COMPUTATION OF MATRIX CHAIN PRODUCTS. PART II*

T. C. HU^{\dagger} AND M. T. SHING \dagger

Abstract

This paper considers the computation of matrix chain products of the form $M_{1} \times M_{2} \times \cdots \times$ M_{n-1}. If the matrices are of different dimensions, the order in which the matrices are computed affects the number of operations. An optimum order is an order which minimizes the total number of operations. Some theorems about an optimum order of computing the matrices have been presented in Part I [SIAM J. Comput., 11 (1982), pp. 362-373]. Based on those theorems, an $O(n \log n)$ algorithm for finding the optimum order is presented here.

1. Introduction. In Part I of this paper [6], we have transformed the matrix chain product problem into the optimum partitioning problem and have stated several theorems about the optimum partitions of an n-sided convex polygon. Some theorems in Part I can be strengthened and are stated here (the detailed proofs are in [7]).

Theorem 1. For every choice of V_{1}, V_{2}, \cdots (as prescribed in Part I), if the weights of the vertices of the n-gon satisfy the following condition,

$$
w_{1}=w_{2}=\cdots=w_{k}<w_{k+1} \leqq \cdots \leqq w_{n}
$$

for some $k, 3 \leqq k \leqq n$, then every optimum partition of the n-gon contains the k-gon $V_{1}-V_{2}-\cdots-V_{k}$. Furthermore, if $k=2$ in the above condition, i.e. $w_{1}=w_{2}<w_{3} \leqq$ $w_{4} \leqq \cdots \leqq w_{n}$, then every optimum partition of the n-gon must contain a triangle $V_{1} V_{2} V_{p}$ for some vertex V_{p} with weight equal to w_{3}.

Note that if $w_{1}=w_{2}<w_{3}<w_{4} \leqq \cdots \leqq w_{n}$, then every optimum partition must contain the triangle $V_{1} V_{2} V_{3}$ since there is a unique choice of V_{3}.

Now, whenever we have three or more vertices with weights equal to w_{1} in the n-gon, we can decompose the n-gon into subpolygons by forming the k-gon in the first part of Theorem 1. The partition of the k-gon can be arbitrary, since all vertices of the k-gon are of equal weight. For any subpolygon with two vertices of weights equal to w_{1}, we can always apply the second part of Theorem 1 and decompose the subpolygon into smaller subpolygons. Hence, we have only to consider the polygons with a unique choice of V_{1}; i.e., each polygon has only one vertex with weight equal to w_{1}.

Because of the above theorem, Theorems 1 and 3 of Part I can be generalized as follows.

Theorem 2. For every choice of V_{1}, V_{2}, \cdots (as prescribed in Part I), if the weights of the vertices satisfy the condition

$$
w_{1}<w_{2} \leqq w_{3} \leqq \cdots \leqq w_{n},
$$

then $V_{1}-V_{2}$ and $V_{1}-V_{3}$ exist in every optimum partition of the n-gon.
Theorem 3. Let V_{x} and V_{z} be two arbitrary vertices which are not adjacent in a polygon, and V_{w} be the smallest vertex from V_{x} to V_{z} in the clockwise manner ($V_{w} \neq$ $V_{x}, V_{w} \neq V_{z}$), and V_{y} be the smallest vertex from V_{z} to V_{x} in the clockwise manner $\left(V_{y} \neq V_{x}, V_{y} \neq V_{z}\right)$. This is shown in Fig. 1. Assume that $V_{x}<V_{z}$ and $V_{y}<V_{w}$. The necessary condition for $V_{x}-V_{z}$ to exist as an h-arc in any optimum partition is

$$
w_{y}<w_{x} \leqq w_{z}<w_{w}
$$

[^0]

Fig. 1

We shall use "the l-optimum partition" to mean "the lexicographically smallest optimum partition." Based on these theorems, we now present algorithms for finding the unique l-optimum partition.

Using the same notation as in Part I of this paper [6], we can assume that we have uniquely labelled all vertices of the n-gon. A partition is called a fan it is consists of only v-arcs joining the smallest vertex to all other vertices in the polygon. We shall denote the fan of a polygon $V_{1}-V_{b}-V_{c}-\cdots-V_{n}$ by Fan $\left(w_{1} \mid w_{b}, w_{c}, \cdots, w_{n}\right)$. The smallest vertex V_{1} is called the center of the fan.

We define a vertex as a local maximum vertex if it is larger than its two neighbors and define a vertex as a local minimum vertex if it is smaller than its two neighbors. A polygon is called a monotone polygon if there exist only one local maximum and one local minimum vertex. We shall first give an $O(n)$ algorithm for finding the l-optimum partition of a monotone polygon and then give an $O(n \log n)$ algorithm for finding the l-optimum partition of a general convex polygon.
2. Monotone basic polygon. In this section, let us consider the optimum partition of a monotone polygon, i.e. a polygon with only one local minimum vertex and one local maximum vertex. It follows from Theorems 1 and 2 that we can consider a monotone basic polygon only. (A polygon having V_{1} adjacent to V_{2} and V_{3} by sides is called a basic polygon.) The understanding of this special case is necessary in finding the optimum partition of a general convex polygon.

Consider a monotone basic n-gon $V_{1}-V_{2}-V_{c}-\cdots-V_{3}$, the fan of the polygon is denoted by

$$
\operatorname{Fan}\left(w_{1} \mid w_{2}, w_{c}, \cdots, w_{3}\right)
$$

where the smallest vertex V_{1} is the center of the fan.
The definition of a fan can also be applied to subpolygons as well. For example, if V_{2}, V_{3} are connected in the basic n-gon and V_{2} becomes the smallest vertex in the ($n-1$)-sided subpolygon, the partition formed by connecting V_{2} to all vertices in the ($n-1$)-gon is denoted by

$$
\operatorname{Fan}\left(w_{2} \mid w_{c}, \cdots, w_{3}\right)
$$

Lemma 1. If none of the potential h-arcs appears in the l-optimum partition of the n-gon, the l-optimum partition must be the fan of the n-gon.

Proof. Omitted. See [7] for details.
A potential h-arc will dissect a polygon into two parts, and the subpolygon which contains the larger vertices is called the upper subpolygon. Let $V_{i}-V_{i}$ and $V_{p}-V_{q}$ be two potential h-arcs of any n-gon. We say that $V_{p}-P_{q}$ is above (or higher than) $V_{i}-V_{i}$ (and $V_{i}-V_{j}$ is below, or lower than, $V_{p}-V_{q}$) if the upper subpolygon of $V_{i}-V_{j}$ contains the upper subpolygon of $V_{p}-V_{q}$.

Let P be the set of all potential h-arcs in a monotone basic n-gon. P can have at most $n-3$ arcs.

Lemma 2. For any two arcs in P, say $V_{i}-V_{i}$ and $V_{p}-V_{q}$, we must have either $V_{i}-V_{i}$ above $V_{p}-V_{q}$ or $V_{p}-V_{q}$ above $V_{i}-V_{i}$.

Proof. See [7] for details.
We can actually show this ordering of potential h-arcs pictorially by drawing a monotone basic polygon in such a way that the local maximum vertex is always at the top and the local minimum vertex is at the bottom. Then a potential h-arc $V_{p}-V_{q}$ is physically above another potential h-arc $V_{i}-V_{j}$ if the upper subpolygon of $V_{i}-V_{j}$ contains the upper subpolygon of $V_{p}-V_{q}$. From the definition of the upper subpolygon and the monotone property, we can see that $\max \left(w_{i}, w_{j}\right)<\min \left(w_{p}, w_{q}\right)$ if $V_{p}-V_{q}$ is above $V_{i}-V_{j}$.

Consider the monotone basic n-gon which is shown symbolically in Fig. 2. V_{n} is the local maximum vertex and $V_{i}-V_{j}, V_{p}-V_{q}$ are potential h-arcs of the monotone basic n-gon. The subpolygon $V_{i}-\cdots-V_{p}-V_{q}-\cdots-V_{i}$ which is formed by two potential h-arcs $V_{p}-V_{q}$ and $V_{i}-V_{j}$ and the sides of the n-gon from V_{i} to V_{p} and from V_{q} to V_{j} in the clockwise direction is said to be bounded above by the potential h-arc $V_{p}-V_{q}$ and bounded below by the potential h-arc $V_{i}-V_{j}$, or simply as the subpolygon between $V_{i}-V_{j}$ and $V_{p}-V_{q}$ for brevity.

Fig. 2

Lemma 3. Any subpolygon which is bounded by two potential h-arcs of the monotone basic n-gon is itself a monotone polygon.

Proof. See [7] for details.
Lemma 4. Any potential h-arc of a subpolygon bounded above and below by two potential h-arcs of the monotone basic n-gon is also a potential h-arc of the monotone basic n-gon.

Proof. See [7] for details.
We can now summarize what we have discussed. If there is no h-arc in the l-optimum partition of a monotone basic n-gon, the l-optimum partition must be a fan. Otherwise, the h-arcs in the l-optimum partition are all layered, one above another. If we consider the local maximum vertex V_{n} and the local minimum vertex V_{1} as two degenerated h-arcs, then the l-optimum partition of a monotone basic n-gon will contain one or more monotone subpolygons, each bounded above and below by two h-arcs and the l-optimum partition of each of these monotone subpolygons is a fan. Then, in finding the l-optimum partition of a monotone basic polygon, we have only to consider those partitions which contain one or more potential h-arcs and each of the subpolygons between two potential h-arcs is partitioned by a fan.

Since there are at most $n-3$ nondegenerated potential h-arcs in a monotone basic n-gon, there will be at most 2^{n-3} such partitions and we can divide all these partitions into $(n-2)$ classes by the number of nondegenerated potential h-arcs a partition contains. These classes are denoted by $H_{0}, H_{1}, \cdots, H_{n-3}$ where the subscript indicates the number of nondegenerated potential h-arcs in each partition of that class.

There is no potential h-arc in the partitions in the class H_{0}. Hence the class consists of only one partition, namely the fan

$$
\operatorname{Fan}\left(w_{1} \mid w_{2}, \cdots, w_{3}\right) .
$$

In the class H_{1}, each partition has one nondegenerated potential h-arc. Once the potential h-arc is known, the rest of the arcs must all be vertical arcs forming two fans, one in each subpolygon.

Two typical partitions in H_{1} of a monotone basic polygon are shown in Fig. 3. In Fig. 3a, there is one nondegenerated potential h-arc, $V_{c}-V_{i}\left(V_{c}<V_{i}\right)$. The upper

Fig. 3. Two typical partitions in H_{1} of a monotone 10-gon.
subpolygon is a fan

$$
\operatorname{Fan}\left(w_{c} \mid w_{d}, \cdots, w_{i}\right)
$$

and the lower subpolygon is a fan

$$
\operatorname{Fan}\left(w_{1} \mid w_{2}, w_{c}, w_{i}, w_{3}\right)
$$

In Fig. 3b, there is one potential h-arc, $V_{2}-V_{3}$, and the upper subpolygon is a fan

$$
\operatorname{Fan}\left(w_{2} \mid w_{c}, \cdots, w_{3}\right)
$$

and the lower subpolygon is a degenerated fan, a triangle.
The cost of the partition in Fig. 3b is

$$
\begin{align*}
w_{1} w_{2} w_{3}+w_{2}\left(w_{c} w_{d}+w_{d} w_{e}+w_{e} w_{f}+w_{f} w_{g}+w_{g} w_{h}+w_{h} w_{i}\right. & \left.+w_{i} w_{3}\right) \tag{1}\\
& =w_{1} w_{2} w_{3}+w_{2}\left(w_{c}: w_{3}\right),
\end{align*}
$$

where $w_{c}: w_{3}$ is the shorthand notation of the sum of adjacent products from w_{c} to w_{3} in the clockwise direction.

Note that the cost of H_{0} of the polygon shown in Fig. 3 is

$$
\begin{equation*}
\operatorname{Fan}\left(w_{1} \mid w_{2}, \cdots, w_{3}\right)=w_{1}\left(w_{2}: w_{3}\right) . \tag{2}
\end{equation*}
$$

The condition for (1) to be less than (2) is

$$
\frac{w_{2} \cdot\left(w_{c}: w_{3}\right)}{\left(w_{2}: w_{3}\right)-w_{2} \cdot w_{3}}<w_{1} .
$$

Similarly, the condition for the partition in Fig. 3a to be less than H_{0} is

$$
\begin{equation*}
\frac{w_{c} \cdot\left(w_{d}: w_{i}\right)}{\left(w_{c}: w_{i}\right)-w_{c} \cdot w_{i}}<w_{1} . \tag{3}
\end{equation*}
$$

We say that a partition is said to be l-optimal among the partitions in a certain class (or several classes) if it is the lexicographically smallest partition among all the partitions with minimum cost in that class (or several classes). Hence, the l-optimum partition is l-optimal among all partitions in the classes H_{0}, H_{1}, \cdots, and H_{n-3}.

Now, assume that the l-optimal partition among all the partitions in $H_{1}, H_{2}, \cdots, H_{n-3}$ contains only one potential h-arc $V_{i}-V_{k}$, as shown in Fig. 4. (Note that $V_{i}-V_{k}$ will exist in this partition as an h-arc.) This partition will be the l-optimum partition of the monotone basic n-gon if it costs less than that of the fan in H_{0}. The condition that the partition with $V_{i}-V_{k}$ as the single h-arc costs less than H_{0} is

$$
\frac{w_{i} \cdot\left(w_{j}: w_{k}\right)}{\left(w_{i}: w_{k}\right)-w_{i} \cdot w_{k}}<w_{1} \quad \text { if } w_{i} \leqq w_{k}
$$

or

$$
\frac{w_{k} \cdot\left(w_{i}: w_{g}\right)}{\left(w_{i}: w_{k}\right)-w_{i} \cdot w_{k}}<w_{1} \quad \text { if } w_{k}<w_{i} .
$$

Combining the two inequalities above, we have

$$
\begin{equation*}
\frac{C\left(w_{i}, \cdots, w_{k}\right)}{\left(w_{i}: w_{k}\right)-w_{i} \cdot w_{k}}<w_{1} \tag{4}
\end{equation*}
$$

where $C\left(w_{i}, \cdots, w_{k}\right)$ denotes the cost of the optimum partition of the subpolygon $w_{i}-w_{j}-\cdots-w_{g}-w_{k}$ and is equal to the cost of the fan in this case.

Fig. 4. A monotone polygon with a single h-arc.

An $h-\operatorname{arc} V_{i}-V_{k}$ which divides a polygon into two subpolygons is called a positive arc with respect to the polygon if condition (4) is satisfied; i.e., the partition with the arc as the only h-arc and a fan in each of the two subpolygons costs less than the fan in the same polygon. Otherwise, it is called a negative arc with respect to the polygon.

When an n-gon is divided into subpolygons, an h-arc is defined as positive in a subpolygon if the cost of partition of the subpolygon with the h-arc as the only h-arc is less than the fan in the subpolygon.

Let us consider a partition with two h-arcs as shown in Fig. 5, and assume that this partition is l-optimal among all partitions in the classes $H_{2}, H_{3}, \cdots, H_{n-3}$.

FIG. 5. A monotone 8-gon with two h-arcs.

If $V_{i}-V_{k}$ is positive with respect to the subpolygon $V_{1}-V_{i}-V_{p}-V_{q}-V_{k}$, then the condition analogous to (4) is

$$
\begin{equation*}
\frac{C\left(w_{i}, w_{p}, w_{q}, w_{k}\right)}{\left\{\left(w_{i}: w_{k}\right)-\left[\left(w_{p}: w_{q}\right)-w_{p}: w_{q}\right]\right\}-w_{i} \cdot w_{k}}<w_{1} . \tag{5a}
\end{equation*}
$$

If $V_{i}-V_{k}$ is positive with respect to the whole polygon $V_{1}-V_{i}-\cdots-V_{n}-\cdots-V_{k}$, then the condition is

$$
\begin{equation*}
\frac{C\left(w_{i}, w_{p}, w_{r}, w_{n}, w_{s}, w_{q}, w_{k}\right)}{\left(w_{i}: w_{k}\right)-w_{i} \cdot w_{k}}<w_{1} . \tag{5b}
\end{equation*}
$$

Note that condition (5b) implies (5a).
The condition for the arc $V_{p}-V_{q}$ to be positive with respect to the subpolygon $V_{i}-V_{p}-V_{r}-V_{n}-V_{s}-V_{q}-V_{k}$ is

$$
\begin{equation*}
\frac{C\left(w_{p}, w_{r}, w_{n}, w_{s}, w_{q}\right)}{\left(w_{p}: w_{q}\right)-w_{p} \cdot w_{q}}<\min \left(w_{i}, w_{k}\right) . \tag{6a}
\end{equation*}
$$

If the arc $V_{p}-V_{q}$ is positive with respect to the whole polygon $V_{1}-V_{i}-V_{p}-V_{r}-$ $V_{n}-V_{s}-V_{q}-V_{k}$, it must satisfy

$$
\begin{equation*}
\frac{C\left(w_{p}, w_{r}, w_{n}, w_{s}, w_{q}\right)}{\left(w_{p}: w_{q}\right)-w_{p} \cdot w_{q}}<w_{1} . \tag{6b}
\end{equation*}
$$

Since $w_{1}<\min \left(w_{i}, w_{k}\right)$, condition (6b) implies (6a).
Here, the presence of $V_{i}-V_{k}$ will divide the original polygon into two subpolygons where $V_{p}-V_{q}$ appears in the upper subpolygon. If $V_{p}-V_{q}$ is a positive arc with respect to the original polygon, then $V_{p}-V_{q}$ is certainly positive in the upper subpolygon. But if $V_{p}-V_{q}$ is positive in the subpolygon, the arc $V_{p}-V_{q}$ may become negative if $V_{i}-V_{k}$ is removed; i.e., $V_{p}-V_{q}$ becomes negative with respect to the original polygon.

Similarly, if the arc $V_{i}-V_{k}$ is positive with respect to a subpolygon, the arc $V_{i}-V_{k}$ may become negative if the arc $V_{p}-V_{q}$ is removed.

The preceding discussions can be summarized as:
Theorem 4. If an h-arc is positive with respect to a polygon then the arc is positive with respect to any subpolygon containing that arc. If an h-arc is positive with respect to a subpolygon, it may or may not be positive with respect to a larger polygon which contains the subpolygon.

There are two intuitive approaches to finding the l-optimum partition of a monotone basic polygon. The first approach is to put in the potential h-arcs one by one. Each additional potential h-arc will improve the cost until the correct number of h-arcs is reached. Any further increase in the number of h-arcs will increase the cost. To introduce an h-arc into the polygon, we can test each potential h-arc (at most $n-3)$ to see if it is positive with respect to the whole polygon. If yes, that positive arc must exist in the l-optimum partition, and the polygon will be divided into two subpolygons, each being a monotone polygon. We can repeat the whole process of testing positiveness of the h-arcs. The trouble is that all these arcs may be negative individually with respect to the whole polygon and yet H_{0} may not be the optimum. For example, two arcs $V_{i}-V_{i}$ and $V_{p}-V_{q}$ may be negative individually with respect to the whole polygon, but the partition with both $V_{i}-V_{j}, V_{p}-V_{q}$ present at the same time may cost less than H_{0}, as shown in Fig. 6a. This shows that we cannot guarantee an optimum partition simply because no more potential h-arcs can be added one at a time.

The second approach is to put all the potential h-arcs in first, and then take out the potential h-arcs one by one, where each deletion will decrease the cost until the correct number of h-arcs is reached. Any further deletions will increase the cost. Unfortunately, even if all h-arcs are positive with respect to their subpolygon, the partition may not be optimum. In Fig. 6b, each h-arc is positive with respect to its

Fig. 6. Counterexamples for the intuitive approaches.
local subpolygon, but the partition is not optimum. (Note that positiveness of an h-arc in a quadrilateral is the same as stability. But the idea of stability applies to vertical arcs as well.) This means that we cannot guarantee an optimum partition simply because no h-arc can be deleted one at a time.

Let us outline the idea of an $O(n)$ algorithm for finding the l-optimum partition of a monotone basic polygon. First, we get all the potential h-arcs by the one-sweep algorithm. Then, we start from the highest potential h-arc and process each potential h-arc from the highest to the lowest. For each potential h-arc, we try to get the l-optimum partition of the upper subpolygon above that arc. The l-optimum partition in the subpolygon is obtained by comparing the cost of the l-optimal partition among the partitions of the upper subpolygon which contain one or more potential h-arcs with that of the fan in the upper subpolygon.

If we use the dynamic programming approach to find the l-optimum partition in the upper subpolygon of each potential h-arc, we need $O\left(n^{3}\right)$ operations to find the l-optimum partition of the whole monotone basic n-gon. Fortunately, there are some dependence relationships among these potential h-arcs. Hence, certain subsets of the potential h-arcs will either all exist or all disappear in the l-optimum partition of the monotone polygon. We shall be dealing with potential h-arcs most of the time, so we shall use "arcs" instead of "potential h-arcs" when there is no ambiguity.

Consider the monotone basic polygon shown symbolically in Fig. 7. There are three potential h-arcs, denoted by h_{k}, h_{j} and h_{i}. For any arc h_{a}, we shall use w_{a}, w_{a}^{\prime} to denote the weights associated with the end vertices of the arc $h_{a} . V_{n}$ is the local maximum vertex and V_{1} is the local minimum vertex. Without loss of generality, we can assume $w_{a} \leqq w_{a}^{\prime}$ for $a=i, j$ and k. Since we shall deal with subpolygons bounded by two potential h-arcs, let us use h_{n} for V_{n} and h_{1} for V_{1} (i.e., we consider these vertices as degenerated arcs). From Lemmas 1 and 3, the l-optimum partitions of the subpolygons bounded by two potential h-arcs (i.e. the white area of the polygon in Fig. 7) are all fans.

Assume (i) h_{k} is positive in the subpolygon bounded by h_{n} and h_{j}, but h_{k} is negative in the subpolygon bounded by h_{n} and h_{i};
(ii) h_{j} is positive in the subpolygon bounded by h_{k} and h_{i}, but h_{j} is negative in the subpolygon bounded by h_{k} and h_{1};

FIG. 7. An octagon with three potential h-arcs.
(iii) h_{i} is positive in the subpolygon bounded by h_{j} and h_{1} only.

Then either the three arcs h_{k}, h_{j}, h_{i} all exist or no h-arcs exists in the optimum partition.
This shows that the existence of an h-arc depends on the existence of another h-arc.
In Fig. 7, the condition for h_{k} to be positive with respect to the whole polygon is (compare with the condition (5a))

$$
\begin{equation*}
\frac{C\left(w_{k}, w_{n}, w_{k}^{\prime}\right)}{\left(w_{k}: w_{k}^{\prime}\right)-w_{k} \cdot w_{k}^{\prime}}<w_{1} . \tag{7}
\end{equation*}
$$

The left-hand side of (7) is denoted by

$$
S\left(h_{k} \mid h_{n}\right)
$$

and is called the supporting weight of the arc h_{k} with respect to the upper subpolygon bounded above by h_{n}.

The supporting weight of an arc h_{k} is an indicator of the existence of h_{k} in a subpolygon. To specify the subpolygon, we have to specify the arc above h_{k}, e.g. h_{n} in this case, and an arc below h_{k}. Once the upper subpolygon of h_{k} is specified, we can calculate the supporting weight of h_{k} since the left-hand side of (7) depends only on weights of vertices in the upper subpolygon. To find the arc below h_{k} which is the lower boundary of the subpolygon, we can use the supporting weight of h_{k} to test each arc h_{i} below h_{k}. (The h_{i} has two vertices with weights w_{i} and w_{i}^{\prime}.)

If $S\left(h_{k} \backslash h_{n}\right)<\min \left(w_{i}, w_{i}^{\prime}\right)$ then h_{k} will exist in the subpolygon between h_{i} and h_{n}. Otherwise, h_{k} cannot exist in the subpolygon.

Let h_{i}, h_{j} and h_{k} be three potential h-arcs where h_{j} lies below h_{k} and above h_{i}. Let

$$
S\left(h_{i} \backslash h_{j}\right)=\frac{a}{b} \quad \text { and } \quad S\left(h_{i} \backslash h_{k}\right)=\frac{c}{d} .
$$

Then it follows from the definition of supporting weight that

$$
\begin{equation*}
S\left(h_{i} \backslash h_{k}\right)=\frac{a+c}{b+d} . \tag{8}
\end{equation*}
$$

If $S\left(h_{i} \backslash h_{j}\right)<S\left(h_{j} \backslash h_{k}\right)$, we have $S\left(h_{i} \backslash h_{j}\right)<S\left(h_{i} \backslash h_{k}\right)<S\left(h_{j} \backslash h_{k}\right)$. On the other hand, if $\boldsymbol{S}\left(h_{i} \backslash h_{i}\right)>\boldsymbol{S}\left(h_{j} \backslash h_{k}\right)$, we have $\boldsymbol{S}\left(h_{i} \backslash h_{j}\right)>\boldsymbol{S}\left(h_{i} \backslash h_{k}\right)>\boldsymbol{S}\left(h_{j} \backslash h_{k}\right)$.

In terms of the supporting weights, we can rewrite the previous conditions (i), (ii) and (iii) as follows:
(i) $w_{i}<S\left(h_{k} \backslash h_{n}\right)<w_{j}$;
(ii) $w_{1}<S\left(h_{j} \mid h_{k}\right)<w_{i}$;
(iii) $S\left(h_{i} \backslash h_{j}\right)<w_{1}$.

Note that if $S\left(h_{i} \backslash h_{k}\right) \leqq S\left(h_{k} \backslash h_{n}\right)$, then it follows from (7) and (8) that $S\left(h_{i} \backslash h_{k}\right) \leqq$ $S\left(h_{j} \backslash h_{n}\right) \leqq S\left(h_{k} \backslash h_{n}\right)$.

Because of conditions (i) and (ii), the l-optimum partition of the subpolygon bounded by h_{i} and h_{n} must either be a fan or consist of both h_{j} and h_{k} as h-arcs. Hence, in order that both h_{j} and h_{k} exist in the l-optimum partition of the subpolygon bounded by h_{i} and $h_{n}, S\left(h_{j} \backslash h_{n}\right)$ must be less than w_{i}. Suppose $S\left(h_{j} \backslash h_{n}\right)<w_{i}$ and $S\left(h_{i} \mid h_{j}\right)<w_{1}$. Then all three $\operatorname{arcs} h_{i}, h_{j}$ and h_{k} will exist in the l-optimum partition of the whole polygon if $S\left(h_{i} \mid h_{n}\right)<w_{1}$. If $S\left(h_{i} \mid h_{n}\right) \geqq w_{1}$, then the l-optimum partition will consist of a fan instead.

Define $S\left(h_{n} \backslash h_{n}\right)$ to be zero. We say that an $\operatorname{arc} h_{k}$ is the ceiling of another $\operatorname{arc} h_{i}$ if either condition (i) or conditions (iia), (iib), and (iic) are satisfied:
(i) $h_{k}=h_{n}$ if $h_{i}=h_{n}$, i.e., h_{n} is its own ceiling;
or
(ii) a) h_{k} is above h_{i},
b) $\boldsymbol{S}\left(h_{i} \backslash h_{k}\right)>\boldsymbol{S}\left(h_{k} \backslash h_{k}\right.$'s ceiling),
c) h_{k} is the lowest arc which satisfied (iia) and (iib). ("Lowest" means closest to the minimum vertex.)
The ceiling of an $\operatorname{arc} h_{i}$ is the lowest arc (above h_{i}) which may exist in an optimum partition even though h_{i} does not exist.

We say that an $\operatorname{arc} h_{j}$ is a son of another arc h_{i} if the following conditions are satisfied:
(i) h_{j} is above h_{i} (the son is above its father);
(ii) $S\left(h_{j} \backslash h_{j}^{\prime}\right.$'s ceiling $)<\min \left(w_{i}, w_{i}^{\prime}\right)$ where w_{i}, w_{i}^{\prime} are the weights associated to the end vertices of h_{i};
(iii) $S\left(h_{i} \backslash h_{j}\right) \leqq S\left(h_{j} \backslash h_{j}\right.$'s ceiling); i.e., h_{j} is not a ceiling of h_{i};
(iv) h_{i} is the highest arc which satisfies (i), (ii) and (iii). ("Highest" means closest to the maximum vertex.)
We shall prove in Theorem 6 that:
(i) if the father of any arc h_{j} exists in the l-optimum partition, then the arc h_{j} will also exist in the same partition;
(ii) if the father of h_{j} does not exist in the l-optimum partition, then the arc h_{j} also does not exist in the same partition.
From the definitions of the ceiling and the father-son relationship, we have the following observations:
(i) Every arc can have at most one father but an arc can have many sons. Also, the ancestor-descendant relationship is a transitive relationship. (Note that the ancestor-descendant relationship applies to arcs which are positive with respect to the whole monotone polygon as well.)
(ii) Every arc can have at most one ceiling but an arc can be the ceiling of many arcs.
(iii) All the h-arcs in the l-optimum partition of the subpolygon bounded by an arc h_{i} and its ceiling are descendants of h_{j}.
(iv) The ceiling of h_{j} cannot lie below any of the ceilings of h_{j} 's descendants.

In other words, the subpolygon between h_{j} and its ceiling is nested completely inside the subpolygon bounded by h_{j} 's father and the ceiling of h_{j} 's father. If we treat each subpolygon bounded by an arc h_{j} and its ceiling as a block, then the ancestordescendant relationship imposes a "nested block structure." For example, if h_{k} 's father is h_{j} and h_{j} 's father is h_{i}, then
h_{k} and its ceiling form the innermost block,
h_{i} and its ceiling form the middle block, and
h_{i} and its ceiling form the outermost block.
We shall show that the h-arcs in the l-optimum partition of an inner block exist in the l-optimum partition of the monotone polygon if and only if their ancestors; i.e., the h-arcs, forming the bottoms of the outerblocks, exist.

Theorem 5. Let h_{j} be a potential h-arc. If h_{j} is present in the l-optimum partition of a monotone polygon, its ceiling h_{k} will also be present in the l-optimum partition.

Proof (by contradiction). Suppose there exists an h-arc h_{i} in the l-optimum partition while its ceiling h_{k} does not exist in the l-optimum partition. Without loss of generality, we can assume h_{j} to be the highest arc among those potential h-arcs which are present in the l-optimum partition and violate the theorem. From the definition of supporting weight, i.e. the left-hand side of inequality (7), we have $S\left(h_{j} \backslash h_{k}\right)<\min \left(w_{j}, w_{j}^{\prime}\right)$. Let h_{c} be the lowest h-arc above h_{j} in the l-optimum partition. The ceiling of h_{c} must be present in the l-optimum partition and we have $S\left(h_{c} \backslash h_{c}\right.$'s ceiling $)<\min \left(w_{j}, w_{j}^{\prime}\right)$. Since there is no other h-arc between h_{j} and h_{c} in the l-optimum partition, the fan is l-optimum in the subpolygon between h_{j} and h_{c}. We have the following two cases.

Case 1. If h_{c} is the ceiling of h_{k}, we have $S\left(h_{k} \backslash h_{c}\right)<S\left(h_{j} \backslash h_{k}\right)<\min \left(w_{j}, w_{j}^{\prime}\right)$. Hence, the partition with h_{k} and its descendants as h-arcs costs less than the fan in the subpolygon between h_{j} and h_{c}, and we have a contradiction.

Case 2. If h_{c} is not the ceiling of h_{k}, we have the following two subcases.
Case 2a. Suppose h_{c} has a father which lies between h_{j} and h_{c}. It follows from the definition of the father-son relationship that $S\left(h_{c}\right.$'s father $\left.\backslash h_{c}\right) \leqq S\left(h_{c} \backslash h_{c}\right.$'s ceiling $)<$ $\min \left(w_{j}, w_{j}^{\prime}\right)$. Hence, the partition with h_{c} 's father and its descendants costs less than the fan in the subpolygon bounded by h_{j} and h_{c}, and we have a contradiction.

Case 2b. Now h_{c} is not the ceiling of h_{k} and has no ancestor between h_{j} and h_{c}. Then among the potential h-arcs which lie between h_{j} and h_{c}, there exists a set of $\operatorname{arcs} h_{d}, h_{e}, \cdots, h_{f}, h_{k}$ such that
h_{c} is the ceiling of h_{d},
h_{d} is the ceiling of h_{e},
\vdots
h_{f} is the ceiling of h_{k},
h_{k} is the ceiling of h_{j},
and none of these arcs exists in the l-optimum partition. It follows from the definition of a ceiling that

$$
S\left(h_{d} \backslash h_{c}\right)<S\left(h_{e} \backslash h_{d}\right)<\cdots<S\left(h_{k} \backslash h_{f}\right)<S\left(h_{i} \backslash h_{k}\right)<\min \left(w_{j}, w_{j}^{\prime}\right) .
$$

Now, the partition with h_{d} and all its descendants as h-arcs costs less than the fan in the subpolygon bounded by h_{j} and h_{c}, and we have a contradiction. In fact, using the same argument, we can show that the arcs $h_{d}, h_{e}, \cdots, h_{f}, h_{k}$ and all the descendants of these arcs should be in the l-optimum partition of the monotone polygon.

Theorem 6. The sons of an arc h_{j} will exist in the l-optimum partition of a monotone polygon if and only if h_{j} is present in the l-optimum partition.

Proof. (i) Instead of proving the "only if" part of the theorem directly, we will prove, by contradiction, that the existence of any son of h_{j} implies the existence of h_{j} in the l-optimum partition.

Among all the potential h-arcs in the monotone polygon, let h_{j} be the highest are which is not present in the l-optimum partition of the polygon even though it has one or more sons present in the l-optimum partition. Among all the sons of h_{j}, let h_{k} be the lowest son which is present in the l-optimum partition. Finally, among all the potential h-arcs below h_{i}, let h_{i} be the highest h-arc which is present in the l-optimum partition. Hence, the l-optimum partition in the subpolygon bounded by h_{i} and h_{k} must be a fan. It follows from Theorem 5 that h_{k} 's ceiling also exists in the l-optimum partition and we have $S\left(h_{k} \backslash h_{k}\right.$'s ceiling $)<\min \left(w_{i}, w_{i}^{\prime}\right)$. Otherwise, the l-optimum partition in the subpolygon bounded by h_{i} and h_{k} 's ceiling should be a fan and h_{k} as well as its descendants cannot be present in the l-optimum partition. From the definition of the father-son relationship, we know that $S\left(h_{j} \backslash h_{k}\right) \leqq S\left(h_{k} \backslash h_{k}\right.$'s ceiling $)<\min \left(w_{i}, w_{i}^{\prime}\right)$. This means that in the subpolygon bounded by h_{i} and h_{k}, the partition consisting of h_{j} and its descendants as h-arcs costs less than the fan. This contradicts our assumption that the fan is l-optimum in the subpolygon bounded by h_{i} and h_{k}.
(ii) We shall prove the "if" part of the theorem directly by contradiction. Among all the potential h-arcs in the monotone polygon, let h_{k} be the highest arc which is not present in the l-optimum partition of the polygon even though its father h_{j} is present in the l-optimum partition. Among all the potential h-arcs present in the l-optimum partition, let h_{c} be the lowest h-arc above h_{k} and let h_{b} be the highest h-arc below h_{k} in the l-optimum partition as shown in Fig. 8. Hence, the l-optimum partition in the subpolygon bounded by h_{b} and h_{c} must be a fan. Note that h_{c} must be a ceiling of h_{k} because h_{k} is the highest arc not satisfying the necessary condition of the theorem. Otherwise, h_{c} is a descendant of h_{k}, and by part (i) of this proof, h_{k} will exist in the l-optimum partition of the polygon. The arc h_{b} must either be h_{j} itself or lie above h_{i}. Hence, we have $\min \left(w_{b}, w_{b}^{\prime}\right) \geqq \min \left(w_{j}, w_{j}^{\prime}\right)$. By the definition of the father-son

Fig. 8
relationship, we have $S\left(h_{k} \backslash h_{c}\right)<\min \left(w_{i}, w_{j}^{\prime}\right) \leqq \min \left(w_{b}, w_{b}^{\prime}\right)$. This means that in the subpolygon bounded by h_{b} and h_{c}, the partition consisting of h_{k} and its descendants is cheaper than the fan. This contradicts our assumption that the fan is l-optimum in the subpolygon bounded by h_{b} and h_{c}.

Corollary 1. The descendants of any arc h_{j} will exist in the l-optimum partition of a monotone polygon if and only if h_{j} exists in the l-optimum partitions.

Proof. The corollary follows from Theorem 6.
It follows from Corollary 1 that if a potential h-arc h_{i} is present in the l-optimum partition of a monotone polygon, all its descendants, all its ancestors and all potential h-arcs which have some ancestors common to those of h_{j} will be present in the l-optimum partition.

Theorem 7. Let h_{i} and h_{j} be two potential h-arcs such that h_{j} is above h_{i} and the l-optimum partition in the subpolygon bounded by h_{i} and h_{i} is a fan. If $S\left(h_{j} \backslash h_{j}\right.$'s ceiling $) \geqq \min \left(w_{i}, w_{i}^{\prime}\right)$, then h_{i} and all its descendants cannot exist in the l-optimum partition of any subpolygon bounded above by h_{n} and below by any potential h-arc not higher than h_{i}.

Proof (by contradiction). Assume that there exist such two potential h-arcs but that h_{j} is present in the l-optimum partition of a subpolygon bounded above by h_{n} and below by a potential h-arc lower than h_{i}. Without loss of generality, let h_{j} be the lowest arc among all the potential h-arcs which are present in the l-optimum partition and which satisfy the assumption. Hence, none of the potential h-arcs between h_{i} and h_{j} can exist in the l-optimum partition. Let h_{b} be the highest potential h-arc below h_{j} in the l-optimum partition. Since h_{b} can either be h_{i} itself or a potential h-arc below h_{i}, we have $\min \left(w_{b}, w_{b}^{\prime}\right) \leqq \min \left(w_{i}, w_{i}^{\prime}\right) \leqq S\left(h_{i} \mid h_{j}^{\prime}\right.$ s ceiling). The partition with h_{j} and all its descendants costs more than the fan in the subpolygon bounded by h_{b} and h_{j} 's ceiling and we have a contradiction.

Using Theorem 6, we can start from an innermost block and work our way out. Suppose we have located the ceiling of a potential h-arc h_{i}. Then we can treat h_{i} and all the sons (and descendants) of h_{i} as a unit; i.e., all h_{i} 's sons are condensed into h_{i}. Let h_{b} be the potential h-arc immediately below h_{i} in the monotone polygon. The l-optimum partition in the subpolygon bounded by h_{b} and the ceiling of h_{i} must consist of either h_{i} and all its descendants as h-arcs or of a fan, depending on whether $S\left(h_{i} \backslash h_{i}\right.$'s ceiling $)<\min \left(w_{b}, w_{b}^{\prime}\right)$ or $S\left(h_{i} \backslash h_{i} ’\right.$ s ceiling $) \geqq \min \left(w_{b}, w_{b}^{\prime}\right)$. If the fan is cheaper, we can delete h_{i} and all its descendants since none of these arcs can appear as h-arcs in the l-optimum partition of the polygon (Theorem 7).

Now, what we have to do is to find an innermost block to start our computations. After obtaining the list of potential h-arcs of the monotone polygon using the onesweep algorithm, we know that the degenerated arc h_{n} is the ceiling of the highest potential h-arc in the list, and this potential h-arc does not have any descendants. So, we should start from the highest potential h-arc and work our way down the list of potential h-arcs.

We now give two examples to illustrate the concepts, notation and algorithm. Then a formal description of the algorithm will be given.

Consider a monotone basic polygon with five potential h-arcs, $h_{6}, h_{5}, \cdots, h_{2}$ where h_{6} is the highest arc as shown symbolically in Fig. 9. Let $w_{i} \leqq w_{i}^{\prime}$ for $i=2,3, \cdots$. The maximum vertex, which lies above h_{6}, has the weight w_{7} and the minimum vertex, which lies below h_{2}, has the weight w_{1}. We can regard w_{7} (and w_{1}) as a degenerated arc and use h_{7} to represent w_{7} (and h_{1} to represent w_{1}).

Example 1. There are two possible candidates for the l-optimum partition in the subpolygon bounded by h_{5} and h_{7}. We shall use $C\left(\underline{h_{5}}, h_{6}, \overline{h_{7}}\right)$ to denote the cost

Fig. 9. A 12-gon with 5 h-arcs.
of the partition with h_{6}, and $H_{0}\left(\underline{h_{5}}, \overline{h_{7}}\right)$ to denote the cost of the fan in the subpolygon. Similarly, we shall use $C\left(h_{2}, h_{5}, h_{6}, \overline{h_{7}}\right)$ to denote the cost of the partition with h_{5} and h_{6} as the only $2 h$-arcs in the subpolygon bounded by h_{2} and h_{7}. Note that there is a bar underneath the h-arc which forms the bottom of the subpolygon and a bar above the h-arc which forms the top of the subpolygon.

The necessary computations and results of the comparisons are shown in Table 1.
If $S\left(h_{2} \backslash h_{7}\right)<w_{1}$, the partition with $h_{2}, h_{3}, h_{4}, h_{5}$ and h_{6} as h-arcs will be l-optimum in the polygon. Otherwise, the fan $H_{0}\left(h_{1}, \overline{h_{7}}\right)$ will be l-optimum.

Now, let us consider a more complicated example.
Example 2. Consider the 6 potential h-arcs shown in Fig. 9. Assume that we have the computations and results shown in Table 2.

If $S\left(h_{2} \backslash h_{7}\right)<w_{1}$, the partition with h_{2}, h_{5} and h_{6} as h-arcs is l-optimum. Otherwise, the fan $H_{0}\left(\underline{h_{1}}, \overline{h_{7}}\right)$ will be l-optimum.

Let us give the algorithm for finding the l-optimum partition of a monotone basic polygon.

Algorithm M

(I) Get all the potential h-arcs of the polygon by the one-sweep algorithm [6]. (All these arcs form a vertical list, with the highest arc closest to the maximum vertex V_{n} and the lowest arc closest to the minimum vertex V_{1}.)
(II) Process the potential h-arcs one by one, from the top to the bottom. Let h_{j} be the potential h-arc being processed, let h_{k} be the potential h-arc immediately above h_{j}, and let h_{i} be the potential h-arc immediately below h_{i} in the monotone polygon. (If h_{j} is the highest potential h-arc in the polygon, h_{k} will be the degenerate arc h_{n}; if h_{j} is the lowest potential h-arc in the polygon, h_{i} will be the degenerated arc h_{1}.) Note that by the time we start processing h_{j}, we have already obtained the l-optimum partition of the subpolygon between h_{j} and h_{n}. We have also located the ceilings of every h-arc in the l-optimum partition of this subpolygon. When we process h_{j}, we

Tabie 1

Computations	Observations	Remarks
1. $S\left(h_{6} \mid h_{7}\right)$	$w_{4}<\boldsymbol{S}\left(h_{6} \backslash h_{7}\right)<w_{5}$	h_{7} is the ceiling of h_{6} : $S\left(h_{6} \backslash h_{7}\right)<w_{5} \Rightarrow C\left(h_{5}, h_{6}, \overline{h_{7}}\right)<H_{0}\left(h_{5}, \overline{h_{7}}\right)$
2. $S\left(h_{5} \mid h_{6}\right)$	$w_{3}<S\left(h_{5} \backslash h_{6}\right)<w_{4}$	$S\left(h_{5} \backslash h_{6}\right)<S\left(h_{6} \backslash h_{7}\right) \Rightarrow h_{6}$ is a son of h_{5}; condense h_{6} into h_{5} and calculate $S\left(h_{5} \mid h_{7}\right)$
3. $S\left(h_{5} \backslash h_{7}\right)$	$w_{3}<\boldsymbol{S}\left(h_{5} \backslash h_{7}\right)<w_{4}$	h_{7} is the ceiling of h_{5}; $S\left(h_{5} \backslash h_{7}\right)<w_{4} \Rightarrow C\left(h_{4}, h_{5}, h_{6}, \overline{h_{7}}\right)<H_{0}\left(h_{4}, \overline{h_{7}}\right) .$
4. $S\left(h_{4} \backslash h_{5}\right)$	$w_{2}<\boldsymbol{S}\left(h_{4} \backslash h_{5}\right)<w_{3}$	$S\left(h_{4} \backslash h_{5}\right)<S\left(h_{5} \backslash h_{7}\right) \Rightarrow h_{5}$ is a son of h_{4}; condense h_{5} into h_{4} and calculate $S\left(h_{4} \mid h_{7}\right)$
5. $S\left(h_{4} \mid h_{7}\right)$	$w_{2}<\boldsymbol{S}\left(h_{4} \backslash h_{7}\right)<w_{3}$	h_{7} is the ceiling of h_{4}; $S\left(h_{4} \mid h_{7}\right)<w_{3} \Rightarrow C\left(h_{3}, h_{4}, h_{5}, h_{6}, \overline{h_{7}}\right)<H_{0}\left(h_{3}, \overline{h_{7}}\right)$
6. $S\left(h_{3} \mid h_{4}\right)$	$w_{1}<S\left(h_{3} \mid h_{4}\right)<w_{2}$	$S\left(h_{3} \mid h_{4}\right)<S\left(h_{4} \mid h_{7}\right) \Rightarrow h_{4}$ is a son of $h_{3} ;$ condense h_{4} into h_{3} and calculate $S\left(h_{3} \backslash h_{7}\right)$
7. $S\left(h_{3} \backslash h_{7}\right)$	$w_{1}<S\left(h_{3} \mid h_{7}\right)<w_{2}$	h_{7} is the ceiling of h_{3}; $S\left(h_{3} \backslash h_{7}\right)<w_{2} \Rightarrow C\left(\underline{h_{2}}, h_{3}, h_{4}, h_{5}, h_{6}, \overline{h_{7}}\right)<H_{0}\left(\underline{h_{2}}, \overline{h_{7}}\right)$
8. $S\left(h_{2} \backslash h_{3}\right)$	$S\left(h_{2} \backslash h_{3}\right)<w_{1}$	$S\left(h_{2} \backslash h_{3}\right)<S\left(h_{3} \backslash h_{7}\right) \Rightarrow h_{3}$ is a son of h_{2}; condense h_{3} into h_{2} and calculate $S\left(h_{2} \mid h_{7}\right)$
9. $S\left(h_{2} \backslash h_{7}\right)$?	

Table 2

Computations	Observations	Remarks
1. $S\left(h_{6} \backslash h_{7}\right)$	$w_{1}<S\left(h_{6} \backslash h_{7}\right)<w_{2}$	h_{7} is the ceiling of h_{6}; $S\left(h_{6} \mid h_{7}\right)<w_{5} \Rightarrow C\left(\underline{h_{5}}, h_{6}, \overline{h_{7}}\right)<H_{0}\left(\underline{h_{5}}, \overline{h_{7}}\right)$
2. $S\left(h_{5} \backslash h_{6}\right)$	$\boldsymbol{S}\left(h_{6} \backslash h_{7}\right)<S\left(h_{5} \backslash h_{6}\right)<w_{2}$	$\begin{aligned} & S\left(h_{5} \backslash h_{6}\right)>S\left(h_{6} \backslash h_{7}\right) \Rightarrow h_{6} \text { is the ceiling of } h_{5} ; \\ & S\left(h_{5} \backslash h_{6}\right)<w_{4} \Rightarrow C\left(h_{4}, h_{5}, \overline{h_{6}}\right)<H_{0}\left(h_{4}, \overline{h_{6}}\right) \end{aligned}$
3. $S\left(h_{4} \backslash h_{5}\right)$	$w_{2}<\boldsymbol{S}\left(h_{4} \mid h_{5}\right)<w_{3}$	$S\left(h_{4} \backslash h_{5}\right)>S\left(h_{5} \backslash h_{6}\right) \Rightarrow h_{5}$ is the ceiling of h_{4}; $S\left(h_{4} \mid h_{5}\right)<w_{3} \Rightarrow C\left(h_{3}, h_{4}, \overline{h_{5}}\right)<H_{0}\left(\underline{h_{3}}, \overline{h_{5}}\right)$
4. $S\left(h_{3} \backslash h_{4}\right)$	$w_{1}<\boldsymbol{S}\left(h_{3} \backslash h_{4}\right)<w_{2}$	$S\left(h_{3} \backslash h_{4}\right)<S\left(h_{4} \backslash h_{5}\right) \Rightarrow h_{4}$ is a son of h_{3}; condense h_{4} into h_{3} and calculate $S\left(h_{3} \backslash h_{5}\right)$
5. $S\left(h_{3} \mid h_{5}\right)$	$w_{2}<S\left(h_{3} \backslash h_{5}\right)<w_{3}$	$S\left(h_{3} \backslash h_{5}\right)>S\left(h_{5} \backslash h_{6}\right) \Rightarrow h_{5}$ is the ceiling of h_{3}; $S\left(h_{3} \mid h_{5}\right)>w_{2} \Rightarrow C\left(h_{2}, h_{3}, h_{4}, \overline{h_{5}}\right)>H_{0}\left(h_{2}, \overline{h_{5}}\right)$ both h_{3} and h_{4} cannot exist in the l-optimum partition and should be deleted from the list of potential h-arcs; we should then check to see if the fan is cheaper in the subpolygon bounded by h_{2} and h_{6}; $S\left(h_{5} \backslash h_{6}\right)<w_{2} \Rightarrow C\left(\underline{h}_{2}, h_{5}, \overline{h_{6}}\right)<H_{0}\left(h_{2}, \overline{h_{6}}\right)$
6. $S\left(h_{2} \backslash h_{5}\right)$	$S\left(h_{2} \backslash h_{5}\right)<w_{1}$	$S\left(h_{2} \backslash h_{5}\right)<S\left(h_{5} \backslash h_{6}\right) \Rightarrow h_{5}$ is a son of h_{2}; we should condense h_{5} into h_{2} and calculate $S\left(h_{2} \backslash h_{6}\right)$
7. $S\left(h_{2} \mid h_{6}\right)$	$S\left(h_{2} \backslash h_{6}\right)<w_{1}$	$S\left(h_{2} \mid h_{6}\right)<S\left(h_{6} \mid h_{7}\right) \Rightarrow h_{6}$ is a son of $h_{2} ;$ we should condense h_{6} into h_{2} and calculate $S\left(h_{2} \mid h_{7}\right)$.
8. $S\left(h_{2} \mid h_{7}\right)$?	

first locate the ceiling of h_{j} and condense all h_{j} 's descendants into h_{j}. Then we obtain the l-optimum partition of the subpolygon between h_{i} and h_{n} by deleting those blocks of arcs which cannot exist in the l-optimum partition of the subpolygon between h_{i} and h_{n}.

While ($h_{j} \neq$ the degenerated arc h_{1}) do
Begin

1. [To locate the ceiling of h_{i}].

While $\boldsymbol{S}\left(h_{j} \backslash h_{k}\right) \leqq \boldsymbol{S}\left(h_{k} \backslash h_{k}\right.$'s ceiling) do
Begin
a. Comment: Now, h_{k} is a son of h_{j}.
b. We will combine h_{k} and all its descendants into h_{i} and calculate the combined supporting weight $S\left(h_{j} \backslash h_{k}\right.$'s ceiling).
c. Replace h_{k} by h_{k} 's ceiling; i.e., h_{k} is always used to denote the lowest h-arc above h_{j} which is not yet combined into h_{j}. End.
2. [To delete those blocks of arcs which cannot exist in the l-optimum partition of the subpolygon between h_{i} and h_{n}].
While $C\left(h_{i}, h_{j}\right.$ and h_{i} 's descendants, $\overline{\left.h_{j} \text { 's ceiling }\right)} \geqq H_{0}\left(h_{i}, \overline{h_{j} \text { 's ceiling }}\right)$; i.e., $S\left(h_{j} \backslash h_{j}^{\prime}\right.$'s ceiling $) \geqq \min \left(w_{i}, w_{i}^{\prime}\right)$. Do Begin
a. Delete h_{j} and all its descendants from the list of potential h-arcs.
b. Replace h_{j} by the ceiling of h_{i}; i.e., h_{j} is always used to denote the arc immediately above h_{i} in the subpolygon between h_{i} and h_{n}.
End.
3. [Prepare to process next arc].

Replace h_{k} by h_{i}, h_{j} by h_{i} and h_{i} by the arc immediately below h_{i} in the list of potential h-arcs. End.
(III) Output the l-optimum partition consisting of the arcs which remain in the list of potential h-arcs after Step II as h-arcs.
Then stop.
Theorem 8. The partition produced by Algorithm M is l-optimum.
Proof. We have shown in Part I of this paper [6] that all h-arcs present in the l-optimum partition of the polygon are potential h-arcs, and all potential h-arcs are included in the list obtained by the one-sweep algorithm. We claim that (i) whenever Algorithm M finishes Step II.1, the ceiling of h_{j} is correctly located, (ii) whenever Algorithm M finishes Step II.2, the arcs which have been deleted by Algorithm M cannot exist in the l-optimum partition of the subpolygon bounded above by h_{n} and below by an arc lower than h_{i}, and (iii) the partition consisting of all the potential h-arcs remaining above h_{i} as h-arcs is l-optimum in the subpolygon bounded by h_{i} and h_{n} after Step II.2. (If the claim is true, the partition output by Algorithm M will be l-optimum in the monotone polygon.)

We shall prove the claim by induction on the number of h-arcs above an arc h_{j}.
It is easy to see that the claim is true when $h_{j}=$ the highest arc in the list of potential h-arcs.

Suppose the claim is true for all potential h-arcs above some arc h_{j}. Let h_{i} be the arc immediately below h_{j} in the list of potential h-arcs. Just before Algorithm M starts processing h_{j}, all the potential h-arcs which remain above h_{j} exist as h-arcs in the
l-optimum partition of the subpolygon between h_{j} and h_{n}. We can divide these arcs into two groups: (i) those which are descendants of some other arcs in the subpolygon, and (ii) those which have no ancestor in the subpolygon.

It follows from the definition of the father-son relationship that only arcs in group (ii) can be sons of h_{j}. Let the set of arcs in group (ii) be $h_{t}, h_{t-1}, \cdots, h_{p}, h_{p-1}, \cdots, h_{j+2}, h_{j+1}$ such that h_{n} is above h_{t}, h_{t} is above h_{t-1}, \cdots, h_{p} is above h_{p-1}, \cdots, h_{i+2} is above h_{j+1} and h_{j+1} is above h_{j}. Note that there exists no other h-arc between h_{j+1} and h_{j} in the l-optimum partition of the subpolygon. Since none of these arcs has an ancestor in the subpolygon, we must have

$$
\begin{aligned}
& h_{n} \text { as the ceiling of } h_{t}, \\
& h_{t} \text { as the ceiling of } h_{t-1} \text {, } \\
& \vdots \\
& h_{p} \text { as the ceiling of } h_{p-1} \text {, } \\
& \vdots \\
& h_{i+2} \text { as the ceiling of } h_{j+1} \text {. }
\end{aligned}
$$

It follows from the definition of the ceiling that

$$
S\left(h_{i+1} \mid h_{i+2}\right)>\cdots>S\left(h_{p-1} \mid h_{p}\right)>\cdots>S\left(h_{t-1} \mid h_{t}\right)>S\left(h_{t} \mid h_{n}\right) .
$$

Since h_{j+1} is the lowest h-arc in the l-optimum partition of the subpolygon bounded by h_{j} and h_{n}, we have

$$
\min \left(w_{j}, w_{j}^{\prime}\right)>\boldsymbol{S}\left(h_{j+1} \backslash h_{j+2}\right)>\cdots>\boldsymbol{S}\left(h_{t} \backslash h_{n}\right)
$$

Now, if $S\left(h_{j} \backslash h_{j+1}\right) \leqq S\left(h_{j+1} \backslash h_{j+2}\right)$, all four conditions of the father-son relationship are satisfied and Algorithm M will correctly condense h_{j+1} and its descendants into h_{j}. Using the same argument repeatedly, we conclude that Algorithm M correctly locates the ceiling of h_{j} at the end of Step II.1. Whenever the potential h-arc h_{j} and its descendants are removed in Step II.2, the conditions in Theorem 7 are satisfied. Hence h_{j} and its descendants cannot exist in the l-optimum partition of any subpolygon bounded above by h_{n} and below by a potential h-arc lower than h_{i}. Now, at the end of Step II.2, we can again divide the potential h-arcs remaining above h_{i} into two groups:
(i) those which are descendants of some other arcs in the subpolygon, and
(ii) those which have no ancestor in the subpolygon.

Let h_{j} be the h-arc immediately above h_{i} after Step II.2. The arc h_{j} must be the lowest arc in group (ii). It follows from the definition of ceiling that for any arc h_{k} above h_{j} in group (ii), we have

$$
\min \left(w_{i}, w_{i}^{\prime}\right)>S\left(h_{j} \backslash h_{i}^{\prime} \text { 's ceiling }\right)>S\left(h_{k} \mid h_{k}^{\prime} \text { 's ceiling }\right)
$$

From Theorem 6, if any of the arcs in group (ii) does not exist in the l-optimum partition, all its descendants in group (i) will not exist in the l-optimum partition. Suppose the partition consisting of all the potential h-arcs remaining above h_{i} as h-arcs is not l-optimum in the subpolygon between h_{i} and h_{n}. Then some of these potential h-arcs in group (ii) and their descendants should not exist in the l-optimum partition. Assume that h_{k} is the highest potential h-arc remaining above h_{i} after Step II.2, but h_{k} should not exist in the l-optimum partition. Let h_{b} be the highest h-arc below h_{k} in the l-optimum partition. Hence, the fan should be l-optimum in the subpolygon between h_{b} and h_{k} 's ceiling. Since $S\left(h_{k} \backslash h_{k}\right.$'s ceiling $)<\min \left(w_{i}, w_{i}^{\prime}\right) \leqq \min \left(w_{b}, w_{b}^{\prime}\right)$, the
partition with h_{k} and its descendants as h-arcs in the subpolygon bounded by h_{b} and h_{k} 's ceiling is always cheaper than the fan, and we have a contradiction.

Hence, the claim is true, and the partition output by Algorithm M is l-optimum.
In order for Algorithm M to run efficiently, we need a data structure which enables us to calculate the supporting weights, to keep track of the ceiling of each potential h-arc and to update the list of potential h-arcs easily. One way to implement Algorithm M is to place all potential h-arcs obtained in Step I in a linear linked list, with the highest arc at the head of the list and the lowest arc at the tail of the list. Each of these potential h-arcs, say h_{i}, is associated with a record variable with the following fields:
(i) the label of the end vertex which is closer to V_{1} in the clockwise direction;
(ii) the label of the other end vertex;
(iii) the ceiling of h_{i};
(iv) the list of sons of h_{i};
(v) the cost of the l-optimum partition in the subpolygon between h_{i} and its ceiling, i.e. the numerator of $S\left(h_{i} \backslash h_{i}\right.$'s ceiling);
(vi) the quantity ($w_{i}: w_{j}+w_{j} \cdot w_{j}^{\prime}+w_{j}^{\prime}: w_{i}^{\prime}$) $-w_{i} \cdot w_{i}^{\prime}$ where w_{i}, w_{i}^{\prime} are weights of the end vertices of the potential $h-\operatorname{arc} h_{i}$ and w_{j}, w_{j}^{\prime} are the weights of the end vertices of h_{i} 's ceiling, i.e. the denominator of $S\left(h_{i} \mid h_{i}\right.$'s ceiling) (it is obtained by subtracting the product $w_{i} \cdot w_{i}^{\prime}$ from the sum of the adjacent products from w_{i} to w_{i}^{\prime} around the subpolygon $w_{i}-\cdots-w_{i}-w_{i}^{\prime}-\cdots-w_{i}^{\prime}$; and
(vii) the supporting weight $S\left(h_{i} \backslash h_{i}\right.$'s ceiling).

Note that only the first three fields of each potential h-arc are defined at the end of Step I, the other four fields of each potential h-arc are set to the correct value when the potential h-arc is being processed in Step II. Since the sums of adjacent products of the form $w_{i}: w_{j}$ are used repeatedly in calculating the cost of the fan between two adjacent potential h-arcs and the denominators of the supporting weights, we can eliminate a lot of repeated calculations by initializing the elements of an array CP to

$$
\mathrm{CP}[1]=0 \quad \text { and } \quad \mathrm{CP}[i]=w_{1}: w_{i} \quad \text { for } 2 \leqq i \leqq n .
$$

Then the sum of the adjacent products $w_{i}: w_{j}$ can be obtained from $\mathrm{CP}[j]-\mathrm{CP}[i]$.
As we process the arcs in the list of potential h-arcs one by one from the top to the bottom, we shall remove a potential h-arc from the list if (i) the arc is found to be a son of another potential h-arc in Step II.1, or (ii) the partition with the arc and all its descendants is not l-optimum in some subpolygon in Step II.2. Let h_{k} be an arc which is removed from the list in Step II. 1 and let h_{i} be its father. After h_{k} is removed from the list of potential h-arcs, it will be added to the list of h_{j} 's sons, i.e. the fourth field of h_{i}. Then, we have to calculate the supporting weight $S\left(h_{j} \backslash h_{k}\right.$'s ceiling). The numerator of $S\left(h_{i} \backslash h_{k}\right.$'s ceiling) can be obtained by adding the numerator of $S\left(h_{k} \backslash h_{k}\right.$'s ceiling) in the fifth field of h_{k} to the numerator of $S\left(h_{i} \backslash h_{j}\right)$. Similarly, the denominator of $S\left(h_{j} \backslash h_{k}\right.$'s ceiling) can be obtained by adding the denominator of $S\left(h_{k} \backslash h_{k}\right.$'s ceiling) in the sixth field of h_{k} to the denominator of $S\left(h_{j} \backslash h_{k}\right)$. Hence, we can calculate $S\left(h_{i} \backslash h_{k}\right.$'s ceiling) in a constant amount of time. Note that whenever Algorithm M finishes Step II.2, only those potential h-arcs which are present in the l-optimum partition of the subpolygon between h_{i} and h_{n} and yet have no ancestors above h_{i} remain above h_{i} in the list of potential h-arcs.

Theorem 9. Algorithm M runs in $O(n)$ time.

Proof. It takes $O(n)$ time to sweep around the monotone polygon twice, once to obtain all potential h-arcs in Step I and once to initialize the array CP. There are two while loops in Step II, and it only takes a constant amount of time to execute either while loop once. Whenever the while loop in Step II. 1 is executed once, a potential h-arc is removed from the list and condensed into its father. Whenever the while loop in Step II. 2 is executed once, a potential h-arc is deleted from the list. Once an arc is removed or deleted from the list, it will never be considered again. Since there are at most $n-3$ arcs in the list obtained in Step I, Algorithm M can execute both while loops at most $n-3$ times. So is takes $O(n)$ time to process all the potential h-arcs in Step II and to output the l-optimum partition in Step III. Hence, Algorithm M runs in $O(n)$ time.
3. The convex polygon. In this section we shall extend the results in $\S 2$ to the case of a general convex polygon.

There may be several local maximum vertices in a general convex polygon. Let us still draw the polygon in such a way that the global minimum vertex is at the bottom. From Theorem 4 of Part I, we know that all potential h-arcs are still compatible in a general convex polygon. However, unlike those in a monotone polygon, the potential h-arcs no longer form a linear list. Instead, they form a tree, called an arc-tree. In Fig. 10a, there is a 12 -gon with 6 potential h-arcs, and they are labelled as $h_{2}, h_{3}, h_{4}, h_{5}, h_{6}$ and h_{7}. (Note that we also obtain $V_{4}-V_{3}, V_{7}-V_{6}$ and $V_{6}-V_{8}$ from the one-sweep algorithm. In order to have a simpler example, let us assume that all three of these arcs are unstable and hence are not shown in Fig. 10a.) To get a better feeling of the arc-tree, we can redraw the 12 -gon as shown in Fig. 10b. By regarding V_{1} as a degenerated arc h_{1}, V_{12} as a degenerated arc h_{8}, and V_{11} as a degenerated arc h_{9}, we have h_{1} as the root of the arc tree and the $\operatorname{arcs} h_{8}$ and h_{9} as the leaves.

An arc h_{j} is above another arc h_{i} (and h_{i} is below h_{j}) if h_{j} is in one of the subtrees of h_{i}. We shall be dealing with subpolygons, each bounded below by a potential h-arc and above by a set of potential h-arcs. We can define the supporting weights of the potential h-arcs in a similar way. For example, the supporting weight of the arc h_{2}

(a)

(b)

Fig. 10. A general 12-gon.
with respect to the subpolygon bounded above by $\left\{h_{4}, h_{6}\right\}$ in Fig. 10b equals

$$
\frac{C\left(w_{2}, w_{4}, w_{6}, w_{5}, w_{3}\right)}{\left[w_{2}: w_{3}-\left(w_{4}: w_{6}-w_{4} \cdot w_{6}\right)-\left(w_{6}: w_{5}-w_{6} \cdot w_{5}\right)\right]-w_{2} \cdot w_{3}}
$$

and is denoted by $\boldsymbol{S}\left(h_{2} \backslash\left\{h_{4}, h_{6}\right\}\right)$. Again, for any leaf node h_{n}, we define $S\left(h_{n} \backslash\left\{h_{n}\right\}\right)$ to be zero.

We say that a set of potential h-arcs U_{i} is the ceiling of another potential h-arc h_{i} (or simply h_{i} 's ceiling for short) if either condition (i) or conditions (iia), (iib), (iic) and (iid) are satisfied:
(i) $U_{i}=\left\{h_{i}\right\}$ if h_{i} is a leaf node;
or
(ii) for all $h_{k} \in U_{i}$,
a) h_{k} is above h_{i};
b) $S\left(h_{i} \backslash U_{i}\right)>\left(h_{k} \backslash h_{k}\right.$'s ceiling $)$;
c) for all $h_{j} \in U_{i}$ such that $h_{j} \neq h_{k}$, neither h_{j} is above h_{k} nor h_{k} is above h_{i}; and
d) conditions (iia), (iib) or (iic) will be violated if h_{k} is replaced by any arc below h_{k} in the subpolygon between h_{i} and U_{i}.
We say that an $\operatorname{arc} h_{j}$ is a son of another $\operatorname{arc} h_{i}$ if the following conditions are satisfied:
(i) h_{j} is above h_{i} (the son is above its father);
(ii) $S\left(h_{j} \backslash h_{j}^{\prime}\right.$ s ceiling $)<\min \left(w_{i}, w_{i}^{\prime}\right)$ where w_{i}, w_{i}^{\prime} are weights associated to the end vertices of h_{i};
(iii) h_{i} is not in the ceiling of h_{i}; and
(iv) h_{i} is the highest arc which satisfies (i), (ii) and (iii).

It is easy to see that all the previous discussions on the ceilings and the ancestordescendant relationships in $\S 2$ still hold under the new definition of ceilings and father-son relationships. Using arguments similar to those used in the proofs of Theorems 5, 6 and 7, we can generalize Theorems 5, 6, 7 and Corollary 1 as follows:

Theorem 10. If a potential h-arc h_{j} exists in the l-optimum partition of a convex polygon, all potential h-arcs in its ceiling will also exist in the l-optimum partition.

Proof. Omitted.
Theorem 11. The sons of an arc h_{j} will exist in the l-optimum partition of a convex polygon if and only if h_{i} is present in the l-optimum partition.

Proof. Omitted.
Corollary 2. The descendants of an arc h_{j} will exist in the l-optimum partition of a convex polygon if and only if h_{j} exists in the l-optimum partition.

Proof. The corollary follows from Theorem 11.
Theorem 12. Let X be a set of potential h-arcs above another potential h-arc h_{i} such that (i) for any two arcs $h_{j}, h_{k} \in X$, neither h_{j} is above h_{k} nor h_{k} is above h_{j} if $h_{j} \neq h_{k}$, and (ii) the l-optimum partition in the subpolygon between h_{i} and the arcs in X is a fan. Let h_{j} be a potential h-arc in X such that for any $h_{k} \in X, S\left(h_{j} \backslash h_{j}\right.$'s ceiling $) \geqq S\left(h_{k} \backslash h_{k}\right.$'s ceiling). If $S\left(h_{j} \backslash h_{j}\right.$'s ceiling $) \geqq \min \left(w_{i}, w_{i}^{\prime}\right)$ where w_{i}, w_{i}^{\prime} are the weights associated with the end vertices of h_{i}, then h_{i} and all its descendants cannot exist in the l-optimum partition of any upper subpolygon bounded below by a potential h-arc no higher than h_{i}.

Using the facts in Theorems 10, 11, 12 and Corollary 2, we can again start from the potential h-arcs which lie immediately below the leaf nodes and work our way down. The leaf nodes are the ceiling of these arcs. Before we can locate the ceiling of any arc which does not lie immediately below the leaf nodes, we must first process all the arcs above it, i.e. the arcs in its subtrees. Hence, we can do a postorder traversal through the arc tree. When we process a potential h-arc, we first find the l-optimum
partition of the subpolygon bounded below by the arc and above by the leaf nodes in its subtrees; then we will locate the ceiling of the potential h-arc. Let us consider the following example.

Example 3. Consider the 12 -gon with six potential h-arcs as shown in Figs. 10a and 10 b . The necessary computations and the results of comparisons are shown in Table 3.

TAble 3

Computations	Observations	Remarks
1. $S\left(h_{5} \backslash\left\{h_{8}\right\}\right)$	$w_{1}<\boldsymbol{S}\left(h_{5} \backslash\left\{h_{8}\right\}\right)<w_{2}$	The fan is l-optimum in the subpolygon between h_{5} and $h_{8} ;\left\{h_{8}\right\}$ is the ceiling of h_{5} h_{4} is the next arc to be processed.
2. $S\left(h_{4} \backslash\left\{h_{5}\right\}\right)$	$w_{3}<S\left(h_{4} \backslash\left\{h_{5}\right\}\right)<w_{4}$	$\begin{aligned} & S\left(h_{5} \backslash\left\{h_{8}\right\}\right)<w_{4} \Rightarrow C\left(h_{4}, h_{5}, \overline{h_{8}}\right)<H_{0}\left(h_{4}, \overline{h_{8}}\right) \\ & S\left(h_{4} \backslash\left\{h_{5}\right\}\right)>S\left(h_{5} \backslash\left\{h_{8}\right\}\right) \Rightarrow\left\{h_{5}\right\} \text { is the ceiling of } h_{4} \end{aligned}$ Before we can process h_{3}, we have to process h_{7} first
3. $S\left(h_{7} \backslash\left\{h_{9}\right\}\right)$	$w_{2}<S\left(h_{7} \backslash\left\{h_{9}\right\}\right)<w_{3}$	The fan is l-optimumin the subpolygon between h_{7} and h_{9} $\left\{h_{9}\right\}$ is the ceiling of h_{7} h_{6} is the next arc to be processed
4. $S\left(h_{6} \backslash\left\{h_{7}\right\}\right)$	$\begin{aligned} w_{3} & <S\left(h_{6} \backslash\left\{h_{7}\right\}\right) \\ & <S\left(h_{4} \backslash\left\{h_{5}\right\}\right)<w_{4} \end{aligned}$	$\begin{aligned} & S\left(h_{7} \backslash\left\{h_{9}\right\}\right)<w_{5} \Rightarrow C\left(h_{6}, h_{7}, \overline{h_{9}}\right)<H_{0}\left(h_{6}, \overline{h_{9}}\right) \\ & S\left(h_{6} \backslash\left\{h_{7}\right\}\right)>S\left(h_{7}\left\{h_{9}\right\}\right) \Rightarrow\left\{h_{7}\right\} \text { is the ceiling of } h_{6} \\ & h_{3} \text { is the next arc to be processed } \end{aligned}$
5. $S\left(h_{3} \backslash\left\{h_{4}, h_{6}\right\}\right)$	$\begin{aligned} w_{2} & \left.<S\left(h_{3}\right\}\left\{h_{4}, h_{6}\right\}\right) \\ & <S\left(h_{6} \backslash\left\{h_{7}\right\}\right) \\ & <S\left(h_{4} \backslash\left\{h_{5}\right\}\right) \end{aligned}$	$\begin{aligned} & S\left(h_{6} \backslash\left\{h_{7}\right\}\right)<S\left(h_{4} \backslash\left\{h_{5}\right\}\right)<w_{4} \\ & \quad \Rightarrow C\left(h_{3}, h_{4}, h_{6}, \overline{h_{5}}, \overline{h_{7}}\right)<H_{0}\left(\underline{h_{3}}, \overline{h_{5}}, \overline{h_{7}}\right) \end{aligned}$ Both h_{4} and h_{6} may be sons of h_{3} since $S\left(h_{4} \mid\left\{h_{5}\right\}\right)>$ $S\left(h_{6} \backslash\left\{h_{7}\right\}\right)$, test h_{4} first to see if h_{4} is a son of h_{3} $S\left(h_{3} \backslash\left\{h_{4}, h_{6}\right\}\right)<S\left(h_{4} \backslash\left\{h_{5}\right\}\right) \Rightarrow h_{4}$ is a son of h_{3} Condense h_{4} into h_{3} and calculate $S\left(h_{3} \backslash\left\{h_{5}, h_{6}\right\}\right)$
6. $S\left(h_{3} \backslash\left\{h_{5}, h_{6}\right\}\right)$	$\begin{gathered} w_{2}<S\left(h_{3} \backslash\left\{h_{5}, h_{6}\right\}\right) \\ <S\left(h_{6} \backslash\left\{h_{7}\right\}\right) \end{gathered}$	$S\left(h_{3} \backslash\left\{h_{5}, h_{6}\right\}\right)<S\left(h_{6} \Rightarrow\left\{h_{7}\right\}\right) \backslash h_{6}$ is a son of h_{3} Condense h_{6} into h_{3} and calculate $\boldsymbol{S}\left(h_{3} \backslash\left\{h_{5}, h_{7}\right\}\right)$.
7. $S\left(h_{3} \backslash\left\{h_{5}, h_{7}\right\}\right)$	$\begin{aligned} & S\left(h_{5} \backslash\left\{h_{8}\right\}\right) \\ & \quad<w_{2}<S\left(h_{7} \backslash\left\{h_{9}\right\}\right) \\ & \quad<S\left(h_{3} \backslash\left\{h_{5}, h_{7}\right\}\right)<w_{3} \end{aligned}$	$\boldsymbol{S}\left(h_{3} \backslash\left\{h_{5}, h_{7}\right\}\right)>S\left(h_{7} \backslash\left\{h_{9}\right\}\right)>\boldsymbol{S}\left(h_{5} \backslash\left\{h_{8}\right\}\right)$ $\Rightarrow\left\{h_{5}, h_{7}\right\}$ is the ceiling of h_{3} h_{2} is the next arc to be processed.
8. $S\left(h_{2} \backslash\left\{h_{5}, h_{9}\right\}\right)$	$\boldsymbol{S}\left(h_{2} \backslash\left\{h_{5}, h_{9}\right\}\right)<w_{1}$	$\begin{aligned} & S\left(h_{3}\left\{\left\{h_{5}, h_{7}\right\}\right)>w_{2}\right. \\ & \quad \Rightarrow C\left(h_{2}, h_{3}, h_{4}, h_{6}, \overline{h_{5}}, \overline{h_{7}}\right)>H_{0}\left(h_{2}, \overline{h_{5}}, \overline{h_{7}}\right) \end{aligned}$ h_{3}, h_{4} and h_{6} cannot exist in the l-optimum partition and should be deleted from the arc tree Now, h_{5}, h_{7} are the two arcs immediately above h_{2} since $\boldsymbol{S}\left(h_{7} \backslash\left\{h_{9}\right\}\right\rangle>S\left(h_{5} \backslash\left\{h_{8}\right\}\right)$, test h_{7} first to see if h_{7} can be deleted from the arc tree $\begin{aligned} & S\left(h_{7} \backslash\left\{h_{9}\right\}\right)>w_{2} \\ & \quad \Rightarrow C\left(h_{2}, h_{7}, \overline{h_{5}}, \overline{h_{9}}\right)>H_{0}\left(h_{2}, \overline{h_{5}}, \overline{h_{9}}\right) \end{aligned}$ h_{7} should be deleted from the arc tree $\begin{aligned} & S\left(h_{5} \backslash\left\{h_{8}\right\}\right)<w_{2} \\ & \quad \Rightarrow C\left(h_{2}, h_{5}, \overline{h_{8}}, \overline{h_{9}}\right)<H_{0}\left(h_{2}, \overline{h_{8}}, \overline{h_{9}}\right) \end{aligned}$ $S\left(h_{2} \mid\left\{h_{5}, h_{9}\right\}\right)<S\left(h_{5} \backslash\left\{h_{8}\right\}\right) \Rightarrow h_{6}$ is a son of h_{2} Condense h_{5} into h_{2} and calculate $S\left(h_{2} \backslash\left\{h_{8}, h_{9}\right\}\right)$
9. $S\left(h_{2} \backslash\left\{h_{8}, h_{9}\right\}\right)$?	

If $S\left(h_{2} \backslash\left\{h_{8}, h_{9}\right\}\right)<w_{1}$, the partition with h_{2} and h_{5} as h-arcs is l-optimum. Otherwise, the fan $H_{0}\left(\underline{h_{1}}, \overline{h_{8}}, \overline{h_{9}}\right)$ will be l-optimum.

From the above example, we have the following observations. Let h_{j} be the arc being processed and let X be the set of arcs immediately above h_{j} in the arc tree. By the time we process h_{j}, we have already obtained (i) the l-optimum partitions of the subpolygons between the leaf nodes and the arcs in X and (ii) the ceilings of all the arcs in X. For any arc h_{k} in X, the l-optimum partition in the subpolygon bounded below by h_{j} and above by the arcs in $X-\left\{h_{k}\right\} \cup h_{k}$'s ceiling must either be a fan or consist of h_{k} and its descendants as h-arcs depending on whether $S\left(h_{k} \backslash h_{k}\right.$'s ceiling $) \geqq$ $\min \left(w_{j}, w_{j}^{\prime}\right)$ or $S\left(h_{k} \backslash h_{k} ’\right.$ s ceiling $)<\min \left(w_{j}, w_{j}^{\prime}\right)$, where w_{j}, w_{j}^{\prime} are the weights associated with the end vertices of h_{j}. If the fan is cheaper, h_{k} and h_{k} 's descendants will be removed from the arc tree and the set X becomes $X-\left\{h_{k}\right\} \cup h_{k}$'s ceiling. We can repeat the above process until the l-optimum partition in the subpolygon bounded below by h_{j} and above by the leaf nodes in the subtrees of h_{j} is obtained. Since $\max _{h_{k} \in X} \boldsymbol{S}\left(h_{k} \backslash h_{k} ’ \mathbf{s} \quad\right.$ ceiling $)<\min \left(w_{i}, w_{j}^{\prime}\right) \quad$ implies $\quad\left(\forall h_{k} \in X\right)\left(S\left(h_{k} \backslash h_{k} ’ s \quad\right.\right.$ ceiling $)<$ $\min \left(w_{j}, w_{j}^{\prime}\right)$), the arc with maximum supporting weight in X should be chosen and tested for possible deletion. Similarly, since $\max _{h_{k} \in X} S\left(h_{k} \backslash h_{k}\right.$'s ceiling $)<S\left(h_{j} \backslash X\right)$ implies $\left(\forall h_{k} \in X\right)\left(\boldsymbol{S}\left(h_{k} \backslash h_{k}\right.\right.$'s ceiling $)<\boldsymbol{S}\left(h_{j} \backslash X\right)$), the arc with maximum supporting weight should also be chosen and tested for possible condensation.

Now, let us give the algorithm for finding the l-optimum partition of a general convex polygon.

Algorithm P

(I) Get all the potential h-arcs of the polygon by the one-sweep algorithm [6]. (All these arcs form a tree.)
(II) Append the degenerated arcs to the arc tree obtained in Step I and label all leaf nodes as "processed."
(III) Process the potential h-arcs, one by one, from the leaves to the root. (We cannot process a potential h-arc until all the potential h-arcs in its subtrees have been processed.) Let h_{j} be the arc to be processed, h_{i} be the arc immediately below h_{i} in the arc tree, X be the set of potential h-arcs immediately above h_{j} in the arc tree, and h_{m} be an arc in X such that

$$
\boldsymbol{S}\left(h_{m} \backslash h_{m} \text { 's ceiling }\right)=\max _{h_{k} \in X} \boldsymbol{S}\left(h_{k} \backslash h_{k} \text { 's ceiling }\right) .
$$

Repeat
Begin

1. [To delete those blocks of arcs which cannot exist in the l-optimum partition of the subpolygon between h_{j} and the leaf nodes in its subtrees.]
While $S\left(h_{m} \backslash h_{m}\right.$'s ceiling $) \geqq \min \left(w_{j}, w_{j}^{\prime}\right)$ do
Begin
a. Delete h_{m} and its descendants from the arc tree.
b. Replace X by $X-\left\{h_{m}\right\} \cup h_{m}$'s ceiling and then update h_{m} accordingly. End.
2. [To locate the ceiling of h_{i}.]

If $h_{j} \neq h_{1}$
then
While $S\left(h_{j} \backslash X\right) \leqq S\left(h_{m} \backslash h_{m}\right.$'s ceiling $)$ do
Begin
a. Comment: h_{m} is a son of h_{j}.
b. Combine h_{m} and all its descendants into h_{j} and calculate the combined supporting weight

$$
S\left(h_{j} \backslash X-\left\{h_{m}\right\} \cup h_{m} \text { 's ceiling }\right) .
$$

c. Replace \boldsymbol{X} by $\boldsymbol{X}-\left\{h_{m}\right\} \cup h_{m}$'s ceiling and then update h_{m} accordingly. End.
3. [Prepare to process next arc.] If $h_{j} \neq h_{1}$ then

If h_{i} has a subtree which has not been processed then pick a subtree of h_{i} which has not been processed and apply Step II to this subtree recursively else
Begin
Replace X by the arcs immediately above h_{i} in the arc tree, h_{j} by h_{i} and h_{i} by the arc immediately below h_{i} in the arc tree.
End.

End.

Until ($h_{j}=h_{1}$).
(IV) Output the l-optimum partition consisting of the arcs which remain in the arc tree after Step II as h arcs. Then stop.

Using arguments similar to those in the proof of Theorem 8, we have the following theorem.

Theorem 13. The partition produced by Algorithm P is l-optimum.
Proof. Omitted.
One way to implement Algorithm P is to place all the potential h-arcs obtained in Step I in a linked tree. Each potential h-arc in the arc tree is again associated with a record variable similar to those described in $\S 2$. We shall also initialize the i th element of the array CP to the quantity $w_{1}: w_{i}$ for $2 \leqq i \leqq n$ and set $\mathrm{CP}[1]$ to zero. Hence, from our discussions in $\S 2$, we know that we can calculate the supporting weights in a constant amount of time. Since we always test the arc with the largest supporting weight for possible deletion or condensation among all the arcs in X in Step II of the algorithm, we should keep track of the arcs in X and in each ceiling by means of the priority queues. When an arc h_{m} in X is deleted from the arc tree, we remove h_{m} from X, then we merge X and the ceiling of h_{m} into one priority queue. Similarly, when an arc h_{m} in X is condensed into h_{j}, we remove h_{m} from X and add it to the list of h_{j} 's sons, then we merge X and the ceiling of h_{m} into one priority queue and set the ceiling of h_{m}, i.e. the third field of h_{m}, to NIL. Hence, it takes $O(\log n)$ time for each update of X to $X-\left\{h_{m}\right\} \cup h_{m}$'s ceiling in both Step II. 1 and Step II.2.

Theorem 9'. Algorithm P runs in $O(n \log n)$ time.
Proof. It takes $O(n)$ time to sweep around the monotone polygon twice, once to obtain all potential h-arcs in Step I and once to initialize the array CP. It also takes $O(n)$ time to append the degenerated arcs in the arc tree. There are two while loops in Step III, and it takes $O(\log n)$ time to execute either while loop once. Whenever the while loop in Step III. 1 is executed once, a potential h-arc is deleted from the arc tree. Whenever the while loop in Step III. 2 is executed once, a potential h-arc is removed from the arc tree and condensed to its father. Once an arc is removed or deleted from the list, it will never be considered again. Since there are at most $n-3$ arcs in the arc tree, Algorithm P can execute both while loops at most $n-3$ times.

So, it takes $O(n \log n)$ time to process all the potential h-arcs in Step III. Finally, it takes $O(n)$ time to output the l-optimum partition in Step IV. Hence, Algorithm P runs in $O(n \log n)$ time.
4. Conclusions. In this paper, we have presented an $O(n \log n)$ algorithm to find the unique lexicographical smallest optimum partition of a general convex polygon. Both Algorithm M and Algorithm P have been implemented in Pascal [7]. We have also compared Algorithm P with the $O\left(n^{3}\right)$ dynamic programming algorithm and found that Algorithm P runs faster than the dynamic programming algorithm when n is greater than or equal to 7 .

REFERENCES

[1] A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, MA, 1974.
[2] S. S. Godbole, An efficient computation of matrix chain products, IEEE Trans. Computers, C-22 (1973), pp. 864-866.
[3] H. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Computer Science Press, Potomac, MD 1978.
[4] T. C. Hu and M. T. Shing, Computation of matrix chain products, in 1981 Army Numerical Analysis and Computer Conferences, February 1981.
[5] ——An $O(n)$ algorithm to find a near-optimum partition of a convex polygon, J. Algorithms, to appear.
[6] -, Computation of matrix chain products, I, this Journal, 11 (1982), pp. 362-373.
[7] ——, Computation of matrix chain products, Part I, Part II, Report STAN-CS-81-875, Stanford Univ., Stanford, CA, Sept. 1981.

[^0]: * Received by the editors August 4, 1981, and in final revised form February 7, 1983. This research was supported in part by the National Science Foundation under grant MCS-77-23738 and in part by the U.S. Army Research Office under grant DAAG29-80-C-0029.
 \dagger University of California at San Diego, La Jolla, California 92093.

