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Abstract. A Steiner minimal tree is a tree of minimal length whose vertices are a given set

of points ax, ■ - •, an in E2 and any set of additional points Sx, • ■ -, Sk(k è 0). In general,

the introduction of extra points makes possible shorter trees than the minimal length tree

whose vertices are precisely ax, ■ • •, a„ and for which practical algorithms are known. A

Steiner minimal tree is the union of special subtrees, known as full Steiner trees. This

paper demonstrates the use of the computer in generating minimal length full Steiner trees

on sets of points in E2 which are the vertices of convex polygons. The procedure given is

a basis from which further research might proceed towards an ultimate practical algorithm

for the construction of Steiner minimal trees.

1. Introduction. There are simple algorithms available for constructing the

minimal length tree(s) whose vertices ax, • ■ -, On are a given set of points in E2 [7],

However, it is often possible to construct even shorter trees connecting ax, ■ ■ ■, an

by introducing a number of extra vertices slt • • •, sk. Hence the following problem

which is known as the Steiner problem : Given n points ax, ■ ■ ■, an in E2, to construct

the tree(s) with vertices ax, ■ ■ ■ ,an and any k additional vertices slt ■ ■ -, s* (fc — 0)

whose total length is minimum. Solutions are called Steiner minimal trees. The

problem and its generalisations have received much attention in the literature

recently due to the wide variety of applications. Principally Z. A. Melzak [5] pro-

vided an algorithm for solution and in fact proved that a finite number of classical

ruler-compass constructions would solve the problem. E. J. Cockayne [1] developed

this procedure and discussed certain generalisations. Melzak and Cockayne [2] have

extended their algorithm to cover the case where the a¡ are sets rather than points.

The principal problem remaining at this time is that of increasing the efficiency of

the algorithm so that one can implement it on a digital computer and construct

Steiner minimal trees, say for n = 20 or 30. As it stands, the number of steps re-

quired renders the algorithm completely impractical, except for a very small

number of points. A few suggestions on efficiency were given in [1]. E. N. Gilbert

and H. O. Pollak [4] have also attacked this aspect of the problem, giving a variety

of geometric criteria which might be useful in reducing the algorithm. Their paper

also contains work on generalisations, an excellent review of known results and an

extensive bibliography. In the present work, we have adopted some of their ter-

minology. This paper, also, is concerned with implementing the algorithm and its

efficiency. In order to be more specific, we shall need a little mathematical back-

ground.

If ax, a2, a3 are points in 7Í2 such that no angle of the triangle is = 120°, then the

point S which minimises the sum of distances axS 4- a2S 4- a^S is the unique point

(called the Steiner point of the triangle) at which each side subtends 120°. From this
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fact one deduces (see [3]) that Steiner minimal trees have the five properties (PI) —

(P5) listed below, i.e. Sterner minimal trees are Steiner trees.

Definition. A tree U with vertices ax, ■ ■ -, an, sx, • • •, s* (fc = 0) is a Steiner tree

onoi, ■ • •, an if and only if it has the following properties :

(PI) U is non-self-intersecting.

(P2) wisi) = 3, 1 á * á k. iwix) is the valency of vertex x.)

(P3) wiaf) g 3, 1 á j á ».
(P4) Each Si is the Steiner point of the triangle formed by the points which

directly connect s i in U.

(P5) 0 = k = n - 2.
The original method of [5] consists of a proof that there are finitely many

Steiner trees on any given set ax, ■ ■ ■, an and a geometric method of constructing

these, which must include all Steiner minimal trees.

A full Sterner tree on ax, ■ ■ -, an is a tree which satisfies (PI) — (P4) and also

has k = n — 2. The construction of minimal length full Steiner trees on a set is the

essential step in the author's algorithm for the Steiner problem; the reason being

that any Steiner minimal tree is a union of full Steiner subtrees. The present work

is devoted to computing minimal length full Steiner trees (i.e. implementing the

geometric procedure given in [1] on a machine) for vertex sets of convex polygons.

The mathematical structures used give further insight into the Steiner problem

and indicate the way that further research might proceed towards an ultimate

solution. Sample results are supplied and the FORTRAN IV programs appear in

the microfiche section of this issue.

Finally we note that in our previous paper [1] Steiner trees, full Steiner trees and

the Steiner point of a triangle were termed ¿I-trees, S-trees and the *S-point of a

triangle respectively.

2. Associations of Full Steiner Trees. Denote by ipq) and iqp) the third vertices

of the equilateral triangles on pq as base, ipq) being the point to the left looking

from p towards q. Below, we shall have cause to consider "higher order equilateral

points" e.g. ((pip2)p3) which is the third vertex of an equilateral triangle whose base

is the line joining (pip2) and p3 (see Fig. 1).

((p1P2)P3)

A
/    \

Figure 1
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If ax, a2, a3 is a clockwise order of the vertices of a triangle having a Steiner point S,

then the line segments iaxa2)az, (a2a3)ai, (a3ai)a2 are concurrent at S and further

each of these line segments has length equal to axS 4- a2S 4- a¡S. This provides a

simple construction for S (we term it the "equilateral construction") which plays a

fundamental role in the Steiner algorithm.

In [1] we defined the term "association of a full Steiner tree." This definition is

repeated here for completeness. Let U1 be such a tree on A1 = {ax, ■ • -, aY, with

extra vertices s1} ■ ■ -, s„_2, (these will be called a-points and s-points respectively).

Ul has at least one pair of a-points (say ax, a2) which are directly joined to the same

s-point (say Sx) in UK In fact a portion of the tree appears as in Fig. 2.

(a^)

"1

Figure 2

X is the third point which directly joins Sx in U1. Sx is the Steiner point of the

triangle axa2X, hence by the equilateral construction the line Xsx produced passes

through (aia2). Therefore the tree Î72 on A2 = {(aia2), a3, ■ ■ -, an] with s-points

s2, • • •, s„_2, formed from U1 by replacing the segments aiSi, a2Si, SxX by the single

segment iaxa2)X, has all the Steiner tree properties except perhaps (PI), ax, a2 are

said to be "paired" in the formation of U2 from U1. This process may be repeated

forming trees U3 on A3, • • •, f7"_1 on An"\ At each stage two points of A' are paired

to form Ai+1 and Ui+l has one less a-point and s-point than U\ The process ter-

minates since C/n_1 has two a-points and no s-points. The two points of A"-1 can

be expressed in terms of the original a-points of Ul and the equilateral point bracket-

ing notation defined above. This representation of A"-1 is called an association of

Í71 and the segment joining the two points of A"-1 is called an "axis" of U'. There

are many associations and axes of a given full Steiner tree.

Any formal combination of the symbols ax, ■ ■ -, a„ by bracketing as above

which forms precisely two points is called an association of ax, ■ • ■, an and defines

a possible structure for a full Steiner tree. Whether or not there exists a full Steiner

tree, having this structure, on a particular set of points ax, • • •, an in E2, depends

on their geometric locations. Associations which define the same full Steiner tree

structure are said to be equivalent (written =).

The equilateral construction shows that length is preserved at each stage of the

above process, i.e. for all i = 1, • • •, n — 1 the length of Ul is constant. Thus the

length of a full Steiner tree is equal to the length of any of its axes. This is an

important fact which will be used in the computation.
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Example. In Fig. 3. the continuous line is Ul, a full Steiner tree on A1 = {1, 2,

3,4,5}.

((42X13))

Figure 3

We "pair" the points 1 and 3 giving

A2 = {(13), 2, 4, 5} and U2 with branches (13)s3, s35, s2s3, 2s2, 4s2.

Next we pair 4 and 2

A3 = {(13), (42), 5}, Us has branches (42)s3, (13)s3, s35 .

Finally we pair (13) and (42)

A4= {((42) (13)), 5}, Ul has branch ((42)(13))5.

((42)(13)), 5 is an association of Í71 and the segment joining ((42) (13)) and 5 is an

axis of U1.

Let iab), c be an association of a full Steiner tree on ax, • • -, an (i.e. a, b, c are

themselves combinations of ax, ■ ■ ■, an with equilateral point bracketings). Then by

inspection of the unique full Steiner tree on the three points a, b, c it follows that

(1) iab), c = a, (be) = (be), a = b, ica) = ica), b = c, iab)

i.e. we get equivalent associations by interchanging the comma and parentheses or

by permuting the letters provided that the cyclic order of the letters is left invariant.

As a consequence, any full Steiner tree has an association in which any specified

point appears last and is immediately preceded by the comma. Geometrically, this

means that any a-point of a full Steiner tree may be used as one of the vertices of

an axis. Further this association is unique. As an example, using two applications of

(1) we determine the association of the tree U1 of Fig. 3 terminating in ", 1"
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((42)(13)), 5 = (5(42)), (13) s (3(5(42))), 1.

We notice that repeated applications of (1) do not disturb the cyclic order of the

points. Summarising, we have proved:

Theorem 1. Any full Steiner tree has a unique association terminating in the comma

and a specified point. All associations of a full Steiner tree have the same cyclic order

of points.
Theorem 1 is extremely useful in the struggle to improve the efficiency of our

Steiner algorithm. We strongly suspect that for any set of points {ax, ■ ■ -, an},

geometric considerations (perhaps of the type discussed in [4]) will allow only very

few cyclic orders of the a i in associations of minimal length full Steiner trees. The

following theorem shows the truth of this conjecture when convexity is assumed.

Theorem 2. Let H be the set of vertices of the polygon CiA) which bounds the con-

vex hull of A = {ax, • • •, a«} and let œ be any association of any full Steiner tree U on

A. Then the order in which the points of H appear in üj, is a clockwise order of the

vertices of CiA).

In other words the theorem states that the cyclic order of the a-points in any

full Steiner tree association and the clockwise order of the vertices of the convex

hull boundary are compatible. We offer an illustration before proceeding with the

proof of the theorem. Let H = {ai, a2, a¡, at, a¡,} be a clockwise ordering of the

vertices of CiA) where A = {a, : i = I, ■ ■ -,7}. The theorem asserts that associa-

tions of full Steiner trees on A do not have orders of A such as a5aia4a2a6a3a7. For

the points of 77 occur here in the order a^axaia2a% which is not a clockwise order.

Lemma. Let ai, a¡, ak be distinct a-points of U and let a be the s-point of U at which

the unique paths a,«,-, a¡ak of U split. Suppose that x,o, x¡o-, X\¿a¡ are the last edges of

the paths aio, a¡o-, aw respectively (see Fig. 4). For t = i, j, k either xt is another s-point

of U or xt = at. If ias in Fig. 4) looking from x, along Xio, the path oaj branches to

the left and oak to the right, then in any association of U, o¡, a¡, ak occur in this cyclic

order.

Proof. By successive pairings as above, we can reduce U to a tree Un~2 having

the point o as its only s-point and 3 a-points a¡, a,, ak which are bracketing com-

binations of the original a-points of U containing a¿, a¡, ak respectively and which

lie on ¡rXi, oxj, o-Xk (perhaps produced) respectively. The final pairing forming the

association (a¿ay), a* of U and Theorem 1 complete the proof of the lemma.

Proof of Theorem 2. Let auavaw be any three consecutive points in clockwise order

on C(A) and o be the s-point of U where the paths auav and auaw split. Since all

s-points of U sire within CiA) and U is non-self-intersecting, in the terminology of

the lemma, oav branches to the left and cra„ to the right. By the lemma auavaw have

this cyclic order in any association of U. Hence Theorem 2.

Corollary. Let ax, ■ ■ ■, an be the vertices of a convex polygon. Then the cyclic order

of the ai in any association of a full Steiner tree on ax, • • •, an is the clockwise order of

vertices on the polygon.

The methods of the subsequent sections successively generate associations of

A = {ax, ■ ■ ■, a»} and endeavour to construct the full Steiner tree on A from each

association, if it exists. The above theorem shows that all full Steiner trees on a set of

n points, r of which are on the convex hull boundary, may be constructed from the

subclass of associations of the a¿ in which the clockwise order of the r vertices of the
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convex hull boundary is preserved. An elementary combinatorial argument shows

that only (n — 1)1/ir — 1) ! cyclic orders of the total (w — 1) ! cyclic orders need to

be considered. In particular, for the present case where we have a convex polygon,

r = n and only 1 cyclic order need be processed (which reduces machine time

considerably!).

Figure 4

3. The A-Matrix. In this and subsequent sections ax, • • •, a„ denote, in clockwise

order, the vertices of a convex polygon and the a» are assumed to be complex

numbers wherever necessary.

Our algorithm will process each element of 0, the class of all associations of

ax, ■ ■ -, an which exhibit the a¿ in this order and in which the comma directly pre-

cedes an. For each co G &, by means of an A-matrix for co (defined below), the com-

puter will test whether or not ¿7(co), si full Steiner tree on ax, • • ■, a„ with association

co, exists and will isolate a tree of minimum length from the set {[/(o): co G Œ).

Theorems 1 and 2 imply that this will be the required minimal length full Steiner

tree on the a,-.

Let u G S! and assume, for the moment, the existence of f/(co). Suppose that

A1, A2, • • -, An_1 are successive sets of points encountered in the construction of

co from r7(co) (cf. Section 2) where for each i the equilateral bracketing representation

of A * exhibits the a, in their natural order. By an A-matrix of co, we mean arniX«

matrix of complex numbers in which the first (n — i -\- 1) elements of the ith row

contains the points of A* (i = 1, ■ ■ ■, n — 1) and the remaining elements are zero.

Examples will be useful at this point. The matrices Mi, M2 are both A-matrices for

the association (((12)(34))5), 6.
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1 2 3 4 5 6

(12) 3 4 5 6 0
(12) (34) 5 6 0 0

((12) (34)) 5 6 0 0 0
(((12)(34))5) 6 0 0 0 0

0 0 0 0 0 0

Matrix Mx

1 2 3 4 5 6
1                         2           (34)           5             6 0

(12) (34) 5 6 0 0
((12) (34)) 5 6 0 0 0

(((12)(34))5) 6 0 0 0 0
0 0 0 0 0 0

Matrix M2

4. The Pairing Vector. In this section we show how to ensure that the computer

considers all the associations of 0 precisely once.

To each A-matrix there corresponds a vector v, of dimension n — 1, with non-

negative integral components where v(l) = 0 and for each i = 2, ■ ■ -, n — 1 the

ith row of the A-matrix is formed from the (i — l)th row by pairing the y(z)th and

(v(i) 4- l)th elements. This vector we call the pairing vector of the A-matrix. This

correspondence is 1-1 between the class of all A-matrices of associations in Í2 and

the set V of all vectors v, of dimension n — 1 with nonnegative integral components

satisfying

y(l) = 0 and 1 = v(i) = n — i ,       i — 2, • • •, n — 1.

For example, the pairing vectors of the A-matrices Mx and M2 given in Section 3 are

{0, 1, 2, 1, 1} and {0, 3, 1, 1, 1} respectively.

Pairing vectors are easily generated on the machine and given a pairing vector

and the original ax, • • •, an it is a simple process for the computer to pair the ap-

propriate points and form the corresponding A-matrix.

The correspondence of A-matrices and associations of Ü and hence the cor-

respondence of pairing vectors and 0 is many-one. Thus, in order to generate pre-

cisely one A-matrix for each co G Œ, we (fortunately!) do not have to use all the

(n — 2)! vectors of V. In fact it is sufficient to use the subclass V* of V whose

vectors also satisfy

v(i) = v(i + 1)    for i = 2, • • •, n — 2 .

It is left to the reader to show that the correspondence of 0 and V* is one-one.

To complete this section we enumerate the associations which our algorithm

must process in its search for a minimal length full Steiner tree on n a-points with

k = n — 2 s-points, i.e. we determine the cardinality iV(S2) of O. Ignoring the con-

vexity assumption, we state that there are (fc + 1) !AT(Í2) nonequivalent associations

because, by Theorem 1, only those associations terminating in ", an" need be counted

and the remaining (A; + 1) a-points may be permuted in (fc + 1) ! ways. Since an
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incidence matrix does not reflect the fact that ordered pairs of points are bracketed

to form equilateral points at each of the k pairing stages, there are 2k nonequivalent

associations for which the corresponding full Steiner tree structures have the

same incidence matrix. Therefore the total number of incidence matrices is

(k 4- 1) \NiQ)/2k. We equate this to the expression obtained by Gilbert and Pollak

[4] and obtain

(ft 4- l)UV(Q)/2* = (2fc)!//e!2*

i.e.

Nia) = (2*)!/Jb!(*+ 1)!.

This formula is also obtained in a book by Ivan Niven [6, Chapter 11].

5. Computational Details. The first part of our algorithm generates the pairing

vectors of V*. For each pairing vector v, the corresponding A-matrix is computed.

The ordered m-tuple of complex numbers ax, • • •, an is read into the first row of the

A-matrix, and the remaining rows are generated recursively as follows. For each

i from 2 to n — 1 the subroutine EQPT calculates the equilateral point for the

ordered pair A(i — 1, v(i)), A(i — 1, v(i) 4- 1) and the other elements of the ith

row are identical to elements in the (i — l)th row. The axis, corresponding to the

vector v is the distance between the two points in the (n — l)th row of the A-matrix.

Should this axis be longer than the axis of a tree that has already been constructed

by the procedure, then v cannot yield a minimum tree and we proceed to the next

pairing vector, otherwise the s-points for the tree are computed. At this stage we

may well discover that no full Steiner tree onoi, • • •, a„ may be drawn with pairing

vector v.

We now give details of the procedure for computation of the s-points from an

A-matrix. Each s-point is computed as a Steiner point of a certain triangle by a

subroutine known as STEIN. The first s-point is the Steiner point of the three

points in the (n — 2)th row of the A-matrix. We then work with progressively

higher rows of the matrix, considering successively the (n — i)th row as i varies

from 3 to n — 1. For each i, let x(n — i), y(n — i) be the two elements (say a, ß)

of the (n — i)th row which are paired in the formation of the (n — i 4- l)th row

and let z(n — i) be the s-point which has already been computed as the Steiner point

of a triangle, one of whose vertices is the equilateral point (aß). Then the next s-point

is the Steiner point oí x(n — i),y(n — i), z(n — i). If at any stage no Steiner point

for the triangle exists, there is no tree corresponding to v and we proceed to the next

pairing vector. As an illustration we list the steps in the construction of the s-points

from the A-matrix Mx of Section 3.

X Y Z
sx is the Steiner point of       ((12) (34))          5 6

s2 is the Steiner point of            (12) (34) si

s3 is the Steiner point of              3 4 s2

Si is the Steiner point of              1                 2 S2

Assuming the existence of a minimum length full Steiner tree on ax, • • •, a„, the

output from the program gives the length of such a tree, the pairing vector which
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produced it, the s-points of the tree and the triangles from which they were com-

puted. The incidence matrix is simply derived from this information.

On the IBM 360/44 machine at the University of Victoria, approximately 25

minutes of computing time were used for examples with n = 12. With the present

program and comparable times on a faster machine, we estimate one could run

the algorithm up to n = 17.

We are presently trying to increase the efficiency of the program by implement-

ing the "deciding region" criterion of [4], a geometric method for rejecting certain

pairings of points in associations. We note here that this criterion can be used at

any stage in the formation of an association.

Figure 5. Sketch of the Minimal Length Full Steiner Tree Computed in Example 3.
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Appendix I. Sample Results.

Example 1.

2V-4

A-POINTS
-3.000,     1.000

3.000,     1.000
3.000, -1.000

-3.000, -1.000

FULL STEINER TREE
LENGTH = 9.464
PAIRING VECTOR IS   0 2 1

X Y Z S-POINT

1 -3.000,     1.000 4.732,     0.0 -3.000, -1.000        -2.423,     0.0
2 3.000,     1.000 3.000, -1.000        -2.423,     0.0 2.423,     0.0

Example 2.

N = 5

A-POINTS
-1.000,     2.000

1.000,     1.000
1.000, -1.000

-1.000, -1.000
-2.000,     0.0

FULL STEINER TREE
LENGTH = 7.433
PAIRING VECTOR IS   0 111

X Y Z S-POINT

1 4.598,     1.232        -1.000, -1.000        -2.000,     0.0 -0.974, -0.847
2 0.866,     3.232 1.000, -1.000        -0.974, -0.847 0.258, -0.387
3 -1.000,     2.000 1.000,     1.000 0.258, -0.387 0.457,     0.797

Example 3.

N - 10

A-POINTS

0.0    ,     2.000
2.000,     1.000
2.000,     0.0
1.500, -1.500
1.000, -2.000
0.500, -2.000
0.0    , -2.000

-1.000, -1.000
-1.000,     0.0
-0.750,     1.000
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X

FULL STEINER TREE
LENGTH = 11.938
PAIRING VECTOR IS   0 7 7

Y

0.0
2.866
2.000
1.933
1.500

1.000
-1.366

0.0

2.000
0.500
1.000

-2.616
-1.500
-2.000
-2.366
-2.000

6.165, -7.214
-2.165, -6.214

2.000,     0.0
-3.232, -0.866

0.750, -2.433
0.500, -2.000

-1.000,     0.0
-1.000, -1.000

5 4 4 2

Z

2 1

-0.750, 1.000
-0.375, 1.055

0.355, 0.132
0.355, 0.132
0.156, -0.369
1.097, -1.559
0.156, -0.369

-0.618, -0.483

S-POINT

-0.375, 1.055

0.355, 0.132
1.736, 0.334
0.156, -0.369
1.097, -1.559
0.948, -1.934

-0.618, -0.483
-0.813, -0.973
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