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COMPUTATION OF MATRIX CHAIN PRODUCTS. PART II*

T. C. HUt AND M. T. SHING+

Abstract. This paper considers the computation of matrix chain products of the form M1 M2"
Mn-1. If the matrices are of different dimensions, the order in which the matrices are computed affects
the number of operations. An optimum order is an order which minimizes the total number of operations.
Some theorems about an optimum order of computing the matrices have been presented in Part [SIAM
J. Comput., 11 (1982), pp. 362-373]. Based on those theorems, an O(n log n) algorithm for finding the
optimum order is presented here.

1. Introduction. In Part I of this paper [6], we have transformed the matrix chain
product problem into the optimum partitioning problem and have stated several
theorems about the optimum partitions of an n-sided convex polygon. Some theorems
in Part I can be strengthened and are stated here (the detailed proofs are in [7]).

THEOREM 1. For every choice of V1, VE, (as prescribed in Part I), if the weights
of the vertices of the n-gon satisfy the following condition,

W1-" W2 Wk ( Wk+l" Wn

for some k, 3 <-k _<-_ n, then every optimum partition of the n-gon contains the k-gon
V1- VE Vk. Furthermore, if k 2 in the above condition, i.e. w wE< w3 <=
w4 <-’’’ <-_wn, then ever optimum partition of the n-gon must contain a triangle
V1 VE V, for some vertex V, with weight equal to w3.

Note that if Wl w. < w3 < w4 -<" -< wn, then every optimum partition must
contain the triangle V1 V2 V3 since there is a unique choice of V3.

Now, whenever we have three or more vertices with weights equal to W in the
n-gon, we can decompose the n-gon into subpolygons by forming the k-gon in the
first part of Theorem 1. The partition of the k-gon can be arbitrary, since all vertices
of the k-gon are of equal weight. For any subpolygon with two vertices of weights
equal to w l, we can always apply the second part of Theorem 1 and decompose the
subpolygon into smaller subpolygons. Hence, we have only to consider the polygons
with a unique choice of V1; i.e., each polygon has only one vertex with weight equal
to Wl.

Because of the above theorem, Theorems 1 and 3 of Part I can be generalized
as follows.

THEOREM 2. For every choice of V1, V2, (as prescribed in Part I), if the weights
of the vertices satisfy the condition

WI <W2 W3" Wn,

then V1- V2 and V1- V3 exist in every optimum partition of the n-gon.
THEOREM 3. Let Vx and Vz be two arbitrary vertices which are not adfacent in a

polygon, and Vw be the smallest vertex from Vx to Vz in the clockwise manner Vw
Vx, Vw Vz), and Vy be the smallest vertex from Vz to Vx in the clockwise manner
Vy V, Vy V). This is shown in Fig. 1. Assume that V < Vz and Vy < Vw. The

necessary condition for V V to exist as an h-arc in any optimum partition is

Wy < Wx <- Wz < Ww.
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FIG.

We shall use "the/-optimum partition" to mean "the lexicographically smallest
optimum partition." Based on these theorems, we now present algorithms for finding
the unique/-optimum partition.

Using the same notation as in Part I of this paper [6], we can assume that we
have uniquely labelled all vertices of the n-gon. A partition is called a fan it is consists
of only v-arcs joining the smallest vertex to all other vertices in the polygon. We shall
denote the fan of a polygon V- Vb- V V by Fan (W[Wb, Wc,’’’, W). The
smallest vertex V1 is called the center of the fan.

We define a vertex as a local maximum vertex if it is larger than its two neighbors
and define a vertex as a local minimum vertex if it is smaller than its two neighbors.
A polygon is called a monotone polygon if there exist only one local maximum and
one local minimum vertex. We shall first give an O(n) algorithm for finding the
/-optimum partition of a monotone polygon and then give an O(n log n) algorithm
for finding the/-optimum partition of a general convex polygon.

2. Monotone basic polygon. In this section, let us consider the optimum partition
of a monotone polygon, i.e. a polygon with only one local minimum vertex and one
local maximum vertex. It follows from Theorems 1 and 2 that we can consider a
monotone basic polygon only. (A polygon having V1 adjacent to V. and V3 by sides
is called a basic polygon.) The understanding of this special case is necessary in finding
the optimum partition of a general convex polygon.

Consider a monotone basic n-gon V1- V2- Vc V3, the fan of the polygon
is denoted by

Fan (WllW2, Wc,"’, W3)

where the smallest vertex V1 is the center of the fan.
The definition of a fan can also be applied to subpolygons as well. For example,

if V., V3 are connected in the basic n-gon and V2 becomes the smallest vertex in the
(n- 1)-sided subpolygon, the partition formed by connecting V2 to all vertices in the
(n 1)-gon is denoted by

Fan (w2[Wc,"’, w3).
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LEMMA 1. If none of the potential h-arcs appears in the 1-optimum partition of the
n-gon, the l-optimum partition must be the fan of the n-gon.

Proof. Omitted. See [7] for details.
A potential h-arc will dissect a polygon into two parts, and the subpolygon which

contains the larger vertices is called the upper subpolygon. Let Vi- V. and Vp- Vq be
two potential h-arcs of any n-gon. We say that Vp -Pq is above (or higher than Vi V.
(and V/- V. is below, or lower than, V V) if the upper subpolygon of V/- V. contains
the upper subpolygon of Vp- Vq.

Let P be the set of all potential h-arcs in a monotone basic n-gon. P can have
at most n- 3 arcs.

LEMMA 2. For any two arcs in P, say V- V. and Vp- Vq, we must have either
Vi- V. above Vo Vo or Vo- Vq above Vi- V..

Proof. See [7] for details.
We can actually show this ordering of potential h-arcs pictorially by drawing a

monotone basic polygon in such a way that the local maximum vertex is always at
the top and the local minimum vertex is at the bottom. Then a potential h-arc Vp- Vo
is physically above another potential h-arc V- V. if the upper subpolygon of V- V.
contains the upper subpolygon of V V,. From the definition of the upper subpolygon
and the monotone property, we can see that max (w, w)< min (Wp, Wq) if Vp- Vq is
above Vi- V..

Consider the monotone basic n-gon which is shown symbolically in Fig. 2. V, is
the local maximum vertex and V- V., Vo- V, are potential h-arcs of the monotone
basic n-gon. The subpolygon V Vo-Vo V. which is formed by two
potential h-arcs V, Vq and Vi V and the sides of the n-gon from Vi to Vp and from
Vo to V. in the clockwise direction is said to be bounded above by the potential h-arc
V, Vq and bounded below by the potential h-arc V/- V., or simply as the subpolygon
between Vi- . and Vp- Vq for brevity.

FIG. 2
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LEMMA 3. Any subpolygon which is bounded by two potential h-arcs of the
monotone basic n-gon is itself a monotone polygon.

Proof. See [7] for details.
LEMMA 4. Any potential h-arc of a subpolygon bounded above and below by two

potential h-arcs of the monotone basic n-gon is also a potential h-arc of the monotone
basic n-gon.

Proof. See [7] for details.
We can now summarize what we have discussed. If there is no h-arc in the

/-optimum partition of a monotone basic n-gon, the/-optimum partition must be a
fan. Otherwise, the h-arcs in the /-optimum partition are all layered, one above
another. If we consider the local maximum vertex V, and the local minimum vertex
V1 as two degenerated h-arcs, then the /-optimum partition of a monotone basic
n-gon will contain one or more monotone subpolygons, each bounded above and
below by two h-arcs and the/-optimum partition of each of these monotone subpoly-
gons is a fan. Then, in finding the/-optimum partition of a monotone basic polygon,
we have only to consider those partitions which contain one or more potential h-arcs
and each of the subpolygons between two potential h-arcs is partitioned by a fan.

Since there are at most n-3 nondegenerated potential h-arcs in a monotone
basic n-gon, there will be at most 2"-3 such partitions and we can divide all these
partitions into (n-2) classes by the number of nondegenerated potential h-arcs a
partition contains. These classes are denoted by Ho, H1, , H,-3 where the subscript
indicates the number of nondegenerated potential h-arcs in each partition of that class.

There .is no potential h-arc in the partitions in the class Ho. Hence the class
consists of only one partition, namely the fan

Fan (WIIW2) W3).

In the class HI, each partition has one nondegenerated potential h-arc. Once the
potential h-arc is known, the rest of the arcs must all be vertical arcs forming two
fans, one in each subpolygon.

Two typical partitions in H1 of a monotone basic polygon are shown in Fig. 3.
In Fig. 3a, there is one nondegenerated potential h-arc, V- Vi(V < Vi)o The upper

FIG. 3. Two typical partitions in H1 of a monotone O-gon.
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subpolygon is a fan

Fan (WclWa, wi)

and the lower subpolygon is a fan

Fan (w[w2, w, wi, w3).

In Fig. 3b, there is one potential h-arc, V2- V3, and the upper subpolygon is a fan

Fan (w21Wc,"’, w3)

and the lower subpolygon is a degenerated fan, a triangle.
The cost of the partition in Fig. 3b is

(1)
W1W2W3 "[- W2(WcWd -[- WdWe 3_ WeWf + WfWg 3_ WgWh 3r. WhWi _[_ WiW3

W1W2W3-t- W2(Wc" W3),

where we" w3 is the shorthand notation of the sum of adjacent products from Wc to
w3 in the clockwise direction.

Note that the cost of H0 of the polygon shown in Fig. 3 is

(2) Fan (WllW2, w3)= Wl(W2" w3).

The condition for (1) to be less than (2) is

w’(w’w3)
(W2"W3)-- W2" W3

Similarly, the condition for the partition in Fig. 3a to be less than H0 is

w "(w’w)
(3)

(we" wi)- Wc wi
< w1.

We say that a partition is said to be l-optimal among the partitions in a certain
class (or several classes) if it is the lexicographically smallest partition among all the
partitions with minimum cost in that class (or several classes). Hence, the/-optimum
partition is/-optimal among all partitions in the classes Ho, H1," , and Hn-3.

Now, assume that the /-optimal partition among all the partitions in
Ha, H, , Hn-3 contains only one potential h-arc Vi Vk, as shown in Fig. 4. (Note
that V Vk will exist in this partition as an h-arc.) This partition will be the/-optimum
partition of the monotone basic n-gon if it costs less than that of the fan in H0. The
condition that the partition with Vi- V as the single h-arc costs less than Ho is

w. (w" w,)
(Wi" Wk) Wi Wk

<wl ifwi=<wk

or

Wk "(Wi’Wg)
(Wi" Wk) Wi Wk

< w if Wk < Wi.

Combining the two inequalities above, we have

C(w,...,w)
(4)

(wi" Wk)-- wi Wk
< W1

where C(wi,..., wk) denotes the cost of the optimum partition of the subpolygon
w- w. wg-w and is equal to the cost of the fan in this case.
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FIG. 4. A monotone polygon with a single h-arc.

An h-arc Vi Vk which divides a polygon into two subpolygons is called a positive
arc with respect to the polygon if condition (4) is satisfied; i.e., the partition with the
arc as the only h-arc and a fan in each of the two subpolygons costs less than the fan
in the same polygon. Otherwise, it is called a negative arc with respect to the polygon.

When an n-gon is divided into subpolygons, an h-arc is defined as positive in a
subpolygon if the cost of partition of the subpolygon with the h-arc as the only h-arc
is less than the fan in the subpolygon.

Let us consider a partition with two h-arcs as shown in Fig. 5, and assume that
this partition is/-optimal among all partitions in the classes H2, H3,’’’, Hn-3.

FIG. 5. A monotone 8-gon with two h-arcs.

If V- Vk is positive with respect to the subpolygon V1- Vi- Vp- Vq- Vk, then
the condition analogous to (4) is

C(wi, Wp, Wq, Wk)
W1.(5a)

{(wi" w,)-[(wp wq)- Wp" Wq]}- wi Wk
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If V- Vk is positive with respect to the whole polygon V1- Vi Vn Vk,
then the condition is

(5b)
C(wi, wo, w, w,, w, Wq, wg)

< w.
(w,: w) w w

Note that condition (5b) implies (5a).
The condition for the arc V- Vo to be positive with respect to the subpolygon

Vi- Vp- Vr- Vn- Vs- Vcl- Vk is

(6a)
C(wo, w, w,,, w, w,) < min (wi, wg).
(w,, w. w,," w.

If the arc Vp Vq is positive with respect to the whole polygon V1- Vi Vp Vr
Vn- Vs- Vq- Vk, it must satisfy

(6b) C(wo, Wr, Wn, Ws, Wq) < W1.
(w,,: w.)- w. w.

Since W1 < min (wi, Wk), condition (6b) implies (6a).
Here, the presence of Vi Vk will divide the original polygon into two subpolygons

where Vo V appears in the upper subpolygon. If Vp V, is a positive arc with respect
to the original polygon, then Vo-V is certainly positive in the upper subpolygon.
But if Vp- V is positive in the subpolygon, the arc Vo- Vq may become negative if
V Vk is removed; i.e., V V, becomes negative with respect to the original polygon.

Similarly, if the arc V Vk is positive with respect to a subpolygon, the arc Vg Vk
may become negative if the arc Vo- V is removed.

The preceding discussions can be summarized as"

THEOREM 4. If an h-arc is positive with respect to a polygon then the arc is positive
with respect to any subpolygon containing that arc. If an h-arc is positive with respect
to a subpolygon, it may or may not be positive with respect to a larger polygon which
contains the subpolygon.

There are two intuitive approaches to finding the /-optimum partition of a
monotone basic polygon. The first approach is to put in the potential h-arcs one by
one. Each additional potential h-arc will improve the cost until the correct number
of h-arcs is reached. Any further increase in the number of h-arcs will increase the
cost. To introduce an h-arc into the polygon, we can test each potential h-arc (at most
n- 3) to see if it is positive with respect to the whole polygon. If yes, that positive
arc must exist in the/-optimum partition, and the polygon will be divided into two
subpolygons, each being a monotone polygon. We can repeat the whole process of
testing positiveness of the h-arcs. The trouble is that all these arcs may be negative
individually with respect to the whole polygon and yet H0 may not be the optimum.
For example, two arcs V- V. and Vo- V, may be negative individually with respect
to the whole polygon, but the partition with both Vi- V., Vp- Vo present at the same
time may cost less than H0, as shown in Fig. 6a. This shows that we cannot guarantee
an optimum partition simply because no more potential h-arcs can be added one at
a time.

The second approach is to put all the potential h-arcs in first, and then take out
the potential h-arcs one by one, where each deletion will decrease the cost until the
correct number of h-arcs is reached. Any further deletions will increase the cost.
Unfortunately, even if all h-arcs are positive with respect to their subpolygon, the
partition may not be optimum. In Fig. 6b, each h-arc is positive with respect to its
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FIG. 6. Counterexamples for the intuitive approaches.

local subpolygon, but the partition is not optimum. (Note that positiveness of an h-arc
in a quadrilateral is the same as stability. But the idea of stability applies to vertical
arcs as well.) This means that we cannot guarantee an optimum partition simply
because no h-arc can be deleted one at a time.

Let us outline the idea of an O(n) algorithm for finding the/-optimum partition
of a monotone basic polygon. First, we get all the potential h-arcs by the one-sweep
algorithm. Then, we start from the highest potential h-arc and process each potential
h-arc from the highest to the lowest. For each potential h-arc, we try to get the
/-optimum partition of the upper subpolygon above that arc. The/-optimum partition
in the subpolygon is obtained by comparing the cost of the/-optimal partition among
the partitions of the upper subpolygon which contain one or more potential h-arcs
with that of the fan in the upper subpolygon.

If we use the dynamic programming approach to find the/-optimum partition in
the upper subpolygon of each potential h-arc, we need O(n 3) operations to find the
/-optimum partition of the whole monotone basic n-gon. Fortunately, there are some
dependence relationships among these potential h-arcs. Hence, certain subsets of the
potential h-arcs will either all exist or all disappear in the/-optimum partition of the
monotone polygon. We shall be dealing with potential h-arcs most of the time, so we
shall use "arcs" instead of "potential h-arcs" when there is no ambiguity.

Consider the monotone basic polygon shown symbolically in Fig. 7. There are
three potential h-arcs, denoted by hg, hi and hg. For any arc h, we shall use w, w’
to denote the weights associated with the end vertices of the arc h. V, is the local
maximum vertex and V1 is the local minimum vertex. Without loss of generality, we
can assume w <_- w’ for a i,/" and k. Since we shall deal with subpolygons bounded
by two potential h-arcs, let us use h, for V and hi for VI (i.e., we consider these
vertices as degenerated arcs). From Lemmas 1 and 3, the/-optimum partitions of the
subpolygons bounded by two potential h-arcs (i.e. the white area of the polygon in
Fig. 7) are all fans.

Assume (i) hk is positive in the subpolygon bounded by h, and hi, but hk is negative
in the subpolygon bounded by h, and h;

(ii) hi is positive in the subpolygon bounded by h and hg, but hi is negative in
the subpolygon bounded by h and hi;
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FIG. 7. An octagon with three potential h-arcs.

(iii) hi is positive in the subpolygon bounded by hi and h only.
Then either the three arcs hk, hi, hi all exist or no h-arcs exists in the optimum partition.

This shows that the existence of an h-arc depends on the existence of another h-arc.
In Fig. 7, the condition for hk to be positive with respect to the whole polygon

is (compare with the condition (5a))

C(w, w., w’)
(7)

(Wk" W’k)-- Wk Wtk
The left-hand side of (7) is denoted by

S(h\h,)

and is called the supporting weight of the arc h with respect to the upper subpolygon
bounded above by h,.

The supporting weight of an arc h is an indicator of the existence of h in a
subpolygon. To specify the subpolygon, we have to specify the arc above hk, e.g. h
in this case, and an arc below h. Once the upper subpolygon of h is specified, we
can calculate the supporting weight of h since the left-hand side of (7) depends only
on weights of vertices in the upper subpolygon. To find the arc below h which is the
lower boundary of the subpolygon, we can use the supporting weight of hk to test
each arc hi below h. (The hi has two vertices with weights wi and

If S(h\h,) min (wi, w) then h will exist in the subpolygon between hi and h,.
Otherwise, h cannot exist in the subpolygon.

Let hi, hi and hk be three potential h-arcs where hi lies below h and above hi. Let
a c

S(hi\h)=- and S(hi\h)=-.
Then it follows from the definition of supporting weight that

a-bc
(8) S(hg\h)

b+d"
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If S(hi\hj)<S(hi\hk), we have S(hi\hj)<S(hi\hk)<S(hi\h). On the other hand, if
S(hi\hi)> S(hi\hk), we have S(hi\hi)> S(hi\hk)> S(hi\h).

In terms of the supporting weights, we can rewrite the previous conditions (i),
(ii) and (iii) as follows:

(i) wi < S(h \h. < wi
(ii) w < S (hi\h) < wi;

(iii) S(hi\hi)< wl.
Note that if S(hi\h)<=S(h\h,), then it follows from (7) and (8) that S(hi\h)<=

S(h\h,)S(hk\h,).
Because of conditions (i) and (ii), the /-optimum partition of the subpolygon

bounded by hi and h, must either be a fan or consist of both hi and h as h-arcs.
Hence, in order that both h and hk exist in the/-optimum partition of the subpolygon
bounded by hi and h,, S(hi\h) must be less than wi. Suppose S(hi\h,)wi and
S(hi\hj) Wl. Then all three arcs hi, hi and h will exist in the/-optimum partition of
the whole polygon if S(hi\h,) Wl. If S(h\h,)>=w, then the/-optimum partition will
consist of a fan instead.

Define S(h,\h,) to be zero. We say that an arch is the ceiling of another arc hi
if either condition (i) or conditions (iia), (iib), and (iic) are satisfied:

(i) h h, if hi h,, i.e., h, is its own ceiling;
or

(ii) a) hk is above hi,
b) S(hi\hk) > S(hk\hk’S ceiling),
c) hk is the lowest arc which satisfied (iia) and (iib). ("Lowest" means closest

to the minimum vertex.)
The ceiling of an arc hi is the lowest arc (above hi) which may exist in an optimum

partition even though hi does not exist.
We say that an arc hi is a son of another arc hi if the following conditions are

satisfied:
(i) hi is above hi (the son is above its father);

(ii) S(hi\hi’s ceiling)<min (wi, w)where wi, w are the weights associated to the
end vertices of

(iii) S(hi\hi)<-S(hi\hi’s ceiling); i.e., hi is not a ceiling of hi;
(iv) hi is the highest arc which satisfies (i), (ii) and (iii). ("Highest" means closest

to the maximum vertex.)
We shall prove in Theorem 6 that"
(i) if the father of any arc hj exists in the /-optimum partition, then the arc hj

will also exist in the same partition;
(ii) if the father of h does not exist in the/-optimum partition, then the arc h

also does not exist in the same partition.
From the definitions of the ceiling and the father-son relationship, we have the

following observations:
(i) Every arc can have at most one father but an arc can have many sons. Also,

the ancestor-descendant relationship is a transitive relationship. (Note that
the ancestor-descendant relationship applies to arcs which are positive with
respect to the whole monotone polygon as well.)

(ii) Every arc can have at most one ceiling but an arc can be the ceiling of many
arcs.

(iii) All the h-arcs in the/-optimum partition of the subpolygon bounded by an
arc hi and its ceiling are descendants of h.

(iv) The ceiling of h cannot lie below any of the ceilings of hj’s descendants.



238 T.C. HU AND M. T. SHING

In other words, the subpolygon between hi and its ceiling is nested completely
inside the subpolygon bounded by hi’s father and the ceiling of hi’s father. If we treat
each subpolygon bounded by an arc hi and its ceiling as a block, then the ancestor-
descendant relationship imposes a "nested block structure." For example, if hk’s father
is hi and hi’s father is hi, then

hk and its ceiling form the innermost block,
hi and its ceiling form the middle block, and
hi and its ceiling form the outermost block.
We shall show that the h-arcs in the/-optimum partition of an inner block exist

in the /-optimum partition of the monotone polygon if and only if their ancestors;
i.e., the h-arcs, forming the bottoms of the outerblocks, exist.

THEOREM 5. Let h be a potential h-arc. If h is present in the l-optimum partition
of a monotone polygon, its ceiling h will also be present in the l-optimum partition.

Proof (by contradiction). Suppose there exists an h-arc hi in the /-optimum
partition while its ceiling h does not exist in the/-optimum partition. Without loss
of generality, we can assume hi to be the highest arc among those potential h-arcs
which are present in the /-optimum partition and violate the theorem. From the
definition of supporting weight, i.e. the left-hand side of inequality (7), we have
S(hi\h) < min (wi, w). Let hc be the lowest h-arc above hi in the/-optimum partition.
The ceiling of hc must be present in the/-optimum partition and we have S(h\h’s
ceiling) < min (wi, w ). Since there is no other h-arc between h and h in the/-optimum
partition, the fan is /-optimum in the subpolygon between hi and h. We have the
following two cases.

Case 1. Ifh is the ceiling of h, we have S (hk \hc) < S (hi\hk) < min (wi, w ). Hence,
the partition with hk and its descendants as h-arcs costs less than the fan in the
subpolygon between hi and ho and we have a contradiction.

Case 2. If he is not the ceiling of hk, we have the following two subcases.
Case 2a. Suppose hc has a father which lies between hi and h. It follows from

the definition of the father-son relationship that S(h’s father\he) =< S(h \h’s ceiling) <
min (wi, w). Hence, the partition with h’s father and its descendants costs less than
the fan in the subpolygon bounded by hi and h, and we have a contradiction.

Case 2b. Now hc is not the ceiling of hk and has no ancestor between hi and h.
Then among the potential h-arcs which lie between h and h, there exists a set of
arcs ha, he, hr, h, such that

h is the ceiling of ha,

ha is the ceiling of he,

hr is the ceiling of hg,

hk is the ceiling of hi,

and none of these arcs exists in the/-optimum partition. It follows from the definition
of a ceiling that

S(hd\h)<S(he\hd)<" <S(hk\hf)<S(hi\h)<min (wi, w).
Now, the partition with hd and all its descendants as h-arcs costs less than the fan in
the subpolygon bounded by hi and he, and we have a contradiction. In fact, using the
same argument,we can show that the arcs hal, he,"’, hf, hg and all the descendants
of these arcs should be in the/-optimum partition of the monotone polygon. [3
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THFOREM 6. The sons of an arc hi will exist in the l-optimum partition o] a
monotone polygon if and only i) h is present in the l-optimum partition.

Proo). (i) Instead of proving the "only if" part of the theorem directly, we will
prove, by contradiction, that the existence of any son of h implies the existence of hi
in the/-optimum partition.

Among all the potential h-arcs in the monotone polygon, let hi be the highest
arc which is not present in the/-optimum partition of the polygon even though it has
one or more sons present in the/-optimum partition. Among all the sons of hi, let hk
be the lowest son which is present in the/-optimum partition. Finally, among all the
potential h-arcs below hi, let hi be the highest h-arc which is present in the/-optimum
partition. Hence, the /-optimum partition in the subpolygon bounded by hi and hk
must be a fan. It follows from Theorem 5 that h’s ceiling also exists in the/-optimum
partition and we have S(h\hk’s ceiling)<min (wi, w). Otherwise, the /-optimum
partition in the subpolygon bounded by hi and hk’s ceiling should be a fan and h as
well as its descendants cannot be present in the/-optimum partition. From the definition
of the father-son relationship, we know thatS (hi\h,) <= S(h\h ’s ceiling) < min (Wi, W
This means that in the subpolygon bounded by hi and hk, the partition consisting of
hi and its descendants as h-arcs costs less than the fan. This contradicts our assumption
that the fan is/-optimum in the subpolygon bounded by hi and h.

(ii) We shall prove the "if" part of the theorem directly by contradiction. Among
all the potential h-arcs in the monotone polygon, let h be the highest arc which is
not present in the /-optimum partition of the polygon even though its father hi is
present in the /-optimum partition. Among all the potential h-arcs present in the
/-optimum partition, let h be the lowest h-arc above h and let h be the highest h-arc
belowh in the/-optimum partition as shown in Fig. 8. Hence, the/-optimum partition
in the subpolygon bounded by h and h must be a fan. Note that h must be a ceiling
of hk because h is the highest arc not satisfying the necessary condition of the theorem.
Otherwise, h is a descendant of h, and by part (i) of this proof, h will exist in the
/-optimum partition of the polygon. The arc hb must either be hi itself or lie above
hi. Hence, we have min (w, w b) => min (w., w.). By the definition of the father-son

FIG. 8
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relationship, we have S(hk\hc)<min (wi, w)<--min (wb, W’b). This means that in the
subpolygon bounded by hb and hc, the partition consisting of hk and its descendants
is cheaper than the fan. This contradicts our assumption that the fan is/-optimum in
the subpolygon bounded by hb and h.

COROLLARY 1. The descendants of any arc hi will exist in the l-optimum partition
of a monotone polygon if and only if h exists in the l-optimum partitions.

Proof. The corollary follows from Theorem 6.
It follows from Corollary 1 that if a potential h-arc hi is present in the/-optimum

partition of a monotone polygon, all its descendants, all its ancestors and all potential
h-arcs which have some ancestors common to those of h will be present in the
/-optimum partition.

THEOREM 7. Let hi and hi be two potential h-arcs such that hi is above h and the
l-optimum partition in the subpolygon bounded by h and hi is a ]’an. If S(hi\hi’s
ceiling)>-min (w, w), then h and all its descendants cannot exist in the 1-optimum
partition of any subpolygon bounded above by h, and below by any potential h-arc not
higher than h.

Proof (by contradiction). Assume that there exist such two potential h-arcs but
that hi is present in the /-optimum partition of a subpolygon bounded above by h,
and below by a potential h-arc lower than h. Without loss of generality, let h be the
lowest arc among all the potential h-arcs which are present in the/-optimum partition
and which satisfy the assumption. Hence, none of the potential h-arcs between hi and
h. can exist in the/-optimum partition. Let hb be the highest potential h-arc below hi
in the/-optimum partition. Since hb can either be hi itself or a potential h-arc below
hi, we have min (Wb, w)_<-min (w, w)<=S(hi\hi’s ceiling). The partition with hi and
all its descendants costs more than the fan in the subpolygon bounded by hb and h.’s
ceiling and we have a contradiction.

Using Theorem 6, we can start from an innermost block and work our way out.
Suppose we have located the ceiling of a potential h-arc h. Then we can treat h and
all the sons (and descendants) of h as a unit; i.e., all h’s sons are condensed into h.
Let hb be the potential h-arc immediately below h in the monotone polygon. The
/-optimum partition in the subpolygon bounded by hb and the ceiling of h must consist
of either h and all its descendants as h-arcs or of a fan, depending on whether S(hi\hi’s
ceiling) < min (Wb, Wtb) or S(hi\hi’s ceiling) _->min (Wb, Wtb). If the fan is cheaper, we can
delete hi and all its descendants since none of these arcs can appear as h-arcs in the
/-optimum partition of the polygon (Theorem 7).

Now, what we have to do is to find an innermost block to start our computations.
After obtaining the list of potential h-arcs of the monotone polygon using the one-
sweep algorithm, we know that the degenerated arc hn is the ceiling of the highest
potential h-arc in the list, and this potential h-arc does not have any descendants. So,
we should start from the highest potential h-arc and work our way down the list of
potential h-arcs.

We now give two examples to illustrate the concepts, notation and algorithm.
Then a formal description of the algorithm will be given.

Consider a monotone basic polygon with five potential h-arcs, h6, hs,’", h2
where h6 is the highest arc as shown symbolically in Fig. 9. Let wi -<w for 2, 3, .
The maximum vertex, which lies above h6, has the weight w7 and the minimum vertex,
which lies below h2, has the weight Wl. We can regard w7 (and Wl) as a degenerated
arc and use h7 to represent w7 (and hi to represent wl).

Example 1. There are two possible candidates for the/-optimum partition in the
subpolygon bounded by h5 and h7. We shall use C(h__5, h6, h7) to denote the cost
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FIG. 9. A 12-gon with 5 h-arcs.

of the partition with h6, and Ho(h._As, h7) to denote the cost of the fan in the
subpolygon. Similarly, we shall use C(h_z, hs, h6, hv) to denote the cost of the
partition with h5 and h6 as the only 2 h-arcs in the subpolygon bounded by h2 and
h7. Note that there is a bar underneath the h-arc which forms the bottom of the
subpolygon and a bar above the h-arc which forms the top of the subpolygon.

The necessary computations and results of the comparisons are shown in Table 1.
If ’(hz\h7) < wl, the partition with he, h3, h4, h5 and h6 as h-arcs will be/-optimum

in the polygon. Otherwise, the fan Ho(h_t, h7) will be/-optimum.
Now, let us consider a more complicated example.
Example 2. Consider the 6 potential h-arcs shown in Fig. 9. Assume that we

have the computations and results shown in Table 2.
If ’(h2\h7)< wl, the partition with he, h5 and h6 as h-arcs is/-optimum. Otherwise,

the fan Ho(h_l, h7) will be/-optimum.
Let us give the algorithm for finding the/-optimum partition of a monotone basic

polygon.

ALGORITHM M
(I) Get all the potential h-arcs of the polygon by the one-sweep algorithm [6].

(All these arcs form a vertical list, with the highest arc closest to the maximum vertex
Vn and the lowest arc closest to the minimum vertex V1.)

(II) Process the potential h-arcs one by one, from the top to the bottom. Let hi
be the potential h-arc being processed, let hk be the potential h-arc immediately above
hi, and let hi be the potential h-arc immediately below hi in the monotone polygon.
(If hi is the highest potential h-arc in the polygon, hk will be the degenerate arc hn;
if hi is the lowest potential h-arc in the polygon, hi will be the degenerated arc hi.)
Note that by the time we start processing hi, we have already obtained the/-optimum
partition of the subpolygon between hi and h,. We have also located the ceilings of
every h-arc in the /-optimum partition of this subpolygon. When we process hi, we



TABI.E

Computations

1. S(h6\h7)

2. S(hs\h6)

3. S(hs\h7)

4. S(h4\hs)

5. S(h4\h7)

6. ’(h3\h4)

7. S(h3\h7)

8. S(h2\h3)

9. S(h2\hT)

Observations

w4<S(h6\hT)<W5

w3<S(hs\h6)<w4

w3 <( S(hs\h7) < w4

wa <S(h4\hs)’( w3

w2 <S(h4\h7)<,. w3

Wl < S(h3\h4) < w2

Wl<S(h3\h7)<w2

S(h2\h3)<Wl

Remarks

h7 is the ceiling of h6:
S(h6\h7) < w5: C(h, h6, h7)< H0(.h_5, h7)

S(hs\h6)<S(h6\hT)h6 is a son of
condense h6 into h-s and calculate S(hs\h7)

h7 is the ceiling of h-s’
’(hs\h7) < w4 :zC (h__a, hs, h6, h7)< Ho(_h_4, h7).

S(h4\h-s)<S(h-s\h7)h-s is a son of h4"
condense h5 into h4 and calculate S(h4\h7)

h7 is the ceiling of h4’
S(h4\h7) < w3 ff C(h_3, h4, h-s, h6, h7)< Ho(h__3, h7)

,(h3\h4)<,(h4\h7):::’h4 is a son of h3"
condense h4 into h3 and calculate S(h3\h7)

h7 is the ceiling of h3"
S(h3\h7) w2C(_h2, h3, h4, h-s, h6, h7)< Ho(h2, h7)

S(h2\h3)<S(h3\h7)h3 is a son of h2;
condense h3 into h2 and calculate S(h2\h7)

TABLE 2

Computations

1. S(h6\h7)

2. S(hs\h6)

3. S(h4khs)

4. S(h3\h4)

5. S(h3\hs)

6. S(h2\h-s)

7. S(h2\h6)

8. ’(h2\h7)

Observations

Wl<S(h6\hT)<W2

S(h6\hv)<S(hs\h6)< W2

w2<S(h4\hs)<W3

Wl<S(h3\h4)<w2

w2<S(h3\h5)<w3

S(h2\h-s)< wl

S(h2\h6)<Wl

Remarks

h7 is the ceiling of h6;
’(h6\h7) < w5 :: C(_h_5, h6, hT)< Ho(_h__5, hT)

S(hs\h6) > S(h6\h7)h6 is the ceiling of h-s"
’(hs\h6) < w4 =), C(h4, hs, h6)< no(h4, h6)

S(h4\hs) > S(hs\h6):::’ h5 is the ceiling of h4;
S(hn\hs) < w3 ::)’ C(h__3, h4, hs) < Ho(h3, hs)

S(h3\h4)<,(h4\hs):::X,,h4 is a son of h3"
condense h4 into h3 and calculate ’(h3\hs)

S(h3\hs) 3> S(hs\h6): h5 is the ceiling of h3;
S(h3\hs) > w2 ::), C (h_h_2, h3, h4, hs)2> Ho(h__2, hs)’
both h3 and h4 cannot exist in the/-optimum partition and
should be deleted from the list of potential h-arcs; we
should then check to see if the fan is cheaper in the subpoly-
gon bounded by h2 and h6;
S(hskh6) < 1422 C(h__2, h.s, h6)< Ho(h_2, h6)

S(h2\h-s)<S(h-s\h6)h-s is a son of h2;
we should condense h-s into h2 and calculate S(h2\h6)

S(h2\h6)<,(h6\h7)z:,h6 is a son of h2;
we should condense h6 into h2 and calculate S(h2\h7).
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first locate the ceiling of hi and condense all hi’s descendants into hi. Then we obtain
the/-optimum partition of the subpolygon between hi and h, by deleting those blocks
of arcs which cannot exist in the/-optimum partition of the subpolygon between hi
and hn.

While (hi the degenerated arc h 1) do
Begin
1. [To locate the ceiling of hi].

While S(hi\hk) <=S(hk\h’s ceiling) do
Begin

a. Comment: Now, hg is a son of hi.
b. We will combineh and all its descendants into hi and calculate the combined

supporting weight S(hi\h’s ceiling).
c. Replace hk by hg’s ceiling; i.e., hg is always used to denote the lowest h-arc

above hi which is not yet combined into hi.
End.

2. [To delete those blocks of arcs which cannot exist in the/-optimum partition
of the subpolygon between hi and hn].

While C(hi, hi and hi’s descendants, hi’s ceiling) Ho(hi, hi’s ceiling);
i.e., S(hi\hi’s ceiling) =>min (wi, wl). Do
Begin

a. Delete hi and all its descendants from the list of potential h-arcs.
b. Replace hi by the ceiling of hi; i.e., hi is always used to denote the arc

immediately above hi in the subpolygon between hi and h,.
End.

3. [Prepare to process next arc].
Replace hk by hi, hi by hi and hi by the arc immediately below hi in the list of

potential h-arcs.
End.

(III) Output the/-optimum partition consisting of the arcs which remain in the
list of potential h-arcs after Step II as h-arcs.
Then stop.

THEOREM 8. The partition produced by Algorithm M is l-optimum.
Proof. We have shown in Part I of this paper [6] that all h-arcs present in the

/-optimum partition of the polygon are potential h-arcs, and all potential h-arcs are
included in the list obtained by the one-sweep algorithm. We claim that (i) whenever
Algorithm M finishes Step II.1, the ceiling of hi is correctly located, (ii) whenever
Algorithm M finishes Step 11.2, the arcs which have been deleted by Algorithm M
cannot exist in the/-optimum partition of the subpolygon bounded above by hn and
below by an arc lower than hi, and (iii) the partition consisting of all the potential
h-arcs remaining above hi as h-arcs is/-optimum in the subpolygon bounded by hi
and hn after Step 11.2. (If the claim is true, the partition output by Algorithm M will
be/-optimum in the monotone polygon.)

We shall prove the claim by induction on the number of h-arcs above an arc hi.
It is easy to see that the claim is true when hi the highest arc in the list of

potential h-arcs.
Suppose the claim is true for all potential h-arcs above some arc hi. Let hi be the

arc immediately below hi in the list of potential h-arcs. Just before Algorithm M starts
processing hi, all the potential h-arcs which remain above hi exist as h-arcs in the
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/-optimum partition of the subpolygon between hi and h,. We can divide these arcs
into two groups" (i) those which are descendants of some other arcs in the subpolygon,
and (ii) those which have no ancestor in the subpolygon.

It follows from the definition of the father-son relationship that only arcs in
group (ii) can be sons of h Let the set of arcs in group (ii) be
ht, ht-1, hp, hp-1, hi+2, hi+l such that h, is above h, h is above ht-1, hp
is above hp-1,""", hi+2 is above hj/l and hi+l is above hi. Note that there exists no
other h-arc between hi+l and hi in the/-optimum partition of the subpolygon. Since
none of these arcs has an ancestor in the subpolygon, we must have

h. as the ceiling of ht,

h as the ceiling of h_,

h as the ceiling of h_,

hi/ as the ceiling of hi/.
It follows from the definition of the ceiling that

S(hi+l\hi+:2) >" > S(ht,-l\ht,) >" > S(ht-l\ht) > S(ht\h,.,).

Since hi+l is the lowest h-arc in the/-optimum partition of the subpolygon bounded
by hi and h,, we have

min (wi, w)>S(hi+l\hi+2)>. >S(ht\h,).

Now, if S(hi\hi+l ’(hi+l\hi+2) all four conditions of the father-son relationship are
satisfied and Algorithm M will correctly condense hi+l and its descendants into hi.
Using the same argument repeatedly, we conclude that Algorithm M correctly locates
the ceiling of hi at the end of Step II.1. Whenever the potential h-arc hi and its
descendants are removed in Step II.2, the conditions in Theorem 7 are satisfied. Hence
hi and its descendants cannot exist in the /-optimum partition of any subpolygon
bounded above by h, and below by a potential h-arc lower than hi. Now, at the end
of Step II.2, we can again divide the potential h-arcs remaining above hi into two
groups:

(i) those which are descendants of some other arcs in the subpolygon, and
(ii) those which have no ancestor in the subpolygon.

Let hi be the h-arc immediately above hi after Step II.2. The arc hi must be the lowest
arc in group (ii). It follows from the definition of ceiling that for any arc hk above hi
in group (ii), we have

’s ceiling)min (wi, w i) > S(hi\hi s ceiling) > S(hk\hk.

From Theorem 6, if any of the arcs in group (ii) does not exist in the /-optimum
partition, all its descendants in group (i) will not exist in the /-optimum partition.
Suppose the partition consisting of all the potential h-arcs remaining above hi as h-arcs
is not/-optimum in the subpolygon between hi and h,. Then some of these potential
h-arcs in group (ii) and their descendants should not exist in the/-optimum partition.
Assume that hg is the highest potential h-arc remaining above hi after Step II.2, but
h should not exist in the/-optimum partition. Let hb be the highest h-arc below hk
in the /-optimum partition. Hence, the fan should be /-optimum in the subpolygon

’s ceiling) < min (wi, w i) < min (Wb, W b) thebetween hb and hk’s ceiling. Since S(hk\h,
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partition with hk and its descendants as h-arcs in the subpolygon bounded by hb and
hk’s ceiling is always cheaper than the fan, and we have a contradiction.

Hence, the claim is true, and the partition output by AlgorithmM is/-optimum.
In order for Algorithm M to run efficiently, we need a data structure which

enables us to calculate the supporting weights, to keep track of the ceiling of each
potential h-arc and to update the list of potential h-arcs easily. One way to implement
Algorithm M is to place all potential h-arcs obtained in Step I in a linear linked list,
with the highest arc at the head of the list and the lowest arc at the tail of the list.
Each of these potential h-arcs, say hi, is associated with a record variable with the
following fields"

(i) the label of the end vertex which is closer to V1 in the clockwise direction;
(ii) the label of the other end vertex;

(iii) the ceiling of hi;
(iv) the list of sons of
(v) the cost of the /-optimum partition in the subpolygon between hi and its

ceiling, i.e. the numerator of S(hi\hi’s ceiling);
(vi) the quantity (wi" wj + wj wi + w}" w i)- We W where Wi, W are- weights of

the end vertices of the potential h-arc hi and wi, w are the weights of the
end vertices of hi’s ceiling, i.e. the denominator of S(hi\hi’s ceiling) (it is
obtained by subtracting the product wi’wl from the sum of the adjacent
products from wi to w around the subpolygon wi w Wi W );
and

(vii) the supporting weight S(hi\hi’s ceiling).
Note that only the first three fields of each potential h-arc are defined at the end

of Step I, the other four fields of each potential h-arc are set to the correct value
when the potential h-arc is being processed in Step II. Since the sums of adjacent
products of the form wi: wi are used repeatedly in calculating the cost of the fan
between two adjacent potential h-arcs and the denominators of the supporting weights,
we can eliminate a lot of repeated calculations by initializing the elements of an
array CP to

CP[1]=O and CP[i]=w:wi for2_<-i_-<n.

Then the sum of the adjacent products Wi: W can be obtained from CP[f]-CP[i].
As we process the arcs in the list of potential h-arcs one by one from the top to

the bottom, we shall remove a potential h-arc from the list if (i) the arc is found to
be a son of another potential h-arc in Step II.1, or (ii) the partition with the arc and
all its descendants is not/-optimum in some subpolygon in Step 11.2. Let h be an
arc which is removed from the list in Step II.1 and let hi be its father. After h is
removed from the list of potential h-arcs, it will be added to the list of hi’s sons, i.e.
the fourth field of hi. Then, we have to calculate the supporting weight S(hi\h’s
ceiling). The numerator of S(hi\hk’S ceiling) can be obtained by adding the numerator
of S(hk\hk’s ceiling) in the fifth field of h to the numerator of S(hi\hi). Similarly, the
denominator of S(hi\hk’s ceiling) can be obtained by adding the denominator of
S(hk\hk’S ceiling) in the sixth field of h to the denominator of S(hi\h). Hence, we
can calculate S(hi\hk’S ceiling) in a constant amount of time. Note that whenever
Algorithm M finishes Step 11.2, only those potential h-arcs which are present in the
/-optimum partition of the subpolygon between hi and h, and yet have no ancestors
above hi remain above hi in the list of potential h-arcs.

THEOREM 9. Algorithm M runs in O(n time.



246 T.C. HU AND M. T. SHING

Proof. It takes O(n) time to sweep around the monotone polygon twice, once to
obtain all potential h-arcs in Step I and once to initialize the array CP. There are two
while loops in Step II, and it only takes a constant amount of time to execute either
while loop once. Whenever the while loop in Step II.1 is executed once, a potential
h-arc is removed from the list and condensed into its father. Whenever the while loop
in Step 11.2 is executed once, a potential h-arc is deleted from the list. Once an arc
is removed or deleted from the list, it will never be considered again. Since there are
at most n- 3 arcs in the list obtained in Step I, Algorithm M can execute both while
loops at most n- 3 times. So is takes O(n) time to process all the potential h-arcs in
Step II and to output the/-optimum partition in Step III. Hence, Algorithm M runs
in O(n)time. El

3. The convex polygon. In this section we shall extend the results in 2 to the
case of a general convex polygon.

There may be several local maximum vertices in a general convex polygon. Let
us still draw the polygon in such a way that the global minimum vertex is at the
bottom. From Theorem 4 of Part I, we know that all potential h-arcs are still compatible
in a general convex polygon. However, unlike those in a monotone polygon, the
potential h-arcs no longer form a linear list. Instead, they form a tree, called an
arc-tree. In Fig. 10a, there is a 12-gon with 6 potential h-arcs, and they are labelled
as h2, h3, h4, hs, h6 and hT. (Note that we also obtain V4- V3, VT- V6 and V6- V8
from the one-sweep algorithm. In order to have a simpler example, let us assume that
all three of these arcs are unstable and hence are not shown in Fig. 10a.) To get a
better feeling of the arc-tree, we can redraw the 12-gon as shown in Fig. 10b. By
regarding V1 as a degenerated arc hi, VI. as a degenerated arc h8, and Vll as a
degenerated arc h9, we have h as the root of the arc tree and the arcs h8 and h9 as
the leaves.

An arc hi is above another arc hi (and hi is below hi) if hi is in one of the subtrees
of hi. We shall be dealing with subpolygons, each bounded below by a potential h-arc
and above by a set of potential h-arcs. We can define the supporting weights of the
potential h-arcs in a similar way. For example, the supporting weight of the arc h2

(b)

FIG. 10. A general 12-gon.



COMPUTATION OF MATRIX CHAIN PRODUCTS. II 247

with respect to the subpolygon bounded above by {h4, h6} in Fig. 10b equals
C(W2, W4, W6, W5, W3)

[W2:W3--(W4:W6--W4" W6)--(W6:W5--W6" W5)]--W2" W3

and is denoted by S’(h2\{h4, h6}). Again, for any leaf node h,, we define S(h,,\{h,}) to
be zero.

We say that a set of potential h-arcs Ui is the ceiling of another potential h-arc
hi (or simply hi’s ceiling for short) if either condition (i) or conditions (iia), (iib), (iic)
and (iid) are satisfied:

(i) Ui {hi} if hi is a leaf node;
or

(ii) for all hk E Ui,
a) hk is above hi;
b) S(hi\Ui)>(hk\hk’S ceiling);
c) for all hi E Ui such that hi hk, neither hi is above hk nor hk is above hi; and
d) conditions (iia), (iib) or (iic) will be violated if hk is replaced by any arc

below hk in the subpolygon between hi and
We say that an arc hi is a son of another arc hi if the following conditions are

satisfied:
(i) h is above hi (the son is above its father);

(ii) S(hi\hi’s ceiling)<min (wi, w) where We, wl are weights associated to the
end vertices of

(iii) h is not in the ceiling of hi; and
(iv) hi is the highest arc which satisfies (i), (ii) and (iii).

It is easy to see that all the previous discussions on the ceilings and the ancestor-
descendant relationships in 2 still hold under the new definition of ceilings and
father-son relationships. Using arguments similar to those used in the proofs of
Theorems 5, 6 and 7, we can generalize Theorems 5, 6, 7 and Corollary 1 as follows"

THEOREM 10. If a potential h-arc h exists in the l-optimum partition of a convex
polygon, all potential h-arcs in its ceiling will also exist in the l-optimum partition.

Proof. Omitted.
THEOREM 11. The sons of an arc hi will exist in the l-optimum partition of a

convex polygon if and only if h is present in the l-optimum partition.
Proof. Omitted.
COROLLARY 2. The descendants of an arc h will exist in the l-optimum partition

of a convex polygon if and only if h exists in the l-optimum partition.
Proof. The corollary follows from Theorem 11.
THEOREM 12. Let X be a set of potential h-arcs above another potential h-arc

such that (i) ]:or any two arcs hi, hk X, neither hi is above hk nor hk is above hi if hi # hk,
and (ii) the l-optimum partition in the subpolygon between hi and the arcs in X is a fan.
Let h be a potential h-arc in X such that for any hk X, S(hi\hi’s ceiling)>--_S(hk\hk’S
ceiling), ff S(hi\hi’s ceiling)>-min (wi, wl) where wi, wl are the weights associated with
the end vertices of hi, then h and all its descendants cannot exist in the l-optimum
partition of any upper subpolygon bounded below by a potential h-arc no higher than hi.

Using the facts in Theorems 10, 11, 12 and Corollary 2, we can again start from
the potential h-arcs which lie immediately below the leaf nodes and work our way
down. The leaf nodes are the ceiling of these arcs. Before we can locate the ceiling
of any arc which does not lie immediately below the leaf nodes, we must first process
all the arcs above it, i.e. the arcs in its subtrees. Hence, we can do a postorder traversal
through the arc tree. When we process a potential h-arc, we first find the/-optimum
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partition of the subpolygon bounded below by the arc and above by the leaf nodes
in its subtrees; then we will locate the ceiling of the potential h-arc. Let us consider
the following example.

Example 3. Consider the 12-gon with six potential h-arcs as shown in Figs. 10a
and 10b. The necessary computations and the results of comparisons are shown in
Table 3.

TABLE 3

Computations

1. S(hs\(h8})

Observations

2. S(h4\{hs})

3. S(hT\{h9})

4. S(h6\(h7})

5. S(h3\{h4, h6})

6. S(h3\{hs, h6})

7. S(h3\{hs, hT})

8. S(h2\{h5, h9})

9. S(h2\{h8, h9})

wl <S(hs\{hs}) < W2

W3 < S(h4\{hs}) < W4

W2 < S(hv\{h9}) < w3

w3<S(h6\{h7})
<S(h4\{h5})<w4

wa<S(h3\{h4, h6})
<S(h6\{h7})
<S(h4\{hs})

wa<S(h3\{hs, h6})
<S(h6\{hT})

S(hs\(hs})
<w2<S(h7\{h9})
< S(h3\{hs, h7}) < w3

S(h2\{hs, h9})<Wl

Remarks

The fan is /-optimum in the subpolygon between h5 and
hs’ {hs} is the ceiling of h5
ha is the next arc to be processed.

S(hs\{h8})< w4:: C(h_h__4, hs, h8)< Ho(h__4, h8)
S(h4\{hs}) > S(hs\{hs})z{hs} is the ceiling of h4
Before we can process h3, we have to process h7 first

The fan is/-optimum in the subpolygon between h7 and h9
{h9} is the ceiling of h7
h6 is the next arc to be processed

S(h7\{h9}) < wsz C(_h_6, h7, h9)< Ho(h__6, h9)
S(h6\{h7}) > S(h7\{h9})zz{h7} is the ceiling of h6
h3 is the next arc to be processed

S(h6\(hT}) < S(h4\{hs}) < W4
z:), C(h__3, h4, h6, hs, h7) < Ho(_h_a, hs, hT)

Both ha and h6 may be sons of h3 since S(h4\{hs})>
S(h6\{h7}), test h first to see if h4 is a son of h
S(h3\{h4, h6})<S(h4\{hs})=h4 is a son of h

Condense h4 into h3 and calculate S(h3\{hs, h6})

S(h3\(hs, h6}) < S(h6 ::{h7})\h6 is a son of h3
Condense h6 into h3 and calculate
S(h3\{hs, hT}).

S(h3\{h5, h7}) > S(hT\(h9}) > S(hs\{h8})
=),{h5, h7} is the ceiling of h3

ha is the next arc to be processed.

S(h3\{hs, hT})>wa
:::)’ C(h__2, h3, h4, h6, hs, h7) > Ho(h_h_2, hs, h7)

h3, ha and h6 cannot exist in the/-optimum partition and
should be deleted from the arc tree
Now, hs, h7 are the two arcs immediately above h2 since
S(hT\{h9})>S(hs\{hs}), test h7 first to see if h7 can be
deleted from the arc tree
S(h7\{h9})>wa

:::)’ C(_h_2, hT, hs, h9)> no(_ha, hs, h9)
h7 should be deleted from the arc tree
S(hs\{h8})<w2

:: C(h2, hs, hs, h9) < no(h__2, hs, h9)
S(h2\{hs, h9}) < S(hs\{h8})=> h6 is a son of h2
Condense h5 into he and calculate S(h2\{hs, h9})
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If S(h2\{h8, h9})< Wa, the partition with h2 and h5 as h-arcs is/-optimum. Other-
wise, the fan Ho(hl, h8, h9) will be/-optimum.

From the above example, we have the following observations. Let hi be the arc
being processed and let X be the set of arcs immediately above hi in the arc tree. By
the time we process hi, we have already obtained (i) the/-optimum partitions of the
subpolygons between the leaf nodes and the arcs in X and (ii) the ceilings of all the
arcs in X. For any arc hk in X, the/-optimum partition in the subpolygon bounded
below by hi and above by the arcs in X-{h,}t.3 h’s ceiling must either be a fan or
consist of h and its descendants as h-arcs depending on whether S(hk\hk’S ceiling)_-->
min (w., w or S(hk \hk’s ceiling) < min (w., w; ), where w., w are the weights associated
with the end vertices of hi. If the fan is cheaper, hg and hk’S descendants will be
removed from the arc tree and the set X becomes X-{hk}h’s ceiling. We can
repeat the above process until the /-optimum partition in the subpolygon bounded
below by h and above by the leaf nodes in the subtrees of h is obtained. Since
maxhxS(hk\hk’S ceiling)<min(w.,w) implies (/hkX)(S(hk\hg’s ceiling)<
min (wi, w)), the arc with maximum supporting weight in X should be chosen and
tested for possible deletion. Similarly, since maxh,xS(ht,\hk’s ceiling)<S(hi\X)
implies (/hkX)(S(hk\hk’S ceiling)<S(hi\X)), the arc with maximum supporting
weight should also be chosen and tested for possible condensation.

Now, let us give the algorithm for finding the /-optimum partition of a general
convex polygon.

ALGORITHM P
(I) Get all the potential h-arcs of the polygon by the one-sweep algorithm [6].

(All these arcs form a tree.)

(II) Append the degenerated arcs to the arc tree obtained in Step I and label
all leaf nodes as "processed."

(III) Process the potential h-arcs, one by one, from the leaves to the root. (We
cannot process a potential h-arc until all the potential h-arcs in its subtrees have been
processed.) Let h be the arc to be processed, h be the arc immediately below h in
the arc tree, X be the set of potential h-arcs immediately above hi in the arc tree,
and h,, be an arc in X such that

S (h, \h,’s ceiling) max S (hk \hk ’S ceiling).
hX

Repeat
Begin

1. [To delete those blocks of arcs which cannot exist in the/-optimum partition
of the subpolygon between h. and the leaf nodes in its subtrees.]
While S(h,,\h,,’s ceiling)-> min (w., w) do

Begin
a. Delete hm and its descendants from the arc tree.
b. Replace X by X-{h,} U h,’s ceiling and then update h,n accordingly.

End.
2. [To locate the ceiling of h..]

If h. h
then
While S( hi\X) <- S(hm\h’s ceiling) do

Begin
a. Comment" h,, is a son of hi.
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bo Combine h,. and all its descendants into hi and calculate the combined
supporting weight

S(hi\X {h,,} U h,,’s ceiling).

c. Replace X by X-{h,} LI h,’s ceiling and then update h, accordingly.
End.

3. [Prepare to process next arc.]
If hihl
then

If h has a subtree which has not been processed then pick a subtree of h
which has not been processed and apply Step II to this subtree recursively

else
Begin

Replace X by the arcs immediately above he in the arc tree, hi by h and
h by the arc immediately below h in the arc tree.

End.
End.

Until (h. h ).

(IV) Output the/-optimum partition consisting of the arcs which remain in the
arc tree after Step II as h arcs. Then stop.

Using arguments similar to those in the proof of Theorem 8, we have the following
theorem.

Theorem 13. The partition produced by Algorithm P is l-optimum.
Proof. Omitted.
One way to implement Algorithm P is to place all the potential h-arcs obtained

in Step I in a linked tree. Each potential h-arc in the arc tree is again associated with
a record variable similar to those described in 2. We shall also initialize the ith
element of the array CP to the quantity W l:Wi for 2_-< _-< n and set CP[1] to zero.
Hence, from our discussions in 2, we know that we can calculate the supporting
weights in a constant amount of time. Since we always test the arc with the largest
supporting weight for possible deletion or condensation among all the arcs in X in
Step II of the algorithm, we should keep track of the arcs in X and in each ceiling
by means of the priority queues. When an arc h, in X is deleted from the arc tree,
we remove h,, from X, then we mergeX and the ceiling of h,, into one priority queue.
Similarly, when an arc h,, in X is condensed into hi, we remove h,, from X and add
it to the list of hi’s sons, then we merge X and the ceiling of h, into one priority
queue and set the ceiling of h,, i.e. the third field of h,, to NIL. Hence, it takes
O(log n) time for each update of X to X-{hm} hm’s ceiling in both Step II.1 and
Step II.2.

THEOREM 9’. Algorithm P runs in O(n log n) time.

Proof. It takes O(n) time to sweep around the monotone polygon twice, once to
obtain all potential h-arcs in Step I and once to initialize the array CP. It also takes
O(n) time to append the degenerated arcs in the arc tree. There are two while loops
in Step III, and it takes O(log n) time to execute either while loop once. Whenever
the while loop in Step III.1 is executed once, a potential h-arc is deleted from the
arc tree. Whenever the while loop in Step III.2 is executed once, a potential h-arc is
removed from the arc tree and condensed to its father. Once an arc is removed or
deleted from the list, it will never be considered again. Since there are at most n- 3
arcs in the arc tree, Algorithm P can execute both while loops at most n- 3 times.
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So, it takes O(n log n) time to process all the potential h-arcs in Step III. Finally, it
takes O(n) time to output the/-optimum partition in Step IV. Hence, Algorithm P
runs in O(n log n) time. [3

4. Conclusions. In this paper, we have presented an O(n log n) algorithm to find
the unique lexicographical smallest optimum partition of a general convex polygon.
Both Algorithm M and Algorithm P have been implemented in Pascal [7]. We have
also compared Algorithm P with the O(n 3) dynamic programming algorithm and
found that Algorithm P runs faster than the dynamic programming algorithm when
n is greater than or equal to 7.
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