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Computation of Independent Contact Regions for
Grasping 3-D Objects

Maximo A. Roa, Student Member, IEEE, and Raudl Suarez, Member, IEEE

Abstract—Precision grasp synthesis has received a lot of atten-
tion in past few last years. However, real mechanical hands can
hardly assure that the fingers will precisely touch the object at
the computed contact points. The concept of independent contact
regions (ICRs) was introduced to provide robustness to finger po-
sitioning errors during an object grasping: A finger contact any-
where inside each of these regions assures a force-closure grasp,
despite the exact contact position. This paper presents an efficient
algorithm to compute ICRs with any number of frictionless or fric-
tional contacts on the surface of any 3-D object. The proposed ap-
proach generates the independent regions by growing them around
the contact points of a given starting grasp. A two-phase approach
is provided to find a locally optimal force-closure grasp that serves
as the starting grasp, considering as grasp quality measure the
largest perturbation wrench that the grasp can resist, indepen-
dently of the perturbation direction. The proposed method can
also be applied to compute ICRs when several contacts are fixed
beforehand. The approach has been implemented, and application
examples are included to illustrate its performance.

Index Terms—Fixture, grasp, independent contact regions
(ICRs), manipulation planning, multifingered hands.

1. INTRODUCTION

ULTIFINGERED hands have become an area of great
M interest in robotics, mainly because they increase the
flexibility and versatility of the robotic arms, allowing the robot
to grasp and manipulate a large class of objects with a single
end effector. The grasp planning problem associated with mul-
tifingered hands looks for the set of contact locations of the
fingers on the object surface that fulfill some desired condition.
When frictional contacts are considered, the most frequently
used condition is force closure (FC), i.e., that the forces applied
by the fingers ensure the object immobility [1]. When the po-
sition of the contacts ensures the object immobility, the grasp
is form closure; this condition is mostly used in fixture design
for object inspection or in manufacturing, basically when the
application requires a grasp that does not rely on friction (i.e., a
total kinematic restriction).

Two types of grasps are mainly considered for multifingered
hands: power grasps, which use the whole surface of the hand
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to restrain the object, and precision grasps, which use only
the fingertips to grasp the object. Power grasp synthesis has
generally been tackled by adapting a grasp from a database
of generic grasp shapes [2], [3]. Most of the theoretical work
on grasp synthesis is focused on computing precision grasps;
several works have presented such methods for 2-D polygonal
[4]1, [5], irregular [6] or discrete objects [7], 3-D polyhedral
objects [8], [9], objects with smooth curved surfaces [10], [11],
and 3-D discrete objects [12], [13].

In general, given an object and a mechanical hand, there
is more than one grasp that fulfills the force or form closure
property. An optimal grasp is chosen using a quality measure,
based on criteria such as geometrical considerations (e.g., the
distance between the centroid of the grasp polygon and the
center of mass of the object [ 14]), limits on the forces applied by
the fingers on the object (e.g., the maximal disturbance resisted
by the grasp [15]), task-oriented quality measures [16], [17], or
measures associated with the hand configuration [18]. A review
of grasp quality measures is provided in [19], and two overviews
of robotic grasping and manipulation, including grasp synthesis,
are provided in [20] and [21].

Grasp synthesis algorithms provide the contact locations for
the fingers on the object surface, but real mechanical hands can
hardly assure that the fingers are positioned in the exact locations
due to different sources of uncertainty. To provide robustness to
finger positioning errors, the computation of independent con-
tact regions (ICRs) on the object boundary was introduced, such
that if each finger is positioned on an ICR, an FC grasp is always
obtained independently of the exact position of each finger [22].
The determination of ICRs was initially addressed for two fric-
tional contacts on polygonal and polyhedral objects and with
four frictionless contacts on 2-D polygonal objects [22]. The
concept was extended to three-finger grasps of polygonal ob-
jects [14], to four-finger grasps of polyhedral objects [8], and to
grasps with a large number of fingers on 3-D objects based on
initial examples [23].

To deal with complex objects, as well as with objects whose
boundary is only known at a finite set of points (e.g., the aero-
dynamic design of an airfoil [12]), the object surface is approx-
imated via a triangular mesh with a high number of faces or
with a set of surface points and their corresponding normal di-
rection. The computation of ICRs for 2-D discrete objects with
four contact points has been already addressed [24], and a first
approach to the determination of ICRs on 3-D discrete objects
has been recently tackled by the authors [25].

This paper deals with the problem of determining ICRs on a
3-D object boundary using any number n of contacts (satisfying
the necessary conditions: n > 3 for frictional contactsand n > 7
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for frictionless contacts [26], [27]), such that the ICRs assure
an FC grasp with a controlled minimum quality. The proposed
algorithm generates the ICRs by growing them from a starting
FC grasp, which is properly computed. The approach focuses on
the object and does not take into account kinematic constraints
imposed by the mechanical hand or gripper.

The assumptions and the required background, including the
FC test and the quality measure used in the paper, are provided
in Section II. Section III presents the procedure to compute
a starting FC grasp, and the algorithm to obtain the ICRs is
described in Section IV. Section V shows the application of the
implemented approach on different objects with frictional and
frictionless contacts. Finally, Section VI summarizes the work
and discusses future research in this area.

II. BASIC BACKGROUND

A. Object Model

The approach is intended to be valid for rigid objects of any
shape; thus, it is assumed that the object surface is represented
by any type of mesh, i.e., aset Q2 of N points plus some neighbor-
ing information among them (the number of neighbors has no
influence on the proposed approach). The points are described
by position vectors p; measured with respect to a reference sys-
tem located in the center of mass (CM) of the object, and each
point p; has an associated surface normal direction 7; point-
ing toward the interior of the object. N is assumed to be large
enough to accurately represent the object, and the points are
close enough to be real neighbors not only in the physical space
but also in the mesh model. With this description, each ICR is
obtained as a set of neighboring points, assuming that a contact
between them also generates an FC grasp.

B. Contact and Force Model

The contact between each finger and the object is considered
punctual, either with or without friction. For frictional contacts,
Coulomb’s friction model is used, which states that in order
to avoid slippage the force f; applied at p, must lie inside
the friction cone defined by f! < uf, where y is the friction
coefficient and f! and f7 are, respectively, the tangential and
normal components of f;. In the 3-D physical space, this model
is nonlinear, and to simplify it, the friction cone is linearized
using an m-side polyhedral convex cone (the more sides, the
better the approximation, but the higher the computational cost
of dealing with the linearized cone). Thus, by representing the
unitary vector along the jth edge of the convex cone at the ith
contact with 7n;;, the grasping force is given by

m

fi= Zaz‘j’fbij , a;; > 0. (1
j=1

The force f; applied on the object at p; generates a torque
T; = p; X f; with respect to CM. The variables f; and 7; are
grouped together in a wrench vector givenby w; = (f; 7;/p)7,
where p is a parameter with units of length used to adjust the
metric of the wrench space (the appendix gives further details

on p).
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In order to simplify future explanations, the following abbre-
viations will be used throughout the paper for wrenches applied
at p;:
1) w;: wrench generated by a unitary force f; orthogonal to
the object surface, i.e., f; = n;;

2) w;;: wrench generated by a unitary force f; along an edge
of the linearized friction cone, i.e., f; = f;; (w;; is called
a primitive wrench).

Since each p; is associated with the wrenches w; and w;;, a
grasp defined by the set of contact points C' = {p,,...,p,}
is associated with the sets G = {wi,...,w,} and W =
{Wi1, -+, Wimy ooy Wniy -+, Wnm }. Thus, G and W will be
used as representative sets of a grasp (actually, a given set G
could be associated with more than one set of points on the ob-
ject surface, but the existence of G satisfying the desired grasp
requirements ensures the existence of at least one set of points
C that also do so).

Frictionless contacts, which are usually considered in fixtur-
ing where a total kinematic restriction is desired, only allow
grasping forces to be applied in the direction normal to the ob-
ject surface. For the given friction model, it can be assumed
that the linearized friction cone is described by only one vec-
tor n;; = n;. Therefore, the aforementioned abbreviations are
valid for frictional as well as for frictionless contacts, and so are
the algorithms presented later in this paper.

C. FC and Grasp Quality

A necessary and sufficient condition for the existence of an FC
grasp is that the origin O of the wrench space lies strictly inside
the convex hull of W [28], which, from now on, is represented as
CH(W). Several FC tests based on this condition have been pro-
posed, for instance, solving linear optimization problems [10],
[29] or using collision checks [30]. Another approach is based on
linear matrix inequalities that efficiently deal with frictional con-
straints, thus avoiding the linearization of the friction cone [31].
The FC test in this paper uses the following lemma [13].

Lemma 1: Consider a grasp with associated sets G and W,
and let 7 be the set of strictly interior points of CH(W) and
H; be a supporting hyperplane of CH(W), i.e., a hyperplane
containing the facet [ of CH(WW). The origin O of the wrench
space satisfies O € 7 if and only if VI O and any point P € 7
lie in the same half-space defined by H;.

In this paper, the condition of Lemma 1 is checked by choos-
ing the centroid of the primitive contact wrenches in W, which is
always an interior point of CH(W), as point P. Fig. 1 illustrates
the concept with an FC grasp and a non-FC grasp for the 3-D
wrench space of a 2-D object (note that the test is general, and
therefore, also valid for the 6-D wrench space associated with a
3-D object). Here, CH(W) is represented by simplicial facets,
i.e., each facet has the minimum possible number of vertices (d
for a d-dimensional space) [32].

To quantify the goodness of a grasp, the considered grasp
quality measure, which is one of the most common, is the largest
perturbation wrench that the grasp can resist independently
of the perturbation direction [15]. Assuming without loss of
generality that the maximum allowed grasping force is a unitary
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w2

(a) (b)

Fig. 1. FC test. (a) Non-FC grasp. Hyperplane formed by {ws,ws,w;,}
leaves P and O in different half-spaces. (b) FC grasp. All the supporting hyper-
planes of CH(W) leave P and O in the same half-space. The radius @ of the
largest inscribed sphere indicates the grasp quality.

force along 7,5, this grasp quality is equivalent to the radius
of the largest hypersphere centered on O and fully contained
in CH(W), i.e., it is the distance from O to the closest facet of
CH(W) [see Fig. 1(b)].

III. COMPUTATION OF A SUITABLE STARTING FC GRASP

The synthesis of a suitable starting FC grasp for the search
of the ICRs is performed in two phases: The first generates an
initial grasp with uncontrolled quality, and the second uses it to
generate a grasp with locally optimal quality. The approach is
based on that in [13], but more efficient procedures are given
here. The following sections describe the two phases and provide
a comparison with previous works.

A. Search for an Initial FC Grasp

Basically, the procedure to search for an initial FC grasp with
n points randomly chooses a set G5, of n — 1 points from (2,
and then determines the region of the wrench space where the
nth point must be located in order to generate an FC grasp (the
necessary and sufficient condition provided in [9] is used for this
purpose). If there is at least one point of € in this region, an FC
grasp is directly obtained; otherwise, one of the points in Gux
is iteratively replaced following certain rules until a solution is
found. The detailed algorithm is as follows.

Algorithm 1: Search for an initial FC grasp

1) Generate a random set G, = {w1,...,wp_1}

2) Build Wauxz{wu,. e Wlmy e LW m}
u{0o}

3) Compute CH(W,,x)

4) Determine the L supporting hyperplanes H; of CH(W,,x )
that contain O, [ = 1... L. Let H;" and H; be the two
half-spaces defined by H;, with CH(W,ux) C H,

5) If L =0, then (i.e., G4, is already an FC grasp)

a) Randomly choose w. ¢ Gaux
b) Go to Step 9
6) Find the sets of wrenches

C = {wi|wi1 V...Vw;y € ﬂHf} and
l

S Wn-11,--

C = {wj|w4,-1 N AWy, € mHl}
l

Ca

.o.

Fig. 2.  Synthesis of an FC grasp. The convex hull for the grasp set W,,x =
{w1, w2, w3} U{0} (in continuous lines) defines the supporting hyperplanes
H, and H» containing the origin. The convex region defining the set C; (in
dark gray) contains primitive wrenches corresponding to three points (depicted
as squares, while the other wrenches are represented by circles). Thus, the
algorithm provides three FC grasps; the convex hull corresponding to one of
them is illustrated in discontinuous lines. The convex region defining the set Co
is shown in light gray.

7) IfC; = 0, then
a) Randomly pick w; such that w; ¢ Cy
b) Find w; € G,ux closest to w;
¢) Update G,ux by replacing w; with w;
d) Goto Step 2
8) Randomly choose w,. € C;
9) Form G = Gaux U {w.} = {w1,...,wy_1,w.}
10) ReturnC' = {py,...,D;,..., D, } suchthat p; is a contact
point associated with w; € G
Fig. 2 illustrates the synthesis of an FC grasp for a hypothet-
ical 2-D wrench space. The algorithm ends when one FC grasp
is obtained and returns it, but it may provide as many FC grasps
as points belong to C; in the last iteration. When C; is empty, the
n — 1 points associated with the wrenches in G, will never
yield an FC grasp. Thus, when this happens, the combination of
wrenches in the current G, is left out for subsequent searches
(in Step 7c) to progressively explore the search space and ensure
the completeness of the algorithm (this was not included in the
aforementioned algorithm to simplify its structure).
To illustrate the procedure with a real example, the search for
a four-finger FC grasp of a discretized ellipse using frictionless
contacts is shown in Fig. 3 (for 2-D objects the wrench space
is 3-D, allowing a graphical representation). Fig. 3(a) shows
the discretized ellipse with the neighboring points connected
by a segment and three fingers randomly placed on the ellipse
boundary. Fig. 3(b) shows the wrench space and CH(W,,x)
(the convex hull of the corresponding wrenches plus the origin
0), the supporting hyperplanes H;, H2, and Hj containing
the origin O, the regions defining the sets C; and C,, and the
14 wrenches contained in C;. The corresponding 14 points on
the ellipse boundary, together with an FC grasp obtained by
randomly choosing one of these 14 points for the fourth contact,
are illustrated in Fig. 3(c). Fig. 3(d) shows the convex hull for
the selected grasp and the largest inscribed sphere centered on
O, whose radius represents the grasp quality Q).

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on December 23, 2009 at 06:23 from IEEE Xplore. Restrictions apply.



842

Fig. 3.
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(c) (@

Search for an initial FC grasp with four frictionless contacts on a discretized ellipse. (a) Ellipse with three contacts randomly selected. (b) Convex hull of

Waux = {w1, w2, w3} U{O} with the supporting hyperplanes H;, Ha, and H3 containing the origin O and defining the region C;, and the 14 points w; lying
in the region C; . (c) Corresponding 14 points p; on the ellipse and an FC grasp obtained by randomly selecting one of them as p, . (d) Convex hull of the obtained
FC grasp G = {w1, w2, w3, wy }; the largest inscribed sphere indicates the grasp quality @ = 0.197.

Algorithm 1 has a heuristic nature; nevertheless, some re-
marks about its computational cost can be made. Step 3 requires
the computation of a 6-D convex hull. This paper uses the ghull
implementation, which has a complexity O(Nv?/6), with v the
number of vertices in the convex hull [32]. Step 6 requires the
classification of the N — n + 1 points in {2 with respect to the L
supporting hyperplanes H;, which are described by linear equa-
tions. The total number of iterations required to find an FC
grasp (or to decide that there is no solution at all) depends on
the random choices of G, in Step 1 and w; in Step 7a.

B. Search for a Locally Optimal FC Grasp

The procedure to search for a locally optimal grasp uses
Algorithm 1 to generate an initial FC grasp. Then, the facet
of the corresponding convex hull that limits the grasp quality is
identified, and one of its vertices (primitive wrenches associated
with a contact point) is iteratively replaced to look for a better
grasp. This is done by computing the region of the wrench space
where the new wrench must be located in order to increase the
grasp quality and then by looking for a primitive wrench in this
region. If one is found, the associated contact point replaces the
existing one. If no replacement is found for any of the vertices
of the facet, the current grasp is returned as a locally optimal
one. The considered grasp quality is equivalent to the largest
perturbation wrench that the grasp resists, independently of its
direction (see Section II-C). The detailed algorithm is as follows.
Algorithm 2: Search for a locally optimal grasp
1) Use Algorithm 1 to find an initial FC grasp
and build the wrench sets G = {w1,...,w,}, W=
{wn,. e Wimy e, Wty ,wnm}

2) Compute CH(W) and the corresponding grasp quality Q).
Let F( be the facet of CH(WW) determining @

3) Find the set G,ux C G including the wrenches w; with
at least one primitive wrench w;; in Fp, ie., Gaux =
{w; | wi € GATw;; € Fg}. Let J < n be the number
of elements in G«

4) Fori=1to J (i.e., for each w; € G,,y), do

mOm

Fig.4. Optimization of an initial FC grasp with G = {w1, w2, w3, w4 }. F
is determined by w1 ; and wyy, and then, Gaux = {w1,wy } To replace wy,
hyperplanes H and H» give rise to hyperplanes H| and H), = Hy (F C
Hy) defining the region S (gray area) containing the set C of replacement
candidates (depicted as squares). w, is chosen to replace w, and generate the
new grasp with improved quality, and G = {w1, w2, w3, w, } (the modified
sides of CH(W ) are shown in dashed lines).

a) For each supporting hyperplane H; of CH(WW) con-
taining at least one primitive wrench of w; (i.e., 37 |
w;j € Hy Awjj; € Fg) build the hyperplane H; at
a distance () from the origin O passing through the
primitive wrenches of H; that do not belong to w;
(i.e., passing through wy; | wy; € H; and h # i),
and leaving O and w; in different half-spaces
b) Consider the region S = () H, ", with H;" the half-
space defined by Hj such that O ¢ H]" . Find the
set C of wrenches with at least one primitive wrench
inS (ie.,C = {w;|w,~1 V...Vwin € 8})
¢) If C # 0, then
i) Update G by replacing w; with a random
w, €C
ii) Update W according to G
iii) Go to Step 2
5) ReturnC = {py,...,p;,..., P, } suchthat p; is a contact
point associated with w; € G
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(a) (b)

Fig. 5.

(© (d)

Search for the locally optimal grasp. Replacement of p5 in the initial FC grasp in Fig. 3(d). (a) Hyperplanes H, Z/ tangent to the sphere of radius ) = 0.197

defining the set C of replacement candidates (depicted as dark squares) that improve the actual grasp quality. (b) Corresponding contact points on the ellipse.
(c) CH(W) for the new grasp obtained after the replacement of w3, with grasp quality @) = 0.266. (d) New grasp on the ellipse.

Fig. 4 illustrates the procedure for a hypothetical 2-D wrench
space. Note that Algorithm 2 does not involve an explicit FC test,
which reduces the computational complexity when compared
to previous works [13], [33]. Besides, only one computation
of CH(W) is required in each iteration of the algorithm. The
total number of iterations required to reach the local maximum
depends on the initial FC grasp and on the number of local
maxima in the wrench space.

To illustrate the procedure with a real example, Fig. 5 repre-
sents the first iteration of the locally optimal grasp search for
the ellipse and the starting FC grasp in Fig. 3. The starting grasp
quality @ is determined by primitive wrenches of the contacts at
Dy, Py, and p,, which gives G,,x = {ws,ws,w, }. To replace
ws, the hyperplanes Hi, Hj, and H} are built at a distance @
from the origin (i.e., they are tangent to the sphere of radius @
centered on O), as shown in Fig. 5(a). The set C contains five
wrenches that improve the actual grasp quality, highlighted with
squares in the wrench space in Fig. 5(a), while their correspond-
ing five contact points on the ellipse boundary are highlighted in
Fig. 5(b). A random replacement for wjy is selected from C, and
Fig. 5(c) shows the resulting convex hull for the new grasp with
the inscribed sphere indicating the new grasp quality. Fig. 5(d)
shows the new grasping points on the ellipse.

C. Comparison With Previous Works

Previous work has already addressed the problem of FC grasp
synthesis on discretized 3-D objects. One approach generates a
number of concurrent FC grasps with four frictional fingers but
without any optimality criterion, leaving to the user the choice of
the most suitable grasp for a particular task [34]. The algorithm
is based on the location of regions in the 3-D physical space
where the axes of the friction cones seem to intersect. For each
region, random subsets of four grasping points are tested for
the FC condition by choosing an arbitrary point in the region
and testing whether it is included in the four friction cones.
The algorithm is capable of computing hundreds of FC grasps;
the reported running times required to obtain one FC grasp in
objects described with 2000 surface points are below 2 s on a
2.4-GHz PC.

Another approach that is able to deal with frictional and fric-
tionless contacts starts with the random selection of n contact
points and then iteratively moves the points to reduce the dis-
tance between the convex hull of the applied wrenches and the
origin of the wrench space [12]. When the procedure is trapped
in a local minimum, the set of points is divided into subsets by
using a separating hyperplane in the wrench space, and the FC
search is decomposed into simpler subproblems. The algorithm
uses an FC test in each iteration that implies the solution of a
linear programming problem based on the ray-shooting tech-
nique [29]. The algorithm is complete in the sense that it finds
an FC grasp if it exists in the discrete sampling of the surface,
but it does not ensure any optimality.

Algorithm 1 also looks for the FC grasp in the wrench space,
it is applicable to any number of frictional or frictionless fingers,
and progressively covers the search space until an FC grasp is
found or until the nonexistence of an FC grasp is proved, thus
being complete. This algorithm is based on a random selection
of points, while the approach in [12] performs a search check-
ing all the combinations of neighboring points to decrease an
objective function (the distance between the convex hull and
the origin of the wrench space). Hence, no formal comparison
in terms of computational complexity is evident. Nevertheless,
the following remarks may help in a qualitative comparison of
both approaches. Algorithm 1 does not include an explicit FC
test in each iteration since the FC condition is embedded in the
search process itself. Besides, the algorithm may return more
than one FC grasp (depending on the number of wrenches lying
in the subset C; ). If necessary, a first selection according to any
quality measure could therefore be done at this point. However,
Algorithm 1 requires an explicit convex hull computation in
each iteration, which may be fast for frictionless contacts but is
more time-consuming for frictional contacts. The performance
of Algorithm 1 may be further improved if a good heuristic to
guide the random selection of points is found. On the other hand,
in both approaches, the efficiency depends on the initial contact
points, which are randomly chosen. Therefore, some criterion
to initially choose points spread on the object surface could im-
prove the search time (ideas with related potential applications
are given in [35]).
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If a grasp of higher quality is desired (as in the case of ICR
computation), a locally optimal grasp can be obtained from an
initial one with Algorithm 2. Some works have already tackled
the synthesis of optimal grasps for 3-D objects with surfaces
described by appropriate parameters [10], [36], [37], but these
works cannot be applied to discrete objects because they solve
optimization problems using continuous variables. For discrete
objects, an algorithm for fixture synthesis was proposed based
on the minimization of the workpiece positioning error due
to uncertainties in the locators position and in the workpiece
geometry [38]. This algorithm finds a locally optimal fixture, but
the approach is not applicable to frictional contacts. A previous
work of Roa and Suarez [13] laid the basis for the algorithms
presented here. Algorithm 1 was improved using the necessary
and sufficient FC condition in [9], which speeds up the time
required to obtain the first FC grasp. In Algorithm 2, points are
selected by choosing only candidates that improve the actual
grasp quality, thus eliminating the need for an explicit FC test
for each candidate and improving the time required to obtain
the locally optimal grasp.

IV. COMPUTATION OF ICRS
A. ICRs From a Given FC Grasp

This section presents the procedure to compute ICRs such
that if each finger is located at any point inside its correspond-
ing ICR, an FC grasp with a desired minimum grasp quality is
always obtained. ICRs can be computed starting from any given
FC grasp. However, since the quality of this starting grasp will
bound the reachable maximum minimum quality, if a high min-
imum quality is desired, then the use of a locally optimal grasp
obtained with Algorithm 2 in Section III-B is recommended. A
high starting grasp quality will also result in larger ICRs.

Basically, the procedure works as follows. Given a starting
FC grasp with quality (), the desired minimum grasp quality
Q, = a)s (wWith 0 < a < 1) for any FC grasp within the ICRs
is selected; when o — 0, the ICRs allow FC grasps with no
lower limit on the grasp quality (note that ), = 0 is actually a
forbidden value as it does not ensure the FC condition, namely
that any possible CH(TV) will strictly contain the origin O).
The larger the (), the smaller the ICRs. Therefore, (), must be
selected as a tradeoff between the desired robustness of poten-
tial grasps to external perturbations and the flexibility or error
margin in finger positioning on the object surface. Once @), is
fixed, a set of hyperplanes in the wrench space parallel to the
facets of the CH(TV) of the starting grasp and tangent to a hyper-
sphere of radius @, is used to determine regions of the wrench
space where new wrenches (associated with new contacts) will
generate FC grasps with quality () > @,. Finally, depending
on whether each ICR is constrained to be a continuous region
or not, a neighboring condition of the physical points associ-
ated with the new valid wrenches can be imposed. The detailed
algorithm follows.

Algorithm 3: Determination of the ICRs

1) Find a starting FC grasp C = {p;,...,p,} using

Algorithm 2, and obtain the corresponding set W =

{Wit, oy Wimy ooy Wht,y - - - Wopy + and its quality Qs
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‘511

Fig. 6. Search for ICRs ensuring a minimum grasp quality. Search zones .S;
for each grasping point are depicted in gray, and the wrenches associated with
neighboring points within each ICR are depicted with squares.

2) Select the minimum acceptable quality @), = aQ),, with

0<a<l

3) Compute CH(W)

4) For i = 1ton (i.e., for each contact point p; € C), do

a) For each facet I}, of CH(W) having at least one
vertex wj;, build the hyperplane H;/ parallel to F},
and at a distance @, from the origin O, leaving O
and F}, in different half-spaces. Let '™ be the open
half-space such that w,; € H]'*

b) Initialize ICR; = {p; }

c) Label p; as open

d) While there are open points p;, € ICR;, do

i) For all the neighboring points p, of p;, do
If 3 such that Vk w,; € H,’{”L, then
ICR; = ICR; U {p,}
Label p, as open
ii) Label p;, as closed

5) Return the ICRs

Fig. 6 illustrates the procedure for a hypothetical 2-D wrench
space; note that due to the geometrical construction, any phys-
ical point p, with a primitive wrench wj; in the region
S; =, H'" can replace the point p; of the given initial FC
grasp without losing the FC property and providing a quality
Q@ > Q.. Algorithm 3 is computationally very simple, the core
being Step 4. The determination of the hyperplanes H; parallel
to Fj, and at a distance (), from O in Step 4a is quite simple
and straightforward, as is the determination of H}/ * . Step 4d is
the most costly step because it is necessary to check whether
an unknown number of primitive wrenches wj; of an unknown
number of points p;, belongs to each half-space H} * . Never-
theless, each of these tests is just an evaluation of the sign of a
linear equation in the 6-D wrench space.

The procedure is illustrated with a real example in Fig. 7 using
the four-finger grasp with frictionless contacts of the discrete
ellipse. The starting FC grasp is shown on the ellipse (physical
space) in Fig. 7(a) and in the wrench space in Fig. 7(b); it is the
locally optimal grasp obtained with Algorithm 2 for the example
in Fig. 5. Fig. 7(c) shows the hyperplanes H}, k=1,...,4
tangent to the sphere of radius @), = 0.5 Q)s, the search zones
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() (b)

Fig. 7.

ICR{%,

ICRs.4

© ()

Search for the ICRs for a discretized ellipse. (a) Starting locally optimal FC grasp on the ellipse. (b) Starting FC grasp in the wrench space, with grasp

quality @, = 0.426. (c) Search zones S; defined by the hyperplanes H;’ and wrenches within each S; for Q, = 0.213 (a = 0.5). (d) ICRs on the ellipse.

S;,i=1,...,4, and the wrenches associated with the contact
points in the ICRs. The obtained ICRs can be seen on the ellipse
in Fig. 7(d).

The number of points in each ICR varies depending on the
smoothness of the surface around the contact points of the initial
FC grasp (i.e., the rate of change of the surface normal direction
around the contact points) and, of course, on the detail in the
representation of the object surface. Note that the ICRs depend
on the starting grasp; the search for the largest ICRs (or optimal
in any sense) is not addressed in this paper, but it is an interesting
issue to explore as future work.

A variation of Algorithm 3 can be obtained by removing the
neighborhood condition in Step 4(d)i, thus considering all the
points p, with at least one primitive wrench wj; inside
the search zone S; as part of ICR;. This would yield ICRs
that may be composed of discontinuous regions on the object
boundary, since the wrenches wj,; might be close in the wrench
space, but the points p; might not be neighbors at all on the
object boundary.

B. ICRs for Grasps With Some Contacts Fixed Beforehand

A particular extension of the proposed approach deals with
the search of ICRs for contact points that fully constrain the
object when a given number of contacts is fixed beforehand, for
instance, when there exist several fixed locator pins to hold a
workpiece or when an object lies on a surface (which predefines
some contacts on the object). If r contact points are provided,
the approach can be used to determine the missing n — r con-
tacts and ICRs to guarantee the FC condition. Algorithms 1
and 2 remain essentially unchanged when applied to this par-
ticular case; they are only adjusted to prevent the points fixed
beforehand from changing in any iteration.

The ICRs for the fixed contact points are not required (it
is assumed that their locations are precisely determined), and
therefore, they do not need to be computed; this is reflected
in some changes in Step 4a of Algorithm 3. In the original
algorithm, Step 4a builds several hyperplanes H, tangent to
the hypersphere of radius @), and parallel to each facet F}, of
CH(W) having at least one vertex w;;. In order to search the
ICRs for one missing contact point p;, this step builds several
hyperplanes tangent to the hypersphere of radius (), and con-

w3 .

(b)

Fig. 8. Search of the ICRs for a discretized ellipse with three contacts fixed
beforehand. (a) Hyperplanes Hy, HY, and H} are tangent to the sphere of radius
@, = 0.5 Qs = 0.213 and define the search zone S4. (b) ICR for the point p,
on the ellipse.

taining vertices w;; belonging to p;. This modified procedure is
illustrated in Fig. 8 using the starting grasp shown in Fig. 7(a)
and (b). Assuming the points p;, p,, and p to be fixed before-
hand, the ICR for the point p, was computed. Fig. 8(a) shows
the hyperplanes H{, HY, and H/ that define the search zone
S4. The ICR for the point p, is illustrated in Fig. 8(b). Note
that when there exist points fixed beforehand, larger ICRs are
obtained for the rest of the contacts.

C. Comparison With Previous Works

ICR computation for general 3-D objects based on initial
examples was originally proposed to compute a number of new
grasps that preserve some properties of a single starting example
of a successful grasp [23]. The paper considers as grasp quality
the inverse of the sum of the normal components of the forces
required to balance the worst-case external expected wrench
in a given task [39]. In the approach proposed here, the grasp
quality measure used is the largest perturbation wrench that the
grasp can resist, irrespective of the perturbation direction [15],
which is a task-independent measure. On the other hand, both
approaches are applicable to any number of fingers, and the
results depend on the choice of the starting example, which is
provided here with a locally optimal grasp.

Regarding ICR computation when 7 contact points are fixed
beforehand, a procedure to compute an optimal location for
the n — r missing points formulates the problem as a set of
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Example 1. Seven-finger frictionless grasp of a parallelepiped. (a) Initial FC grasp, @) = 0.0098 (Algorithm 1). (b) Locally optimal FC grasp, Q = 0.292

(Algorithm 2). (c) ICRs for each finger, @, = 0.219 (Algorithm 3 with & = 0.75).

7000 T T T T T

6000

5000

4000

3000

2000

Number of grasps

1000

0.26 0.27
Grasp quality

0.28

Fig. 10. Histogram for Example 1 with the quality distribution for all possible
grasps within the ICRs for @, = 0.219 (o = 0.75).

S

Fig. 11. ICRs for Example 1 with a minimum quality of (a) @, = 0.146 (o =
0.5). (0) Q, ~ 0 (a = 107°).

(a) (b)

inequalities solved with nonlinear programming techniques [9].
The quality measure used is the L, distance between the CM of
the object and the centroid of the contact points [8]. The pro-
cedure can also be used to compute the ICR for one grasping
point, considering that the other n — 1 points are fixed. How-
ever, the procedure can only be applied when the 3-D object is
described by a set of parameters (e.g., a polyhedron or an object
with parameterized curved surfaces) and requires some points
to be necessarily fixed beforehand, i.e., it is not applicable in a
general case where all n fingers must be located on the object.
In contrast, the use of parameterized surfaces allows the compu-
tation of continuous ICRs. The approach proposed here (using
Algorithms 1, 2, and 3) solves the general problem of locating
the r missing points and computing their corresponding ICRs
for any discrete object.

.

(a) (b)

Fig. 12. ICRs for Example 1 with 2 contacts fixed beforehand (shown as
arrows). (a) Q, = 0.146 (a = 0.5). (b) Q, ~ 0 (a = 107°).

TABLE I
RESULTS FOR A DIFFERENT NUMBER OF POINTS ON THE OBJECT BOUNDARY
N tQi [s] Qi tosls] Qf ticrls] grasps
1628 0.54 0.030 6.73  0.20 0.089 493
3422 0.36 0.031 13.23  0.21 0.179 47432

V. APPLICATION EXAMPLES

The proposed approach has been implemented using MAT-
LAB on a Pentium IV 3.2-GHz PC. The performance of the
algorithms is illustrated with different 3-D objects whose bound-
aries are described by triangular meshes. The potential contact
points p; are the centroids of the triangles in the mesh, and the
corresponding surface normal directions are the directions nor-
mal to the triangles. Two points are considered as neighbors if
their corresponding triangles share an edge.

A. Example 1: Seven Frictionless Contacts on a Polyhedron

The first example uses a parallelepiped described with a mesh
of 3422 triangles. This simple object was chosen to allow an
easy intuitive interpretation of the results (more complex objects
are presented in subsequent examples). The example presents
the computation of ICRs for a grasp (or fixture) with seven
frictionless contacts.

The first FC grasp obtained with Algorithm 1 is shown in
Fig. 9(a). The time required to obtain it was 0.49 s in five
iterations (in the fifth iteration, Algorithm 1 provides another 18
possible FC grasps), and the grasp quality is 0.0098. The locally
optimal FC grasp [see Fig. 9(b)] was obtained with Algorithm 2
in 24.3 s and 48 iterations, and the locally optimal grasp quality is
0.2921, which means a quality improvement factor of 29.8 (i.e.,
the ratio between the quality of the optimized and the initial FC
grasp). Note that each iteration of Algorithms 1 and 2 involves
the computation of one convex hull. Fig. 9(c) illustrates the
corresponding ICRs obtained with Algorithm 3 in 0.17 s using
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(b)

Fig. 13.
(c) ICRs for each finger, @, = 0.131 (Algorithm 3 with o = 0.75).

a minimum acceptable quality of ), = 0.219 (o = 0.75). The
points within the ICRs can be combined to generate 45 000
different grasps whose quality distribution is shown in Fig. 10.
For smaller @), (i.e., smaller «), the ICRs become larger, as
illustrated in Fig. 11 for the same starting grasp but assuming
Qr =0.146 (a« = 0.5) and Q, ~ 0 (o = 107° = 0).

Consider now that in the optimal grasp in Fig. 9(b), the two
contacts on the bottom of the parallelepiped have been pre-
cisely fixed beforehand (it may seem to be an artificial assump-
tion, but it is used here to allow direct comparison of the re-
sults). Using Algorithm 3 with the modifications described in
Section IV-B gives the ICRs in Fig. 12. Note that for the same
minimum quality ,, the ICRs for the other five contacts are
larger than the corresponding ones in Fig. 11.

In order to illustrate the performance of the approach for
a different number of points N in the object model, for this
example, the algorithms were run using a set {2 with N = 1628
and N = 3422 points. The averaged results for 50 trials for each
case are given in Table I, which includes the times required to
obtain the first FC grasp (¢(;), the locally optimal grasp (¢ ),
and the ICRs (t1cRr), as well as the corresponding qualities for
the initial (@);) and optimal (Q);) grasps and the number of
possible grasps allowed by the ICRs (grasps).

B. Example 2: Four Frictional Contacts on a Nonpolyhedral
Object

In this example, a workpiece presented in [10] and discretized
with 3946 triangles is to be grasped using four frictional contacts
and a friction coefficient p = 0.2 (see Fig. 13). The friction
cone has been linearized with an eight-side polyhedral convex
cone. Algorithm 1 provides the first FC grasp [see Fig. 13(a)] in
2.3 s in the first iteration with grasp quality 0.035. Algorithm 2
provides the locally optimal grasp [see Fig. 13(b)] in 114 s after
29 iterations, with a locally optimal grasp quality of 0.174, which
means a quality improvement factor of 5. Algorithm 3 computes
the ICRs for @, = 0.131(« = 0.75) in 66 s. The points within
the ICRs allow 320 different grasps, whose quality distribution
can be seen in Fig. 14.

The relevance of the goodness of the starting grasp is illus-
trated in Fig. 15, which shows the ICRs computed using Algo-
rithm 3 starting with the initial and the locally optimal FC grasp
in Fig. 13(a) and (b), respectively, and ), = 0.01 (note that @),
must be lower than the quality of the initial grasp). The ICRs
allow 14 196 and 5 09 490 different FC grasps, respectively.

©

Example 2. Frictional grasp of a workpiece. (a) Initial FC grasp, @ = 0.035 (Algorithm 1). (b) Locally optimal FC grasp, () = 0.174 (Algorithm 2).

Number of grasps

0
0.15 0.155

0.16 0.165 0.17 0.175
Grasp quality
Fig. 14.  Grasp quality distribution for all possible grasps within the ICRs for

Example 2 with @, = 0.131 (o = 0.75).

Fig. 15. ICRs for Example 2 with the same minimum quality @), = 0.01 but
computed from (a) the initial grasp and (b) the locally optimal grasp.

Even when the ICRs ensure the same minimum quality in both
cases, in the second one, the size of the ICRs allows a larger
number of possible FC grasps, thus justifying the search for the
ICRs based on a starting grasp of higher quality.

For this example, the algorithms were run using a different
number of faces m in the discretized approximation of the fric-
tion cone. The averaged results for 50 trials for 4, 8, and 12
friction cone faces are summarized in Table II.

In order to show the effect of the neighboring condition on the
ICRs computation, Fig. 16(a) shows the ICRs for @, =0 (a =
10~°) considering neighboring points, and, Fig. 16(b) shows
the ICRs obtained for the same (), but using the variation of
Algorithm 3 described at the end of Section IV-A that neglects
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wo subregions
of the same ICR

(b)

Fig. 16. ICRs for Example 2 with @, ~ 0 (o = 107°) using (a) Algorithm 3
and (b) Algorithm 3, but dropping the condition of neighboring points.

TABLE I
RESULTS FOR A DIFFERENT NUMBER OF FACES IN THE DISCRETIZED
FRrRICTION CONE

m tgi[s] Qi tgy [s] Qf ticr(s] grasps
4 0.57 0.071 29.73  0.128 8.82 4424
8 2.38 0.081 92.50 0.149 69.07 6034
12 6.88 0.080 196.08  0.145 316.91 9077

(a)

Fig. 17. ICRs for other figures, with @), =~ 0 using (a) 7-finger frictionless
contacts and (b) 4-finger frictional contacts.

the neighboring condition and, therefore, causes some ICRs to
split into disjoint zones.

C. Example 3: Seven Frictionless Contacts on a Nonpolyhedral
Object

Fig. 17(a) shows the ICRs obtained for another nonpolyhedral
workpiece discretized with 3 222 triangles considering @, ~
0 (o =107°) and a grasp with seven frictionless contacts.

D. Example 4: Four Frictional Contacts on an Irregular Object

Fig. 17(b) shows the ICRs obtained for a highly irregular ob-
ject, a chess knight, discretized with 4750 triangles considering
Q, ~0(a =107") and a grasp with four frictional contacts.

E. Different Number of Fingers on a Nonpolyhedral Object

In order to illustrate the performance of the approach for a
different number of fingers n on the same object, the algorithms
were run for the nonpolyhedral object of Example 2 using four,
five, and six fingers. The averaged results for 30 trials for each
case are summarized in Table III.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 4, AUGUST 2009

TABLE III
RESULTS FOR A DIFFERENT NUMBER OF FINGERS
n  tg;l[s] Q; toy [s] Qs ticr [s] grasps
4 2.38 0.081 92.50 0.149 69.07 6034
5 2.90 0.118 193.83  0.180 218.28 71708
6 3.66 0.174 307.35  0.240 602.93 1007154

VI. CONCLUSIONS AND FUTURE WORK

This paper presents an approach for the computation of ICRs
to perform grasps using frictional or frictionless contacts and
ensuring a minimum grasp quality for any number n of fingers,
provided that n > 3 for frictional contacts and n > 7 for fric-
tionless contacts. Procedures to compute an initial FC grasp and
to look for a locally optimal one are also provided. The algo-
rithms are implemented, and the execution results, as well as the
examples included in the paper, illustrate the relevance and effi-
ciency of the approach, which uses geometric reasonings based
on the information and structure of the wrench space and can be
applied to search ICRs, starting from any provided FC grasp. In
addition, the approach is extended to compute the ICRs when
some contact locations are fixed beforehand.

There are several directions for future research based on the
approach proposed in the paper. The first is related to the compu-
tation or validation of the set of points €2 describing the object
boundary, such that the FC property can be formally assured
between the neighboring points in the ICRs. In this paper, it is
assumed that the set {2 is well-conditioned and dense enough
to be useful, which seems to be valid for practical applications.
If the object is described by a triangular mesh, instead of using
only the centroids of the triangles, a potential solution is the
evaluation of the force at each vertex of a triangle to ensure
the FC at any point in the triangle. A related topic is the devel-
opment of an algorithm to properly sample the object surface
for grasp planning applications. Another future research line fo-
cuses on improving the computational time of the approach. In
this sense, the development of heuristics or criteria to guide the
random selections of points in Steps 1 and 8 in Algorithm 1 and
Step 4(c)i in Algorithm 2 are potential sources of improvement
(the selection of grasping points properly spread on the object
surface may help in this sense). Finally, a relevant future work
from the application point of view is the use of ICRs to plan
regrasping tasks for manipulation purposes.

APPENDIX

ON THE METRIC OF THE WRENCH SPACE AND ITS INFLUENCE
ON THE GRASP QUALITY MEASURE

Planning in robotics usually involves the use of the configura-
tion space, which collects position and orientation information,
and the wrench space, which collects force and torque informa-
tion. If the process involves the use of Euclidean distances in
these spaces, their metrics must be properly adjusted to avoid
unit inconsistency in the distance computation. The grasp qual-
ity used in this paper [15] is a Euclidean distance in the wrench
space, and therefore, the metric of the wrench space is adjusted
using a parameter p with units of length to define the wrenches
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as w = (f7/p)T. In this way, all the components of w have
units of force, and the grasp quality can be computed using the
metric L. Nevertheless, if p is constant and the modules of the
finger forces f, i = 1,...,n are kept constant, when the object
is scaled, the grasp quality will change accordingly (from O up
to a limit imposed by the convex hull of the grasp forces f,,
i =1,...,n).Inorder to avoid this effect, p is defined as a func-
tion of the object size, and two approaches are presented in this
line. One approach considers p as the largest distance from the
object’s CM to any point of the object. Thus, the maximum po-
tential torque is equal to the maximum applied force (typically
unitary), which creates a nice scaled wrench space but does not
have a real physical meaning. The other approach considers p as
the radius of gyration of the object, which has a physical mean-
ing in terms of energy, as follows. Let p be the object position,
¢ the object orientation, m the object mass, and I the object
inertia around a (given) rotation axis (note that I = p>m). If the
metric of the configuration space is properly adjusted defining
a configuration as ¢ = (p p¢)”, then the kinetic energy of the
object can be computed as

1 . 1 -
Ex §m||p||2 + §IH¢||2

1 , y 1.
SmIBl + llogll) = Smllel”

i.e., p@ is equivalent to a translational dimension. If the wrench

is adjusted as w = (f 7/p)T, the work W needed to move the
object an amount Ac under a wrench w is

T
W =w’Ac= fTAp + (;) pAp = FTAp + 7T A

which, as can be seen, is equivalent to the real work. In these
equations, we assume the knowledge of the rotation axis to
illustrate the concepts in a simple way, but for 3-D objects, the
equations can be formulated considering rotations around the
reference axes and the proper metric adjustments for each one.

We prefer this last metric adjustment for the wrench space,
but even when the value of the grasp quality measure depends
on the metric, the algorithms presented in the paper are still
valid.
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