are 

considered. In addition, the twice reflected and refracted qP-waves in 

the anisotropic layer are considered. 

The source is situated immediately below the surface of the isotropic 
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R N V I L  ( P R O F I L  a D E G )  , s c q , q )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

* 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA90 140 190 

DISTRNCE I N  KM 

VREDx 8. 00KM/SEC 

RNV I L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( PROF1 L 0 DEG ) , SL 1, 9 ) 

24 0 

lRRNSVERSE 

1s 

9 

w e  

i 6  
2 5  
+ *  
a 3  

a 2  
w 

1 
r0 90 I40 198 2+0 

DISTRNCE I N  KM 

VREDZ 8. 00Kfl/SEC RRO I R L  

RNVlL ( P R O F I L  0 DEG) .S(l. l) 

DISTRNCE I N  KH 
VRED= 8. 00KH/SEC VERT ICRL 

Figure 2. Ray synthetic seismograms of transverse, radial and vertical compon- 

ents of the displacement vector for the profile along 0' direction in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAANVIL 

model of Fig.1, showing predominantly P-wave arrivals. The strongest arrival is 

the P-wave reflection from the crust-mantle boundary. The principal frequency 

of the source signal is 2 Hz. 

crust, at the origin of coordinates. It is the artificial point source 

described in Section 3 . 2 ,  radiating both P- and S-waves. The amplitudes 

on the unit sphere around the source are equal to 1.0 for the P-waves, and 

to 1.41 for the S-waves. The polarization vectors of the S-waves are 

chosen for each ray in such a way that the S-wave has equal SV and SH 

components at the source. A s  a source-time function, the Gaussian 

envelope signal ( 3 . 6 )  with the prevailing frequency of 2 Hz is used. A 

time shift of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.48 sec is used to shift the signal so that the arrival 
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Wavefields in inhomogeneous anisotropic media zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA407 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
RNVlL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( PSI-55DEQ ), S( 1.1 I 

16 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I* 

12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 
l- 10' 

$ 8  a 

E 6  

a 2  

2 

9 '  
B 

90 140 190 Z t 0  *0 

DISTRNCE IN XH 

VREO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9. GZKH/SEC TRRNSVERSE 

DISTRNCE IN KM 

VREO- 4. 62KWSEC RRDl R t  

DISTRNCE I N  KH 

VRED- +.62KH/SEC VERTICAL 

Figure 3. Ray synthetic seismograms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof transverse, radial and vertical compon- 

ents of the displacement vector for the profile along 55' direction in the 

ANVIL model of Fig.1, showing predominantly S-wave arrivals. The strongest 

arrival is the reflection from the crust-mantle boundary. Preceding arrivals 

are due to shear wave splitting in the subcrustal anisotropic layer. The 

principal frequency of the source signal is 2 Hz. 

time corresponds to the onset of the signal. No amplitude-power scaling 

is used, neither along the profiles nor along individual traces. 

The seismograms in Fig. 2 are recorded along a profile in the direction 

0' (Fig.1). Due to the chosen reduction velocity and the time window, the 

figure mostly shows F arrivals. Since the direction of the profile corres- 

ponds to the direction with small anisotropic effects (nearly symmetry 

plane, see Fig. l), the P-waves have non-observable transverse components. 
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The dominant wave on the radial and vertical components is the reflection 

from the crust-mantle interface. The preceding wave is an interference of 

P-waves once and twice reflected and refracted in the anisotropic layer. 

These reflections are all subcritical since along the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0' profile the phase 

velocities in the anisotropic layer are greater than those in the 

underlying half space. 

The seismograms in Fig. 3 are recorded along profile 55O, see Fig. 1. 

In this case the reduction velocity and the time window are chosen in such 

a way as to show mostly S-wave arrivals. The anisotropic effects are 

strongest along this profile. The most prominent wave is again the 

reflection from the crust-mantle interface which can be now observed on 

all three components. This wave is preceded by two branches, both of 

which are seen between 150 and 190 km. This is an exhibition of the shear 

-wave splitting phenomenon. The two branches are caused by two qS-waves 

propagating in the anisotropic layer. The faster one is caused by the 

interference of refracted and reflected phases of one of,the qS-waves in 

the anisotropic layer. The slower one is caused by the reflection of the 

other qS-wave. The refracted phase of the slower qS-wave does not exist 

since this wave has a negative gradient in the anisotropic layer for this 

direct ion. 

5 Conclusions 

An algorithm for the computation of ray synthetic seismograms in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3-D 

laterally inhomogeneous structures consisting of a combination of iso- 

tropic and anisotropic layers has been proposed. Program packages have 

been written, based on this algorithm, which make possible the computation 

of travel times, vectorial amplitudes and ray synthetic seismograms on the 

surface of complex 3-D models. 

The programs can be applied to the investigation of various theoretical 

aspects of seismic wave propagation in anisotropic media. This may 

include the study of problems of shear-wave splitting, reflection/ 

transmission, polarization of shear waves and other phenomena, which may 

serve as indications of anisotropy, or may be used to separate the effects 

of anisotropy from the effects of inhomogeneity. The algorithm and the 

present programs can be also used to the solution of problems of practical 

interest. An example is the application of package zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASEISAN86 to the ANVIL 

model of the continental subcrustal lithosphere, as in the numerical 

examples in the previous section and the more detailed study in Gajewski 

and PBenFik (1987). Last but not least, the programs can also be used 

effectively in the study of 3-D isotropic problems. The procedures for 

isotropic layers are independent and only use the formulae for isotropic 
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media. 

The algorithm and corresponding programs still need some testing and 

refinement. The model should be generalized to allow modelling of block 

structures, vanishing layers, isolated bodies, etc. The approximate 

procedure for the determination af the geometrical spreading should be 

tested for effectiveness and accuracy against a procedure based on dynamic 

ray tracing. The procedure for the generation of the end-points of rays 

in an investigated region also needs refinement. It would be desirable 

also to investigate the limits zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof applicability of the algorithm and 

programs in special situations such as singular regions, and regions in 

which the phase velocities of  qS-waves are close to each other. Such 

investigation should include comparison with the results of more exact 

methods where these are applicable. 

Possible modifications and generalizations: 

(1) The described packages can be easily modified for applications in 

seismic prospecting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- computations of normal incidence synthetic sections, 

vertical seismic profiling, cross-hole shooting, or in microzoning - 

seismic response computations. The programs could also be modified for 

studies of the combined effects of source and anisotropy of the medium in 

focal zones. More general types of sources, including more general 

source-time functions, could also be introduced. 

(2) The present use of "single" paraxial ray approximation in the 

evaluation of synthetic seismograms could be substituted by a procedure 

based on the weighted summation of paraxial ray approximations, or 

possibly by Gaussian beam summation. 

( 3 )  Specialized programs could be derived from the present packages, 

which could more effectively deal with some simpler types of seismic 

anisotropy. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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