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and Edward J. Garboczi∗∗

ABSTRACT

Elastic property-porosity relationships are derived di-
rectly from microtomographic images. This is illustrated
for a suite of four samples of Fontainebleau sandstone
with porosities ranging from 7.5% to 22%. A finite-
element method is used to derive the elastic properties
of digitized images. By estimating and minimizing sev-
eral sources of numerical error, very accurate predic-
tions of properties are derived in excellent agreement
with experimental measurements over a wide range of
the porosity. We consider the elastic properties of the
digitized images under dry, water-saturated, and oil-
saturated conditions. The observed change in the elastic
properties due to fluid substitution is in excellent agree-
ment with the exact Gassmann’s equations. This shows
both the accuracy and the feasibility of combining mi-
crotomographic images with elastic calculations to ac-
curately predict petrophysical properties of individual
rock morphologies. We compare the numerical predic-
tions to various empirical, effective medium and rigorous
approximations used to relate the elastic properties of
rocks to porosity under different saturation conditions.

INTRODUCTION

Discovering accurate relationships between pore structure
and elastic properties of porous rocks is a long standing prob-
lem in geophysics. Understanding the interaction between
rock, pore space, and fluids, and how they control rock prop-
erties is crucial to better interpretation of geophysical mea-
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surements. Expressions that relate elastic moduli to porosity,
pore-fluid compressibility, and fluid saturation form the basis
for reservoir assessment and monitoring procedures. They are
used to infer porosity from well logs as well as from in-situ
indicators of pore fluid type.

Properties of porous rocks depend primarily on the mor-
phology of the pore space and solid phase(s). Relevant as-
pects of the rock structure include porosity, pore shape and
size, and the type and frequency of interconnections between
pore and solid regions. These features, some of which un-
fortunately lack precise definition, comprise the morphol-
ogy of the rock. Accurately predicting properties from mi-
crostructural information requires an accurate quantitative
description of the complex microstructure of the medium,
and the ability to solve for mechanical properties on large
3-D grids. In the absence of a full structural character-
isation, past attempts to relate the elastic properties of
rocks to porosity have been limited to empirical relation-
ships (Han, 1986), effective medium theories (Berryman,
1980), rigorous bounding methods (Hashin and Shtrikman,
1962; Milton, 1981) and simple deterministic models (Wyllie
et al., 1956; Raymer et al., 1980). None of these is entirely sat-
isfactory.

Typically, empirical formulas are obtained statistically from
experimental data sets. They provide a simple and convenient,
but deceptive, form of summarizing extensive experimental
data. Lacking a rigorous connection with microstructure, these
formulas do not offer predictive or interpretive power, sel-
dom carry physical insight, and often fail when applied to a
wider range of rock types. In effective medium theory, the mi-
crostructure corresponding to a specific model is not realis-
tic; agreement or disagreement with data can neither confirm
nor reject a particular model. A clear advantage of bounds is
that they incorporate microstructural information and can be
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applied to arbitrarily complex structures. Bounds are ex-
tremely useful if the constituent materials have similar proper-
ties. For materials like porous sedimentary rocks, the bounds
are quite far apart due to the large contrast in elastic proper-
ties between pore fluid and rock matrix which severely limits
their predictive power. Simple deterministic models attempt to
find a meaningful explanation for experimental observations.
The best known example is Wyllie’s equation (Wyllie et al.,
1956). This equation is based on the observation that, for clean
sandstones, the compressional wave velocity has a strong lin-
ear correlation with porosity. Raymer et al. (1980) modified
this formula by suggesting different laws for different porosity
ranges. Nur et al. (1995) also used this method in suggesting a
critical porosity model. These models work for certain classes
of rock types, but do not have general applicability.

An alternative approach is to computationally solve the
equations of elasticity directly on digitized models of mi-
crostructure (Roberts and Garboczi, 2000). Computer mem-
ory and processing speed now make it possible to handle the
large 3-D models and number of computations needed to ob-
tain useful results. As input to these methods, statistical models
have been proposed for reconstructing 3-D porous materials
(Joshi, 1974; Quiblier, 1984; Adler et al., 1990, 1992; Roberts,
1997; Yeong and Torquato, 1998). Complete characterization
of the effective morphology, however, requires knowledge of
an infinite set of n-point statistical correlation functions. In
practice only lower order morphological information is avail-
able; common methods (Joshi, 1974) are based on matching
the first two moments (volume fraction and two-point correla-
tion function) of the binary phase function to a random model.
Random 3-D models are then generated which match the mea-
sured statistical properties. It is widely recognised (Adler et al.,
1990, 1992; Roberts, 1997; Yeong and Torquato, 1998) that al-
though the two-point correlation functions of a reference and
a reconstructed system are in good agreement, this does not
ensure that the structures of the two systems will match well.
Adler et al. used this technique to reconstruct Fontainebleau
sandstone and found that computations of permeability (Adler
et al., 1990) and conductivity (Adler et al., 1992) were consis-
tently lower than experimental data, a result most likely due
to percolation differences between model and real materials
(Bentz and Martys, 1994; Roberts and Knackstedt, 1996).

Direct techniques which provide a detailed 3-D description
of the pore structure were initially limited to sets of 2-D se-
rial sections imaged and combined to build the 3-D image
(Lin and Cohen, 1982). However this method is extremely te-
dious and time consuming. Direct measurement of a 3-D struc-
ture is now readily available from synchotron and micro X-ray
computed microtomography (Flannery et al., 1987; Dunsmuir
et al., 1991; Spanne et al., 1994) and laser confocal microscopy
(Fredrich et al., 1995). These techniques provide the opportu-
nity to directly measure the complex morphology of the pore
space of sedimentary rock in three dimensions at resolutions
down to a few microns. In parallel, computational techniques
have progressed to the point where material properties such
as diffusivity, elasticity, and conductivity can be calculated on
large 3-D digitised images containing up to one billion (10003)
voxels. With the development of these experimental and com-
putational methods, it is possible to replace synthetic images
derived from statistical models with actual images and base cal-
culations directly on the measured 3-D microstructure. This has

been done (Schwartz et al., 1994; Spanne et al., 1994; Auzerais
et al., 1996) for the geometric and transport properties of sand-
stones. Their calculations showed good agreement with labo-
ratory measurements for porosity and pore-volume-to-surface
ratio. Their calculations of transport properties were less suc-
cessful. In a recent paper (Arns et al., 2001a), we showed that it
is possible to accurately predict transport properties from dig-
itized images by estimating and minimizing sources of numer-
ical error. In the present paper, we calculate for the first time
the elastic properties of a tomographic image of sandstone. We
consider the elastic properties of the digitized images under dry,
water-saturated, and oil-saturated conditions. Numerical pre-
dictions are in excellent agreement with available experimental
data. The observed change in the elastic properties due to fluid
substitution is consistent with the exact Gassmann’s equations
(Gassmann, 1951; Berryman, 1999). This shows both the feasi-
bility and the accuracy of combining microtomographic images
with elastic calculations to predict petrophysical properties of
individual rock morphologies. We compare the numerical pre-
dictions to various empirical, effective medium, deterministic,
and rigorous approximations used to relate the elastic proper-
ties of rocks to porosity.

The paper is organized as follows. We first briefly describe
the experimental acquisition method and define morphologi-
cal measures used to choose an appropriate window size for
simulation. Numerical methods used to derive the linear elas-
tic properties are described in detail along with a discussion
of potential numerical errors. We then give the predictions for
the suite of Fontainebleau samples used in this study, and com-
pare them to experiment and to theory. Finally, we compare the
numerical predictions with commonly used empirical methods.

METHODOLOGY

Image acquisition

Fontainebleau sandstone is an ideal experimental system for
this study. First, experimental data is available for the elastic
properties of Fontainebleau sandstone over a range of poros-
ity (Han, 1986). Second, Fontainebleau is homogeneous, it is
made up of a single mineral (quartz) and does not contain clay,
and the structure of the sandstone is quite simple as it only
displays intergranular porosity. Modeling the system as a sim-
ple two-phase material may be expected to provide a good
match to experimental data. The images were obtained from
4.52-mm diameter cylindrical core samples extracted from each
of four blocks of Fontainebleau sandstone with bulk porosities
φ= 7.5%, 13%, 15%, and 22%. A 2.91-mm length section of
each core was imaged (Flannery et al., 1987; Dunsmuir et al.,
1991; Spanne et al., 1994). The reconstructed images have a
resolution of 5.7 µm resulting in 795× 795× 512 imaged sec-
tions. X-ray computed tomographic images of porous media
are grayscale images, usually with a bimodal population ap-
parent, one mode corresponding to the signal from the void
space and the second to the signal from the grain space. Each
grayscale image was thresholded using a kriging-based thresh-
olding method (Oh and Lindquist, 1999) to give a binary pore-
solid image (Lindquist and Venkatarangan, 1999; Lindquist
et al., 2000). From the original cylindrical plug, we extracted
the central 4803 cubic subset for analysis, corresponding to a
volume of 20.5 mm3.



1398 Arns et al.

Choice of representative image volume

The question of how the results depend on the total vol-
ume imaged has to be addressed. In previous work (Schwartz
et al., 1994; Spanne et al., 1994; Auzerais et al., 1996), calcula-
tion of transport properties on microtomographic images were
performed on either the full image or on a few subsets of the
imaged data. Auzerais et al. (1996) found that cubes of size of
much greater than 1 mm3 were required to estimate fluid per-
meability with acceptable accuracy. Unfortunately, the analysis
of only a small number of subsets provides only a few dat-
apoints to compare to experiment. The subsequent require-
ment to experimentally image many samples to obtain data
across the full range of φ is both expensive and time con-
suming. In recent work (Lindquist et al., 2000), the distribu-
tions of the flow-relevant geometrical properties (e.g., pore-
size distribution, throat size, etc.) were measured on the same
set of Fontainebleau sandstone cores considered here. They
extracted, from the center of each core, a 2563 voxel image
(3.09 mm3) and compared geometrical properties to the full
core of seven times the volume. Even at this smaller scale,
roughly ten grains on a side, the comparison showed good
agreement for most blocks. The prospect of using smaller block
sizes is an encouraging one. Rocks, even as homogeneous as
Fontainebleau sandstone, exhibit local variability in the poros-
ity (Arns, 2001; Thovert et al., 2001). We illustrate this for the
four Fontainebleau sandstone samples in Figure 1. By choosing
independent subsamples ((L/N)3) of the original (L3) image,
one can obtain a larger ensemble (N3) of samples which exhibit
a wide range of porosity. The combination of an appropriately
small window size on the imaged core and the natural hetero-
geneity of the rock allows properties of the rock to be derived
over a wide range of porosities from a small number of core
samples. In this section, we use morphological measures to help
define an “appropriate” window size.

A first test of the dependence of digitized data on image vol-
ume is the requirement to ensure that the geometrical and the
topological descriptors of the image volume are consistent. A
family of measures based on the Euler-Poincaré characteristic

FIG. 1. Variations in porosity of the four Fontainebleau sand-
stone samples measured along the core (4803 subvolumes).

(Santaló, 1953; Hadwiger, 1957) has been shown to be very
sensitive to the morphology of random materials (Arns et al.,
2001b). In three dimensions, there are four measures related
to the familiar measures of volume fraction, surface area, inte-
gral mean curvature, and Euler characteristic (connectivity).
Figure 2 illustrates the three latter measures [surface-to-
volume (S/V), integral mean curvature (H), and Euler charac-
teristic (χ)] as functions of the porosity for the original image
at 4803 and for cubic subsets of the image at scales of 2403

and 1203. Variability of the measures increases with decreasing
window size, but the values are consistent with the data for the
larger volumes, suggesting that the averages obtained for the
smaller blocks are meaningful. At low porosity, near the per-
colation threshold of the pore space, the scatter is greatest, but
still acceptable at the scale of 1203.

One can also define the representative cell size by consider-
ing the two point correlation function: the probability of finding
two end points of a segment of length ` within the same phase.
Defining a correlation length ξ as the first zero of this two point
function (Joshi, 1974), we find that ξ ' 130 µm. This is consis-
tent with values reported in the literature (Oren and Bakke,
2002). For our system size of 1203 at 5.7 µm per voxel, this im-
plies the cell spans more than five times the correlation length
and good averaging behavior may be expected. Previous mi-
crotomographic work (Auzerais et al., 1996) found that for a
system of similar size (1123 at 7.5µm resolution), the averaging
of the porosity was acceptable.

It is important to carefully select the number of samples over
which the results are averaged in order to produce acceptable
uncertainties. Use of samples of 1203 results in 64 samples per
core, provides a wide spread of porosities from each core, and is
computationally realizable on common workstations. Example
snapshots of 1203 subvolumes from the four cores are shown in
Figure 3. Further assessment of the errors associated with the
choice of the window size on the numerical computation of the
elastic properties of the images is addressed in the next section.

Property prediction

A microstructure defined by a digital image is already
naturally discretized and lends itself immediately to numerical
computation of many useful quantities. We use a finite-element
method (FEM) to estimate the elastic properties of the model
system. FEM uses a variational formulation of the linear elastic
equations and finds the solution by minimizing the elastic
energy using a fast conjugate-gradient method. Each voxel
is taken to be a trilinear finite element. A strain is applied,
with the average stress or the average elastic energy giving
the effective elastic modulus. The digital image is assumed to
have periodic boundary conditions. Most of the simulations
were performed on a modern workstation (500 MHz Compaq
XP1000). Each FEM simulation at 1203 required ∼1 hour of
CPU time and 214 MB of memory. Further details of the theory
and the programs can be found elsewhere (Garboczi and Day,
1995; Garboczi, 1998; Arns, 2001). We assign to the rock skele-
ton values of the elastic properties of quartz given by Mavko
et al. (1998): bulk modulus K = 37.0 GPa, shear modulus
µ= 44.0 GPa, and mineral density ρ= 2.65 g/cm3. We model
the water-saturated case at T = 200◦C and 40 MPa pressure
[KWater= 2.2 GPa, µWater= 0 GPa (Han, 1986; Castagna et al.,
1993)], and the oil-saturated case (30 API oil) at T = 200◦C
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and 25 MPa pressure (KOil= 0.5 GPa, µOil= 0 GPa) using
temperature-adjusted moduli (Castagna et al., 1993). The
choice of the water-saturated condition is made to allow for
comparison with the experimental data from Han (1986).

In order to obtain accurate numerical results it is necessary to
estimate and minimize three sources of error: finite-size effects,

FIG. 2. Measures of morphology based on the Euler-Poincaré
characteristic for the Fontainebleau sandstone at the scale
of the full 4803 image and for smaller cubic subsets [sur-
face-to-volume (S/V), integral mean curvature (H), and Euler
characteristic (χ)].

statistical fluctuations, and discretization errors. These error
analyses have not been carried out in the past due to limitations
in computational speed. However, if one wishes to compare
computations directly to experiment, such error analyses must
be carried out (Roberts and Garboczi, 2000). We discuss the
three sources of error separately.

In the previous section, we argued that, at the length scale of
120 voxels, the averaging of the porosity is acceptable. To test if
this cell size provides good averaging of the elastic properties,
we compare data measured at 1203, 1603, and 2403 cells (see
Figure 4a). The finite-size errors appear to be small for the 1203

cell size. To further quantify these errors, we discuss statistical
uncertainties for the various cell sizes. To estimate statistical
uncertainties, we bin the data as a function of porosity φ with
bin sizes 1φ= 0.025. The error bars reflect twice the standard
error (S.E.= σ/√N), where σ is the standard deviation. There
is a 95% chance that the “true” value lies between the indi-
cated standard error bars shown in Figure 4b. The results are
accurate to within 2–3% for most data points. The binned data
is presented for different cell sizes (1203, 1603, and 2403). Dif-
ferences between the predictions at the different cell sizes are
well within statistical error, indicating that finite-size effects
are acceptably small.

Finally, we consider the discretization error: the error due to
the use of discrete voxels to represent continuum objects. To
do this we coarse-grain the original images by generating reali-
sations of the tomographic data sets at integer multiples of the
resolution of the original image (i.e., n× 5.7 µm= 11.4 µm,
17.1 µm, . . .). To generate the images at poorer resolution,
we bin voxel clusters of sizes n3 (n= 2, 3, 4) using a simple
majority rule. It has been previously shown (Roberts and

FIG. 3. Pore space images of a central 1203 subset of each of
the four 4803 samples. The images are from the Fontainebleau
cores at (a) 7.5% (7.04%), (b) 13% (12.6%), (c) 15% (19.6%),
and (d) 22% (19.0%). The values in parentheses are the porosi-
ties of the individual 1203 subsamples compared to the macro-
scopic porosity of the original core plugs. The differences in the
bulk and subsample porosities again illustrate how one may ob-
tain a large ensemble of samples with variable porosity from a
single core plug.
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Garboczi, 2000) that the variation of an elastic property P
follows

P(1) = P0 + a1, (1)

where 1 is the voxel size, a is a fitting parameter, and P0 is
the “continuum” value corresponding to infinite resolution. In
Figure 4c, we show the scaling behavior of the discretization er-
ror with1 for different porosities. Figure 4d shows the change
in elasticity with resolution along with the continuum values P0

given by equation (1). It is important to note that even at a
resolution of 1= 5.7 µm, the predictions P(1) differ from
the “continuum” P0 value by up to 15%. The errors increase
approximately linearly with porosity. The statistical error in
the continuum limit P0, is estimated from equation (1) using
the standard deviations at the different lattice sizes.

ELASTIC PROPERTIES OF FONTAINEBLEAU SANDSTONE

Fluid substitution

One of the most common problems in rock physics is the pre-
diction of seismic velocities in rocks saturated with one fluid

FIG. 4. Illustration of the errors in the numerical simulation of the elastic properties. In (a), we compare results on samples at 1203 to
data from samples at 1603 and 2403. This shows that finite size errors at 1203 remain small. We show in (b) the statistical fluctuations
in the measurement of the bulk modulus for data sets at different sizes binned as described in the text. The fit to equation (1) is
given in (c) for different porosities. In (d), the discretization errors are summarized. The original data at 1203 and 5.7 µm resolution
and the results for poorer resolutions are shown. The continuum value fitted by matching to equation (1) is also shown.

from the velocities in rocks saturated with a second fluid or
from dry rock velocities. The low-frequency Gassmann’s equa-
tions (Gassmann, 1951) relate the bulk and shear moduli of a
saturated porous medium to the moduli of the same medium
in a drained (dry) state. The effective bulk modulus Ksat of the
saturated rock is given by

Ksat

K0 − Ksat
= Kdry

K0 − Kdry
+ K f

φ(K0 − K f )
, (2)

where K0, Kdry, and K f are the bulk moduli of the mineral ma-
terial, the dry rock, and the pore fluid, respectively. Gassmann’s
equations show that the shear modulus is mechanically inde-
pendent of the properties of any fluid present in the pore space:
µdry=µsat.

Gassmann’s equations assume that the porous medium
contains only one type of solid constituent with a homoge-
neous mineral modulus and that the pore space is statistically
isotropic. The equation is valid for quasi-static conditions
or at frequencies which are sufficiently low such that the
induced pore pressures are in equilibrium throughout the pore
space. These conditions coincide exactly with the conditions
simulated with the finite-element approach. Fontainebleau
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sandstone is both clean and homogeneous and, in our simu-
lations, we impose a uniform modulus in the solid phase. We
would therefore expect the numerical data for Fontainebleau
to obey Gassmann’s equations for different pore fluids.
A comparison of the numerically predicted moduli of the
Fontainebleau images for dry, water-saturated, and oil-
saturated conditions to Gassmann’s equations provides a good
test of the accuracy of the numerical results. The results of
such a comparison are summarized in Figure 5. The numerical
prediction for both the bulk and shear modulus are in excellent
agreement with Gassmann’s equations.

Comparison with experiment

In Figure 6, we compare the computed bulk and shear mod-
ulus data for dry and water-saturated Fontainebleau sandstone
with experimentally measured values (Han, 1986). Although
Han’s measurements were made at ultrasonic frequencies, he
suggests that the frequency dispersions are minimal (the Biot-
dispersions' 1% and the non-Biot dispersions negligible for
clean sandstones). The predicted velocities are in good agree-
ment with the experimental data. Generally, we see a slight
overestimation of the measured moduli, which is most likely
due to the finite resolution of the images. Small cracks and
pores may not be resolved by the tomographic images but may
have an effect on the elastic properties. This effect is enhanced
for the dry samples (Han, 1986), which is in accord with our
numerical data. The results from the simulations may be con-
sidered to provide an excellent upper bound for the bulk and
shear velocity data.

COMPARISON WITH THEORETICAL AND
EMPIRICAL FORMULAS

A number of theoretical methods have been proposed for
describing the properties of sedimentary rock. Bounding meth-
ods are rigorously based on microstructural information. The
best bounds on the properties of a two-phase composite with-
out specifying any geometric information beyond porosity are
the Hashin-Shtrikman bounds (Hashin and Shtrikman, 1963).
Higher order bounds can be derived (Milton, 1982), but the
microstructural information needed to evaluate the results is
not easy to obtain. A second approach is to assume a spe-
cific inclusion or pore shape, for which the dilute effect on the
elastic properties can be analytically calculated. Various effec-
tive medium approaches (Hashin, 1983) can then be used to
systematically approximate the results to higher porosity sys-
tems. Certain microstructures have been shown to correspond
to these theories, but the physical structures are not realis-
tic. Experimental measurements have often shown that rel-
atively simple empirical relationships can be used to describe
the properties of sedimentary rock. In this section, we compare
a number of well-known bound predictions, effective medium
approaches, and empirical results with the numerically “exact”
data computed from the microtomographic images discussed
in the previous section.

Theoretical formulas

We first compare our results to three of the most commonly
used theoretical methods: Hashin-Shtrikman bounds (Hashin

and Shtrikman, 1963), the self-consistent approximation
(SCA) (Budiansky, 1965; Hill, 1965; Berryman, 1980), and the
differential effective medium (DEM) approach (Berryman,
1992; Mavko et al., 1998).

A specification of the volume fraction and constituent mod-
uli allows the calculation of rigorous upper and lower bounds

FIG. 5. Comparison of the results of the simulations for dry,
water-saturated, and oil-saturated conditions to Gassmann
prediction based on the dry rock data. In (a), we give the numer-
ical predictions for the dry rock data (squares) and show a best
fit to the data points (solid line). We use this fit and equation (2)
to predict the values of the water- and oil-saturated curves (dot-
ted curves). We show the numerical predictions for the water-
and oil-saturated results. The fit to the Gassmann’s equations is
excellent, further indicating the ability of this methodology to
quantitatively predict geophysical properties. In (b), we show
that the shear modulus is independent of the pore fluid as pre-
dicted by Gassmann (1951).
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FIG. 6. Comparison of the “continuum” prediction of the
elastic simulations for the digitized images under dry and
water-saturated (40 MPa) conditions to experimental data
(Han, 1986). The figures give predictions for the (a) dry and
(b) wet bulk modulus, and (c) the shear modulus.

for the elastic moduli of any composite material. The so-called
Hashin-Shtrikman bounds (Hashin and Shtrikman, 1963) are
given by

K+H S = Ks + φ

(K f − Ks)−1 + (1− φ)(Ks + 4/3µs)−1
,

(3)

µ+H S = µs + φ

(µ f − µs)−1 + 2(1− φ)(Ks + 2µs)
5µs(Ks + 4/3µs)

. (4)

Upper and lower bounds are computed by interchanging the
moduli of the solid and fluid components. In the case where
one phase has zero elastic moduli, the lower bound becomes
zero, and so only the upper bound is meaningful.

A commonly used effective medium theory, the differen-
tial method (DEM) is constructed by incrementally adding
inclusions of one phase into the second phase with known
constituent properties. DEM does not treat each constituent
symmetrically, but defines a preferred host material. From the
composite host medium, K ∗DE M(φ) at some porosity value φ
is known. One then treats K ∗DE M(φ) as the composite host
medium and K ∗DE M(φ+ dφ) as the effective constant after a
small proportion dφ/(1−φ) of the composite host has been
replaced by inclusions of the second phase. For a solid matrix
host, the coupled system of ordinary differential equations for
the moduli is given by (Berryman, 1992)

(1− φ)
d

dφ
[K ∗(φ)] = (K f − K ∗)P∗, (5)

(1− φ)
d

dφ
[µ∗(φ)] = (µ f − µ∗)Q∗, (6)

with initial conditions K ∗(0)= Ks andµ∗(0)=µs, and where P∗

and Q∗ are shape dependent geometric factors for inclusions of
the second phase in a background medium with effective mod-
uli K ∗ and µ∗, as given in several texts (see, e.g., Table 4.9.1 of
Mavko et al., 1998). For the present work, we use the geometric
factors for spherical grains (pores).

In the self consistent model (SCA) of Hill (1965) and
Budiansky (1965), the host medium is assumed to be the
composite itself. The equations of elasticity are solved for a
spherical inclusion embedded in a medium of unknown effec-
tive moduli. The effective moduli are then found by treating
Kscm, µscm as tunable quantities. The result is given in a general
form (Berryman, 1980) by

φ(K f − Kscm)P∗ f i + (1− φ)(Ks − Kscm)P∗si = 0, (7)

φ(µ f − µscm)Q∗ f i + (1− φ)(µs − µscm)Q∗si = 0. (8)

In the present work, we use the geometric factors for spherical
pores and a number of granular inclusion shapes. The varia-
tion with granular shape had a minimal effect (∼1%) on the
predictions, so we report results for spherical pores and grains
only. The indices to P and Q note the inclusions of fluid “∗ f i ”
and solid “∗si” into a background medium of effective moduli
K ∗ and µ∗. As for the DEM equations, the solution for the
effective bulk moduli is found iteratively.

The SCA produces a single formula in which all components
are treated equally, with no material distinguished as the host
to others. Such a symmetric formula has been thought to be
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more appropriate in complex aggregates like granular rocks
and has been shown (Berge et al., 1993) to accurately predict
the mechanical behavior of a sintered glass bead sample.

We compare the three theories to our numerical predictions
and experimental data for both dry and water-saturated rock
in Figure 7. We note that none of the theoretical methods re-
sults in a satisfactory fit to the experimental data. In contrast,
the numerical results are in excellent agreement with the ex-
perimental data. The SCA theory gives a much better fit to
the experimental data than either the DEM or the Hashin-
Shtrickman upper bound. This is consistent with the observa-
tion of Berge et al. (1993) that the SCA should more accurately
predict the elastic properties of granular rocks. However, the
numerical prediction is far superior to any of the theoretical
estimates. This conclusion is in accord with recent results of
Roberts and Garboczi (2000), who show that neither bounds,
SCA, nor DEM successfully predict the properties of sintered
granular materials.

Empirical relationships

Experimental measurements have often shown that rela-
tively simple empirical relationships can be used to describe
the properties of sedimentary rocks. Measurements by Wyllie
et al. (1956, 1958, 1963) revealed that a relatively simple mono-
tonic relationship exists between the sonic velocity and poros-
ity in fluid-saturated sedimentary rocks with relatively uniform
mineralogy. They approximated these relationships with the
expression

1
Vp
= φ

Vpf
+ 1− φ

Vps
, (9)

where Vp, Vpf , and Vps are the P-wave sonic velocities of the
saturated rock, the pore fluid, and the mineral material making
up the rock, respectively, and where Vp=

√
(K + 4/3µ)/ρ. The

interpretation of this expression is that the total transit time is
the sum of the transit time of the elastic wave in the mineral
and the transit time in the pore fluid. It is therefore often re-
ferred to as the time-averaged equation. Raymer et al. (1980)
suggested improvements to Wyllie’s empirical equation. For
low porosities, they proposed the relationship

Vp = (1− φ)2Vps+ φVpf , φ < 37%. (10)

A comparison of the predicted and numerically derived veloc-
ities for water-saturated Fontainebleau sandstone is shown in
Figure 8. The Raymer et al. empirical equation along with the
numerical data give a reasonable match to the measured data.

Nur et al. (1991, 1995) proposed that the moduli of rocks
should trend between the mineral grain modulus at low poros-
ity to a value for a mineral-pore suspension at some limit-
ing high porosity. The idea is based on the observation that
for most porous materials there is a critical porosity φc which
separates the mechanical behavior into two distinct domains.
For porosities lower than φc the mineral grains are load bear-
ing, whereas at porosities greater than φc the material falls
apart. Theoretical models may be modified by incorporating
percolation behavior at any desired φc by simply redefining
the endpoint porosity. The simplest model of this type is based
on a modified Voigt equation, where the original Voigt upper
bound for a property P is given by P(φ)= P1φ+ P2(1−φ). This

FIG. 7. Comparison of the simulation results to a range of the-
ories used to predict the moduli of porous rocks. The curves
include predictions for the (a) dry and (b) water-saturated bulk
modulus, and (c) the shear modulus. All theories overestimate
the data for all porosities. The SCA gives the best theoretical
fit to the data as expected from Berge et al. (1993), but is much
poorer than the numerical prediction from the tomographic
data.
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empirical model (Nur et al., 1995) is based on the observation
that the modulus of porous rocks often trends linearly with
porosity between the two values in the load-bearing domain is
given by

Kdry = K0

(
1− φ

φc

)
, (11)

µdry = µ0

(
1− φ

φc

)
. (12)

The critical porosity for sandstones was found empirically
in Nur et al. (1991) to be φc= 0.40. Recently, Roberts and
Garboczi (2000) developed empirical equations for the elastic
properties of overlapping sphere packs under dry conditions:

Ydry = Y0

(
1− φ

0.652

)2.23

, (13)

νdry = 0.14−
(

1− φ

0.5

)1.22

× (ν0 − 0.14), (14)

where Y0 and ν0 are the Young’s modulus and the Poisson ratio
of the spherical grains, respectively. A comparison of the above
equations with the numerical and experimental data is shown
in Figure 9. The agreement is excellent over the full range of
φ.

CONCLUSIONS

We have shown, for the first time, that elastic property-
porosity relationships for clean sandstones can be derived
directly from microtomographic images. Moreover, we have

FIG. 8. Comparison of the results of the simulations (squares
and dashed line) for water-saturated sandstone to experimen-
tal data (circles) and the empirical equations of Wyllie et al.
[equation (9)] and Raymer et al. [equation (10)]. The fit of the
numerical data and the Raymer et al. equation is satisfactory.
The Wyllie et al. equation gives a poor fit.

demonstrated that it is possible to obtain a large ensemble of
samples from a single tomographic image which allows mea-
sures of elastic properties to be derived over a wide range of
porosities. We have shown that it is practical to generate numer-
ical data for dry, water-saturated, and oil-saturated conditions.
The results for dry and water-saturated conditions are in good
agreement with experimental measurements. The calculated
change in the elastic properties due to fluid substitution is con-
sistent with the exact Gassmann’s equations. Overall, we have
demonstrated the feasibility of combining microtomographic
images with elastic calculations to accurately predict the petro-
physical properties of specific rock morphologies.

FIG. 9. Comparison of the simulation results to (a) the crit-
ical porosity model of Nur et al. (1995) and of Roberts and
Garboczi (2000) for the dry case and (b) the critical porosity
model of Nur et al. (1995) for the water-saturated case. Under
both conditions, the fit of the empirical equations to experi-
ment and numerical data is excellent and comparable to the
data obtained from images.
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