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A purely algebraic algorithm for computation of invariants (generalized Casimir operators) of

Lie algebras is presented. It uses the Cartan’s method of moving frames and the knowledge of

the group of inner automorphisms of each Lie algebra. The algorithm is applied, in particular, to

computation of invariants of low-dimensional Lie algebras and invariants of solvable Lie algebras of

general dimension n < ∞ restricted only by a required structure of the nilradical.
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The invariants of Lie algebras are one of their defining characteristics. They have numerous ap-

plications in different fields of mathematics and physics, in which Lie algebras arise (representation

theory, integrability of Hamiltonian differential equations, quantum numbers etc). In particular, the

polynomial invariants of a Lie algebra exhaust its set of Casimir operators, i.e., the center of its uni-

versal enveloping algebra. That is why non-polynomial invariants are also called generalized Casimir

operators, and the usual Casimir operators are seen as ‘trivial’ generalized Casimir operators. Since

the structure of invariants strongly depends on the structure of the algebra and the classification of

all (finite-dimensional) Lie algebras is an inherently difficult problem (actually unsolvable), it seems

to be impossible to elaborate a complete theory for generalized Casimir operators in the general case.

Moreover, if the classification of a class of Lie algebras is known, then the invariants of such algebras

can be described exhaustively. These problems have already been solved for the semi-simple and

low-dimensional Lie algebras, and also for the physically relevant Lie algebras of fixed dimensions.

The standard method of construction of generalized Casimir operators consists of integration of

overdetermined systems of first-order linear partial differential equations. It turns out to be rather

cumbersome calculations, once the dimension of Lie algebra is not one of the lowest few. Alternative

methods use matrix representations of Lie algebras. They are not much easier and are valid for a

limited class of representations.

The presented algebraic method of computation of invariants of Lie algebras is simpler and gen-

erally valid. It extends to our problem the exploitation of the Cartan’s method of moving frames in

Fels–Olver version [Acta Appl. Math., 1998, 1999].



We recalculated invariant bases and, in a number of cases, enhance their representation for the

following Lie algebras:

• the complex and real Lie algebras up to dimension 6 [BPP06];

• the complex and real Lie algebras with Abelian nilradicals of codimension 1 [BPP07a];

• the complex indecomposable solvable Lie algebras with the nilradicals isomorphic to Jn
0 , n =

3, 4, . . . (the nonzero commutation relations between the basis elements e1,. . . , en of Jn
0 are

exhausted by [ek, en] = ek−1, k = 1, . . . , n − 1) [BPP07a];

• the nilpotent Lie algebras t0(n) of n× n strictly upper triangular matrices [BPP07a, BPP07b];

• the solvable Lie algebras t(n) of n × n upper triangular matrices and the solvable Lie algebras

st(n) of n × n special upper triangular matrices [BPP07b, BPP07c, BPP08];

• the solvable Lie algebras with nilradicals isomorphic to t0(n) and diagonal nilindependent ele-

ments, [BPP07b, BPP07c, BPP08].

Note that earlier there exist only conjectures on invariants of two latter families of Lie algebras.

Moreover, for the last family the conjecture was formulated only for partial case of a single nilinde-

pendent element.



Preliminaries

Consider a Lie algebra g of dimension dim g = n < ∞ over the complex or real field and the

corresponding connected Lie group G. Let g∗ be the dual space of the vector space g. The map

Ad∗ : G → GL(g∗), defined for any g ∈ G by the relation

〈Ad∗
gx, u〉 = 〈x, Adg−1u〉 for all x ∈ g∗ and u ∈ g

is called the coadjoint representation of the Lie group G. Here Ad: G → GL(g) is the usual

adjoint representation of G in g, and the image AdG of G under Ad is the inner automorphism

group Int(g) of the Lie algebra g. The image of G under Ad∗ is a subgroup of GL(g∗) and is denoted

by Ad∗
G.

A function F ∈ C∞(g∗) is called an invariant of Ad∗
G if

F (Ad∗
gx) = F (x) for all g ∈ G and x ∈ g∗.

The set of invariants of Ad∗G is denoted by Inv(Ad∗
G). The maximal number Ng of functionally

independent invariants in Inv(Ad∗
G) coincides with the codimension of the regular orbits of Ad∗

G,

i.e., it is given by the difference

Ng = dim g − rank Ad∗
G.

Here rank Ad∗
G denotes the dimension of the regular orbits of Ad∗G and will be called the rank of the

coadjoint representation of G (and of g). It is a basis independent characteristic of the algebra g,

the same as dim g and Ng.



To calculate the invariants explicitly, one should fix a basis E = {e1, . . . , en} of the algebra g.

It leads to fixing the dual basis E∗ = {e∗1, . . . , e
∗
n} in the dual space g∗ and to the identification

of Int(g) and Ad∗
G with the associated matrix groups. The basis elements e1, . . . , en satisfy the

commutation relations [ei, ej] =
∑n

k=1 ck
ijek, i, j = 1, . . . , n, where ck

ij are components of the tensor

of structure constants of g in the basis E .

Let x → x̌ = (x1, . . . , xn) be the coordinates in g∗ associated with E∗. Given any invariant

F (x1, . . . , xn) of Ad∗
G, one finds the corresponding invariant of the Lie algebra g by symmetriza-

tion, Sym F (e1, . . . , en), of F . It is often called a generalized Casimir operator of g. If F is

a polynomial, Sym F (e1, . . . , en) is a usual Casimir operator, i.e., an element of the center of the

universal enveloping algebra of g. More precisely, the symmetrization operator Sym acts only on

the monomials of the forms ei1 · · · eir , where there are non-commuting elements among ei1, . . . , eir,

and is defined by the formula

Sym(ei1 · · · eir) =
1

r!

∑

σ∈Sr

eiσ1
· · · eiσr

,

where i1, . . . , ir take values from 1 to n, r > 2. The symbol Sr denotes the permutation group

consisting of r elements. The set of invariants of g is denoted by Inv(g).



A set of functionally independent invariants F l(x1, . . . , xn), l = 1, . . . , Ng, forms a functional

basis (fundamental invariant) of Inv(Ad∗
G), i.e., any invariant F (x1, . . . , xn) can be uniquely rep-

resented as a function of F l(x1, . . . , xn), l = 1, . . . , Ng. Accordingly the set of Sym F l(e1, . . . , en),

l = 1, . . . , Ng, is called a basis of Inv(g).

Our task here is to determine the basis of the functionally independent invariants for Ad∗
G, and

then to transform these invariants into the invariants of the algebra g. Any other invariant of g is

a function of the independent ones.



Infinitesimal approach

Any invariant F (x1, . . . , xn) of Ad∗
G is a solution of the linear system of first-order partial dif-

ferential equations, see e.g. [Beltrametti-Blasi1966, Abellanas-MartinezAlonso1975, Patera-Sharp-

Winternitz-Zassenhaus1976]

XiF = 0, i.e. ck
ijxkFxj

= 0, (1)

where Xi = ck
ijxk∂xj

is the infinitesimal generator of the one-parameter group {Ad∗G(exp εei)}

corresponding to ei. The mapping ei → Xi gives a representation of the Lie algebra A.



The algorithm

Let G = Ad∗
G × g∗ denote the trivial left principal Ad∗

G-bundle over g∗. The right regularization R̂

of the coadjoint action of G on g∗ is the diagonal action of Ad∗
G on G = Ad∗

G × g∗. It is provided

by the map

R̂g(Ad∗
h, x) = (Ad∗

h · Ad∗g−1, Ad∗
gx), g, h ∈ G, x ∈ g∗,

where the action on the bundle G = Ad∗
G × g∗ is regular and free. We call R̂g the lifted coad-

joint action of G. It projects back to the coadjoint action on g∗ via the Ad∗
G-equivariant pro-

jection πg∗ : G → g∗. Any lifted invariant of Ad∗G is a (locally defined) smooth function from G

to a manifold, which is invariant with respect to the lifted coadjoint action of G. The function

I : G → g∗ given by I = I(Ad∗
g, x) = Ad∗

gx is the fundamental lifted invariant of Ad∗
G, i.e., I

is a lifted invariant, and any lifted invariant can be locally written as a function of I . Using an

arbitrary function F (x) on g∗, we can produce the lifted invariant F ◦ I of Ad∗
G by replacing x

with I = Ad∗
gx in the expression for F . Ordinary invariants are particular cases of lifted invari-

ants, where one identifies any invariant formed as its composition with the standard projection πg∗.

Therefore, ordinary invariants are particular functional combinations of lifted ones that happen to

be independent of the group parameters of Ad∗G.



The essence of the normalization procedure by Fels and Olver can be presented in the form of on

the following statement.

Proposition 1. Let I = (I1, . . . , In) be a fundamental lifted invariant, for the lifted invariants

Ij1, . . . , Ijρ and some constants c1, . . . , cρ the system Ij1 = c1, . . . , Ijρ = cρ be solvable with

respect to the parameters θk1
, . . . , θkρ

and substitution of the found values of θk1
, . . . , θkρ

into the

other lifted invariants result in m = n − ρ expressions Îl, l = 1, . . . , m, depending only on x’s.

Then ρ = rank Ad∗
G, m = Ng and Î1, . . . , Îm form a basis of Inv(Ad∗

G).



The algebraic algorithm for finding invariants of the Lie algebra g is briefly formulated in the

following four steps.

1. Construction of the generic matrix B(θ) of Ad∗G. B(θ) is the matrix of an inner automor-

phism of the Lie algebra g in the given basis e1, . . . , en, θ = (θ1, . . . , θr) is a complete tuple of

group parameters (coordinates) of Int(g), and r = dim Ad∗
G = dim Int(g) = n − dim Z(g), where

Z(g) is the center of g.

2. Representation of the fundamental lifted invariant. The explicit form of the fundamental

lifted invariant I = (I1, . . . , In) of Ad∗G in the chosen coordinates (θ, x̌) in Ad∗
G×g∗ is I = x̌ · B(θ),

i.e., (I1, . . . , In) = (x1, . . . , xn) · B(θ1, . . . , θr).

3. Elimination of parameters by normalization. We choose the maximum possible number ρ

of lifted invariants Ij1, . . . , Ijρ, constants c1, . . . , cρ and group parameters θk1
, . . . , θkρ

such that

the equations Ij1 = c1, . . . , Ijρ = cρ are solvable with respect to θk1
, . . . , θkρ

. After substituting

the found values of θk1
, . . . , θkρ into the other lifted invariants, we obtain Ng = n − ρ expressions

F l(x1, . . . , xn) without θ’s.

4. Symmetrization. The functions F l(x1, . . . , xn) necessarily form a basis of Inv(Ad∗G). They

are symmetrized to Sym F l(e1, . . . , en). It is the desired basis of Inv(g).



Our experience on the calculation of invariants of a wide range of Lie algebras shows that the

version of the algebraic method, which is based on Proposition 1, is most effective. In particular, it

provides finding the cardinality of the invariant basis in the process of construction of the invariants.

Indeed, the algorithm can involve different kinds of coordinate in the inner automorphism groups

(the first canonical, the second canonical or special one) and different techniques of elimination

of parameters (empiric techniques, with additional combining of lifted invariants, using a floating

system of normalization equations etc)

Let us underline that the search of invariants of Lie algebra g, which has been done by solving

a linear system of first-order partial differential equations, is replaced here by the construction of

the matrix B(θ) of inner automorphisms and by excluding the parameters θ from the fundamental

lifted invariant I = x̌ · B(θ) in some way.



Illustrative example(s)

The six-dimensional solvable Lie algebra ga
6.38 with five-dimensional nilradical g3.1 ⊕ 2g1 has the

following non-zero commutation relations

[e4, e5] = e1, [e1, e6] = 2ae1, [e2, e6] = ae2 − e3, [e3, e6] = e2 + ae3,

[a4, e6] = e2 + ae4 − e5, [e5, e6] = e3 + e4 + ae5, a ∈ R.

Here we follow the numeration of low-dimensional Lie algebras by Mubarakzyanov. We only have

modified the basis to K-canonical form, i.e. now 〈e1, . . . , ei〉 is an ideal of 〈e1, . . . , ei, ei+1〉 for any

i = 1, 2, 3, 4, 5.

The matrices of the adjoint representation âdei
of the basis elements e1, e2, e3, e4, e5 and −e6

correspondingly have the form




0 0 0 0 0 2a

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





,





0 0 0 0 0 0

0 0 0 0 0 a

0 0 0 0 0 −1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





,





0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 a

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





,







0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 a

0 0 0 0 0 −1

0 0 0 0 0 0





,





0 0 0 −1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 a

0 0 0 0 0 0





,





2a 0 0 0 0 0

0 a 1 1 0 0

0 −1 a 0 1 0

0 0 0 a 1 0

0 0 0 −1 a 0

0 0 0 0 0 0





.

The inner automorphisms of ga
6.38 are then described by the block triangular matrix

B(θ) =

5∏

i=1

exp(θiâdei
) · exp(−θ6âde6

)

=





ε2 0 0 −θ5εκ − θ4εσ −εθ5σ + εθ4κ −1
2θ

2
5 + aθ4θ5 −

1
2θ

2
4 + 2aθ1

0 εκ εσ θ6εκ θ6εσ θ4 + θ3 + aθ2

0 −εσ εκ −θ6εσ θ6εκ θ5 + aθ3 − θ2

0 0 0 εκ εσ θ5 + aθ4

0 0 0 −εσ εκ aθ5 − θ4

0 0 0 0 0 1





,

where ε = eaθ6, κ = cos θ6, σ = sin θ6.



Therefore, a functional basis of lifted invariants is formed by

I1 = ε2x1,

I2 = ε(κx2 − σx3),

I3 = ε(σx2 + κx3),

I4 = ε((−θ5κ − θ4σ)x1 + θ6κx2 − θ6σx3 + κx4 − σx5),

I5 = ε((−θ5σ + θ4κ)x1 + θ6σx2 + θ6κx3 + σx4 + κx5),

I6 =
(
− 1

2θ
2
5 + aθ4θ5 −

1
2θ

2
4 + 2aθ1

)
x1 + (θ4 + θ3 + aθ2)x2 + (θ5 + aθ3 − θ2)x3

+ (θ5 + aθ4)x4 + (aθ5 − θ4)x5 + x6.

The algebra ga
6.38 has two independent invariants. They can be easily found from first three lifted

invariants by the normalization procedure. Further the cases a = 0 and a 6= 0 should be considered

separately since there exists difference between them in the normalization procedure.

It is obvious in case a = 0 that e1 generating the center Z(g0
6.38) is one of the invariants. The

second invariant is found via combining the lifted invariants I2 and I3: I
2
2 + I2

3 = x2
2 + x2

3. Since

the symmetrization procedure is trivial for this algebra we obtain the following set of polynomial

invariants

e1, e2
2 + e2

3.



In case a 6= 0 we solve the equation I1 = 1 with respect to e2aθ6 and substitute the obtained

expression e2aθ6 = 1/x1 into the combinations I2
2 +I2

3 and exp(−2a arctanI3/I2). In view of trivial

symmetrization we obtain the final basis of generalized Casimir invariants

e2
2 + e2

3

e1
, e1 exp

(
−2a arctan

e3

e2

)
.

It is equivalent to the one constructed by Campoamor-Stursberg (2005), but it contains no complex

numbers and is written in a more compact form.



Below effectiveness of the algorithm is demonstrated by its application to computation of invariants

of solvable Lie algebras of general dimension n < ∞ restricted only by a required structure of the

nilradical.

Further we use the following notations:

diag(α1, . . . , αk) is the k × k diagonal matrix with the elements α1, . . . , αk on the diagonal;

Ek = diag(1, . . . , 1) is the k × k unity matrix;

Ek
ij (for the fixed values i and j) is the k × k matrix with the unit on the cross of the i-th row

and the j-th column and the zero otherwise;

Jk
λ is the Jordan block of dimension k and the eigenvalue λ:

[Jk
λ ]ij =






λ, if j = i,

1, if j − i = 1,

0, otherwise.

i, j = 1, . . . , k,

i.e.

Jk
λ =





λ 1 0 0 · · · 0

0 λ 1 0 · · · 0

0 0 λ 1 · · · 0

· · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · 1

0 0 0 0 · · · λ





, exp(θJk
0 ) =





1 θ 1
2!
θ2 1

3!
θ3 · · · 1

(k−1)!
θk−1

0 1 θ 1
2!
θ2 · · · 1

(k−2)!
θk−2

0 0 1 θ · · · 1
(k−3)!θ

k−3

· · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · θ

0 0 0 0 · · · 1





(let us note that Jk
λ = λEk + Jk

0 and therefore exp(θJk
λ) = eλθ exp(θJk

0 ) );



Rr
µν is the real Jordan block of dimension r = 2k, k ∈ N, which corresponds to the pair of

two complex Jordan blocks Jk
λ and Jk

λ∗ with the complex conjugate eigenvalues λ and λ∗, where

µ = Re λ, ν = Im λ 6= 0:

R2
µν =

(
µ ν

−ν µ

)
, R2k

µν =





R2
µν E2 0 0 · · · 0

0 R2
µν E2 0 · · · 0

0 0 R2
µν E2 · · · 0

· · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · E2

0 0 0 0 · · · R2
µν










k blocks;

A1 ⊕ A2 is the direct sum

(
A1 0

0 A2

)
of the square matrices A1 and A2;

A1

C
+ A2 is the block triangular matrix

(
A1 C

0 A2

)
, where A1 ∈ Mk,k, A2 ∈ Ml,l, C ∈ Mk,l.

Above 0 denotes the zero matrices of different dimensions.



Solvable algebras with Abelian ideals of codimension 1

Consider a Lie algebra g of dimension n with the Abelian ideal I of dimension n−1. Let us suppose

that the ideal I is spanned on the basis elements e1, e2, . . . , en−1. Then the algebra g is completely

determined by the (n− 1) × (n− 1) matrix M = (mkl) of restriction of the adjoint action aden
on

the ideal I . The (possibly) non-zero commutation relations of g have the form

[ek, en] =

n−1∑

l=1

mlkel, k = 1, . . . , n − 1.

The matrix M is reduced to the Jordan canonical form by change of the basis in I :

M = J r1

λ1
⊕ · · · ⊕ J rs

λs
,

where r1 + · · · + rs = n − 1, ri ∈ N, λi ∈ C, i = 1, . . . , s. In the real case the direct sum of two

complex blocks J ri

λi
and J

rj

λj
, where ri = rj and λi is conjugate of λj, is assumed as replaced by the

corresponding real Jordan block R2ri
µν with µ = Re λi and ν = Im λi 6= 0. The Jordan canonical

form is unique up to permutation of the Jordan blocks.

The above algebra will be denoted as J
r1...rs

λ1...λs
.

The Lie algebra J
r1...rs

λ1...λs
is decomposable iff there exists a value of i such that (λi, ri) = (0, 1).

(Then ei is an invariant of J
r1...rs

λ1...λs
.) Hence the contrary condition is supposed to be satisfied below.

It should be also noted this algebra is nilpotent iff λ1 = · · · = λs = 0.



Simplest cases

Consider the simplest case for M to be a single Jordan block with the eigenvalue λ, i.e. g = Jn−1
λ ,

n = 2, 4, . . . . The value of λ can be normalized to 1 in case λ 6= 0 but it is convenient for the

further consideration to avoid normalization of λ some time.

The non-zero commutation relations of Jn−1
λ at most are

[e1, en] = λe1, [ek, en] = λek + ek−1, k = 2, . . . , n − 1, λ ∈ C.

(The first one is zero if λ = 0.) Therefore, its inner automorphisms are described by the triangular

matrix

B(θ) = exp(θnJ
n−1
λ )

C
+ E1, C = (θ2 + λθ1, θ3 + λθ2, . . . , θn−1 + λθn−2, λθn−1)

T,

i.e. a functional basis of lifted invariants are formed by

Îk = eλθnIk, k = 1, . . . , n − 1, În = In + λ
n−1∑

j=1

θjxj,

where

Ik =
k∑

j=1

θk−j
n

(k − j)!
xj, k = 1, . . . , n − 1, In =

n−2∑

j=1

θj+1xj + xn. (2)



The nilpotent (λ = 0) and solvable (λ 6= 0) cases of Jn−1
λ should be considered further separately

since there exists difference in the normalization procedure. The dimension n = 2 is singular in the

both cases. J1
0 is two-dimensional Abelian Lie algebra and therefore has two independent invariants,

namely e1 and e2. J1
1 is two-dimensional non-Abelian Lie algebra and therefore has no invariants.

We assume below that n > 3.

Let us note that the adjoint representation of Jn−1
0 is unfaithful since the center Z(Jn−1

0 ) =

〈e1〉 6= {0}. Therefore, there are n − 1 parameters in the expression of B(θ) excluding θ1, and

Î coincides with I . It is obvious that the element e1 generating Z(Jn−1
0 ) is one of the invariants,

which corresponds to I1 = x1. Another (n−3) invariants are found by the normalization procedure

applied to the lifted invariants I2, . . . , In−1. Namely, we solve the equation I2 = 0 with respect

to θn and then substitute the obtained expression θn = −x2/x1 to the other I ’s. To construct

polynomial invariants finally, we multiply the derived invariants by powers of the invariant x1. Since

the symmetrization procedure is trivial for this algebra, we result to the following complete set of

independent generalized Casimir operators which are classical (i.e. polynomial) Casimir operators:

ξ1 = e1, ξk =

k∑

j=1

(−1)k−j

(k − j)!
ej−2

1 ek−j
2 ej, k = 3, . . . , n − 1. (3)

This set completely coincides with the one determined in Lemma 1 of [Ndogmo, Wintenitz, 1994]

and Theorem 4 of [Snobl, Winternitz, 2005].



In case λ 6= 0 the n − 2 invariants of Jn−1
λ are found by the normalization procedure applied to

the lifted invariants Î1, . . . , În−1. We solve Î2 = 0 with respect to the parameter θn. Substitution

of the obtained expression θn = −x2/x1 to Î1 and Îk/Î1, k = 3, . . . , n − 1, results to a basis

of Inv(Jn−1
λ ):

ζ1 = e1 exp

(
−λ

e2

e1

)
, ζk =

ξk

ξk−1
1

, k = 3, . . . , n − 1,

where ξk, k = 1, 3, . . . , n − 1, are defined by (3).

This set of invariants completely coincides with the one determined in Lemma 2 of [Ndogmo,

Wintenitz, 1994]. We only use exponential function instead logarithmic one in expression of the

first invariant.

Let us emphasize that any basis of Inv(Jn−1
λ ) contains at least one transcendental invariant. The

other basis invariants can be chosen rational.



The real version Jn−1
(µ,ν) of the complex algebra Jr r

λλ∗, where n = 2r + 1, r ∈ N, µ = Re λ,

ν = Im λ 6= 0, has the non-zero commutation relations

[e1, en] = µe1 − νe2, [e2, en] = νe1 + µe2,

[e2k−1, en] = µe2k−1 − νe2k + e2k−3, [e2k, en] = νe2k−1 + µe2k + e2k−2, k = 2, . . . , r.

A complete tuple Î of lifted invariants has the form

Î2k−1 = eµθn(I2k−1 cos νθn − I2k sin νθn), Î2k = eµθn(I2k−1 sin νθn + I2k cos νθn),

În =
r∑

j=1

(
θ2j−1(µx2j−1 − νx2j) + θ2j(νx2j−1 + µx2j)

)
+

r−1∑

j=1

(
θ2j+1x2j−1 + θ2j+2x2j

)
+ xn,

where k = 1, . . . , r,

I2k−1 =
k∑

j=1

θk−j
n

(k − j)!
x2j−1, I2k =

k∑

j=1

θk−j
n

(k − j)!
x2j.



The normalization procedure is conveniently applied to the following combinations of the lifted

invariants Î2k−1, Î2k, k = 1, . . . , r:

Î2
1 + Î2

2 = (x2
1 + x2

2)e
2µθn, arctan

Î2

Î1

= arctan
x2

x1
+ νθn,

Î1Î3 + Î2Î4

Î2
1 + Î2

2

=
x1x3 + x2x4

x2
1 + x2

2

+ θn,
Î2Î3 − Î1Î4

Î2
1 + Î2

2

=
x2x3 − x1x4

x2
1 + x2

2

,

Î1Î2k−1 + Î2Î2k

Î2
1 + Î2

2

=
x1I2k−1 + x2I2k

x2
1 + x2

2

,
Î2Î2k−1 − Î1Î2k

Î2
1 + Î2

2

=
x2I2k−1 − x1I2k

x2
1 + x2

2

, k = 3, . . . , r.

We use the condition that the third combination (or second one if n = 3) equals to 0 as a normal-

ization equation on the parameter θn and then exclude θn from the other combinations. It gives the

basis of Inv(Jn−1
(µ,ν))

ζ1 = (e2
1 + e2

2) exp
(
−2

µ

ν
arctan

e2

e1

)
,

ζ3 = ν
e1e3 + e2e4

e2
1 + e2

2

− arctan
e2

e1
, ζ4 =

e1e4 − e2e3

e2
1 + e2

2

,

ζ2k−1 =
e1ζ̂2k−1 + e2ζ̂2k

e2
1 + e2

2

, ζ2k =
e2ζ̂2k−1 − e1ζ̂2k

e2
1 + e2

2

, k = 3, . . . , r,



where

ζ̂2k−1 =
k∑

j=1

(
−

e1e3 + e2e4

e2
1 + e2

2

)k−j
e2j−1

(k − j)!
, ζ̂2k =

k∑

j=1

(
−

e1e3 + e2e4

e2
1 + e2

2

)k−j
e2j

(k − j)!
.

Therefore, J2
(µ,ν) has unique independent invariant ζ1 which is necessarily transcendental. In case

n = 2r + 1 > 5 any basis of Inv(Jn−1
(µ,ν)) contains at least two transcendental invariants; the other

n − 4 basis invariants can be chosen rational. A quite optimal basis with minimal number of

transcendental invariants is formed by ζk, k = 1, 3, . . . , n − 1.
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Main advantage of proposed method is in that it is purely algebraic. Unlike the conventional

method, it eliminates the need to solve systems of differential equations, replacing in our approach

by construction of the matrix B(θ) of inner automorphisms and by excluding the parameters θ from

the fundamental lifted invariant I = x̌ · B(θ) in some way.

Let us note, that efficient exploitation of the method imposes certain constraints on the choice of

bases of the Lie algebras. That then automatically yields simpler expressions for the invariants. In

some cases the simplification is considerable.


