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ABSTRACT

Minkowski functionals encompass standard geometric parameters such as volume, area, length and the
Euler-Poincaré characteristic. Software tools for computing approximations of Minkowski functionals on
binary 2D or 3D images are now available based on mathematical methods due to Serra, Lang and Ohser.
Minkowski functionals can not be used to describe spatial heterogeneity of structures. This description can be
performed by using Minkowski measures, which are local versions of Minkowski functionals. In this paper, we
discuss how to extend the computation of Minkowski functionals to the computation of Minkowski measures.
Approximations of Minkowski measures are computed using filtering and look-up table transformations. The
final result is represented as a grey-level image. Approximation errors are investigated based on numerical
examples. Convergence and non convergence of the measure approximations are discussed. The measure
of surface area is used to describe spatial heterogeneity of a synthetic structure, and of an image of tomato
pericarp.

Keywords: 3D images, Crofton formula, discrete measures, local estimation, Minkowski measures, polyhedral
reconstruction.

INTRODUCTION

Standard parameters used in quantitative analysis
of spatial structures are the area and the perimeter in
2D, volume, surface area and mean breadth in 3D.
Another parameter is the Euler-Poincaré characteristic,
related to the topology of the structure. These
parameters form the so-called Minkowski functionals.

Measuring Minkowski functionals in 2D or 3D
digitized images is not a trivial task. For instance,
measuring perimeter by counting the number of
boundary pixels may be quite inaccurate, see the
example shown in Fig. 1. Another common problem
is the computation of the number of connected
components in a binary image. Results depend
heavily on the type of connectivity used. Topological
parameters measured on digital images may not fulfil
standard relationships and statements holding for
continuous case.

The Euler-Poincaré characteristic is a standard
connectivity parameter. For a planar structure, it is
equal to the number of its connected components
minus its number of holes. In 2D digital space,
its computation requires the reconstruction of the
structure by a set of non-overlapping vertices, edges
and polygonal faces. The Euler-Poincaré characteristic
of the structure is approximated by the Euler-Poincaré
characteristic of its reconstruction. Different types
of connectivity may be considered: 4-neighbours,

6-neighbours, 8-neighbours, leading to different
approximations of the Euler-Poincaré characteristic.
In practice, using the Euler formula the Euler-
Poincaré characteristic of this reconstruction can be
computed from 2 × 2 configuration counts (Serra,
1982; Rosenfeld and Kak, 1982).

The Cauchy formula which relates perimeter
and number of intercepts provides a simple method
for perimeter computation (Serra, 1982). Counting
intercepts in 2D binary images is straightforward: it is
again a configuration count.

Extensions to 3D images have been derived (see
Nagel et al., 2000, Ohser et al., 2002 for the Euler-
Poincaré characteristic and Lang et al., 2001 for all
other parameters). Again, all needed computations
are configuration counts. Methods for computing any
parameter belonging to the family of the Minkowski
functionals both in 2D and 3D images are now
available.

In order to characterize the spatial distribution
of the 2D or 3D structure, one may compare
Minkowski functional values measured in different
regions. This approach can be further extended to
consider Minkowski measures instead of Minkowski
functionals. In particular, it is possible to build maps
and profiles for each parameter.
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Fig. 1. The digitized disk is the set of pixels contained
in the initial disk (represented as black filled circles).
A polygonal reconstruction is obtained by joining
adjacent pixels of the digitized disk by edges. The
perimeter of the disk may be approximated by the total
length of the external edges (thick lines). For a disk,
this perimeter approximation tends to the perimeter of
the square with the same diameter as the digitization
grid tends to 0. Hence the relative approximation error
is about 25%.

In this paper the methods for computing
Minkowski functionals on 2D and 3D images
are extended to the computation of Minkowski
measures. Concerning the Euler-Poincaré measure,
a key argument is Zähle’s definition of Gaussian
curvatures for a large class of structures which
includes structures with smooth boundaries, as well as
polygons and polyhedra (Zähle, 1984; 1986a; 1987).
The computation of higher-dimensional Minkowski
measures related e.g. to perimeter or surface area is
based on the Cauchy and Crofton formulae as for the
corresponding Minkowski functionals.

The article is organized as follows. We first
recall mathematical definitions of the Minkowski
measures. Then the reconstruction of the structure as a
complex of convex cells is presented. We develop the
computation of Minkowski measures approximations
based on this reconstruction, then we present an
algorithmic implementation based on configuration
counts. The convergence of the Minkowski measures
approximations is investigated. Finally, the measure
of surface area is used to describe the spatial
heterogeneity of a synthetic structure and of a tomato
pericarp.

MINKOWSKI MEASURES

DEFINITIONS
Let X be a subset of the d-dimensional Euclidean

space R
d (d = 1,2,3, . . .) belonging to the class of

unions of sets with positive reach. Finite unions
of convex sets, and sets whose boundary is a
finite union of twice continuously differentiable
manifolds, fall into this class (Zähle, 1984; 1986a).
Such a set is associated with d + 1 Minkowski
functionals and measures on R

d . Hence a 2D structure
(d = 2) defines 3 Minkowski functionals/measures,
while a 3D structure (d = 3) defines 4 Minkowski
functionals/measures. In 2D and 3D, the Minkowski
functionals coincide up to known multiplicative
constants with standard geometric parameters.
Intrinsic volumes are an alternative set of definitions
for the same quantities.

For a planar structure X , the first Minkowski
functional is the area A of X . The corresponding
Minkowski measure is just defined as the restriction to
X of the area (i.e., Lebesgue) measure. If this measure
is also denoted by A, then for any planar Borel set
B, A(B) is the area of X ∩B and for any real-valued
function φ defined on R

2, A(φ) is the integral of φ
onto X . Also note that the total mass of the measure
A is equal to the area of X .

The second Minkowski measure is equal to U/2,
where U is the length measure restricted to the
boundary ∂X of X . Hence U(B) is the length of ∂X ∩B
and U(φ) is the integral of φ along ∂X . The total mass
of U is the boundary length of X .

The third Minkowski measure is equal to πχ ,
where χ is the Euler-Poincaré measure. The total mass
of χ is the Euler-Poincaré characteristic of X . The
measure χ is supported by the boundary ∂X . For a
planar Borel subset B:

χ (B) =
1

2π

∫
∂X∩B

κ (x) dx (1)

where κ(x) refers to the (signed) curvature. Note that
the definition above holds if the curvature is defined for
all point of the boundary ∂X , e.g. when ∂X is twice
continuously differentiable. The general definition of
the Euler-Poincaré measure for an arbitrary union of
sets with positive reach is given in Zähle (1984).

A spatial structure yields 4 Minkowski measures.
Let V be the volume (i.e., Lebesgue) measure restricted
to X and let S be the surface area measure restricted to
the boundary ∂X . The measure b̄ is also supported by
∂X . For a Borelian subset B of R

3, b̄(B) is the integral
over ∂X ∩B of the mean curvature divided by 2π . If X
is convex, the total mass is the so-called mean breadth
of X . Up to an alternative renormalization the measure
b̄ can also be considered as a length measure for thick
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fibres. The last measure χ is again the Euler-Poincaré
measure:

χ (B) =
1

4π

∫
∂X∩B

g(x) dx (2)

where g(x) is the Gaussian curvature of ∂X at x, i.e.,
the product of the two main curvatures at x.

All measures introduced above are defined over
the continuous plane or 3D space. In practice data on
structures are most often available as discrete images.
Information is available only for a finite subset of
points usually organized as a regular grid. We consider
here only binary images, a particular case in which
information is either true or false. Binary images are
usually obtained after a segmentation procedure, i.e.,
each pixel or voxel is either inside or outside the
structure of interest. Our goal is the computation of
Minkowski measures based on discrete binary images.

This is a non trivial problem for measures U , S,
b̄ and χ , because their support is restricted to the
boundary of the structure. Discrete approximation of
curves and surfaces is still an active field of research
(Klette and Rosenfeld, 2004). Below we present a
method for computing the measure χ from binary
2D or 3D images. The computation of the other
measures is derived both from Euler-Poincaré measure
computations and from the Crofton formula.

CROFTON FORMULA
The total perimeter U of a structure can be

expressed by integrating, for all (affine) lines L in the
plane, the Euler-Poincaré characteristic of X ∩ L, the
intersection of the line with the structure:

U = π
∫

χ (L) dL. (3)

where dL is the measure over spatial lines invariant
with respect to rigid motion and normalized such that
the mass of lines hitting the unit circle equals 2.
Note that the Euler-Poincaré characteristic of the one-
dimensional subset X ∩L is just the intercept number
of X by L. Eq. 3 is known as Cauchy formula. This
formula concerns the whole perimeter of X . However it
is easy to see that the formula holds also locally: U can
be replaced by U(B) in the left-hand side and χ(L) by
χ(B∩L) in the right-hand side. Hence Cauchy formula
(Eq. 3) holds also when U is the perimeter measure
instead of the whole perimeter. Then, χ(L) must be
considered as the Euler-Poincaré measure associated
with X ∩L.

The 3D extension of Cauchy formula is called
Crofton formula. Special cases of Crofton formula are

S = 4
∫

χ (L) dL, (4)

and
b̄ =

∫
χ (P) dP, (5)

where dL is the measure over spatial lines invariant
with respect to rigid motion and normalized such that
the mass of lines hitting the unit sphere is equal to π
and dP is the measure over planes invariant by rigid
motion and normalized such that the mass of planes
hitting the unit sphere is equal to 2. Again S and b̄ can
be considered either as total (scalar) parameters or as
well as measures.

Hence the measures U , S and b̄ can be expressed
as integrals with respect to lines or planes of Euler-
Poincaré measures.

BINARY IMAGES AND DISCRETE
MEASURES

A 2D or 3D binary image can be considered as a
subset of a rectangular grid L

d where d = 2,3. Such a
grid can be written as

L
d = ∆1Z× . . .×∆dZ ,

where the d-uple (∆1, . . . ,∆d) defines the pixel or
voxel size. A digitization scheme represents how a
continuous structure X is digitized into a binary image
Xd. According to the lattice scheme, Xd = X ∩ L

d .
According to the covering scheme a grid point x
belongs to Xd if the grid cell centered on x hits X .
Further details about digitization schemes and so-
called digitalizable maps can be found in Serra (1982).

Any measure µ on the grid L
d is defined by a

sequence of weights µ(x),x ∈ L
d and the relationship

µ(B) = ∑
x∈B

µ(x), B ⊂ L
d ,

i.e., µ is a weighted sum of Dirac measures. Note that
such a discrete measure can be also represented as an
image of weights. Below we will see how to compute
approximations of the Minkowski measures associated
with a continuous structure X from its digitization
Xd. All approximations will be measures on L

d , i.e.,
images of weights. Hence the computations can be
seen as image transforms: Xd 7→ Ad, Xd 7→ Ud etc.
where Ad, Ud denote the discrete approximations of A
and U .

Approximations of the planar area measure A
(d = 2) and the volume measure V (d = 3) are
straightforward:

Ad(B) = ∆1∆2 #{Xd ∩B} (6)

Vd(B) = ∆1∆2∆3 #{Xd ∩B} B ⊂ L
d (7)

where #{Xd ∩ B} is the number of pixels or voxels
contained in B.
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EULER-POINCARÉ MEASURES

The approximations χd are Euler-Poincaré
measures computed on polygonal and polyhedral
reconstructions Xr.

Reconstructions considered here are collections
of convex polygonal or polyhedral sets of different
dimensions, which touch only by their lower-
dimensional faces. Let us call the reconstruction
elements cells. For convenience, all lower-dimensional
faces of each cell are added to the reconstruction. The
cells are chosen such that their vertices belong to Xd,
and such that their edges belong to a given set of
adjacencies (Fig. 2).

The 4-adjacency in 2 dimensions and the 6-
adjacency in 3 dimensions, which consider only
orthogonal neighbours, lead to cubical reconstruction.
Each cell is either a vertex, an edge or a face parallel to
the directions of the grid, or a cube corresponding to a
tile of the grid. This reconstruction was called cubical
complex by Khachan et al. (2000) (Fig. 2).

For 8- and 26-adjacencies, all vertices of the
grid with a difference of coordinate at most equal to
one for each orthogonal direction are considered as
neighbours. In 2D, cells may be triangles and squares.
In 3D, cells may be polyhedra with 4 to 8 faces (Fig. 2).

(a) (b)

Fig. 2. Polyhedral reconstructions of a structure
using (a) the 6-adjacency and (b) the 26-adjacency.
The latter reconstruction contains various convex
polyhedra, triangular, square and rectangular faces,
and diagonal edges.

Other reconstructions may be considered, for
example the 6-adjacency in 2 dimensions, the 18-
adjacency, or the 14.1 and 14.2-adjacencies which
have been proposed by Ohser et al. (2002).

For a given reconstruction Xr, let us define its
envelope Xr as the union of all cells of Xr. The
approximation χd is defined as the Euler-Poincaré
measure associated with Xr.

Note that the Euler-Poincaré measure associated
with Xr can not be defined by Eqs. 1 and 2 since
the boundary of Xr is not smooth. Instead one can
use Zähle’s extension. For polygonal and polyhedral
sets the Euler-Poincaré measure is supported by the
vertices of Xr. For a vertex x where Xr is convex:

χd(x) =
α(Xr,x)

sd
, (8)

where α(Xr,x) is the normal angle of Xr at x, defined
as the solid angle of the set of vectors opposite to the
tangent cone, and sd is the surface of the unit ball in
dimension d.

When Xr is not convex at x, χd(x) depends on the
tangent cone of Xr at x. It is a matter simple but tedious
to show that χd(x) can be expressed as:

χd (x) = ∑
C∈Xr(x)

(−1)dimC α (C,x)
sd

, (9)

where Xr(x) is the subset of cells containing x. The
measure χd is obtained by:

χd(B) = ∑
x∈B

χd(x) . (10)

It is easy to check that χd(x) equals 1 for an
isolated vertex, 1/2 for an edge extremity. In 2D, other
possible values are 1/4 for square corners and 1/8 for
triangle corners when using 8-adjacency on a square
grid. In 3D, χd(x) equals 1/8 for the corner of a
cube. Using 26-adjacency on a cubic grid leads to 15
different values for χd(x).

By summing χd(x) on all vertices of Xr,
one obtains the Euler-Poincaré characteristic of Xr
expressed as a double sum on vertices and cells.
The summation order can be inverted. As the sum of
normalized normal angles of a convex cell equals 1,
the total mass of χd can be rewritten as the alternate
sum of numbers of vertices (V ), edges (E ), faces (F )
or solids (S ) of the reconstruction. We obtain the
classical Euler formula:

χd = #V −#E +#F −#S . (11)

The approximation of the Euler-Poincaré measure
strongly depends on the choice of the adjacency
system. As shown by Ohser et al. (2002), different
adjacencies can yield very different results. One
possibility is to choose the adjacency depending on the
geometry of the structure. For example, one can choose
4-adjacency or 6-adjacency for thick structures, and
8-adjacency or 26-adjacency for structures presenting
thin edges or isthmuses.
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LENGTH AND SURFACE AREA
MEASURES

Measures of perimeter, surface area and mean
breadth require discretization of Crofton formula
(Eqs. 3–5). The integrals over lines or planes are
approximated by sums over discrete sets of lines or
planes.

In the plane, the set of lines can be discretized into
horizontal and vertical lines (Fig. 3). An alternative is
to use also the 2 diagonal directions. As the density
of the lines varies with their direction, they must be
weighted accordingly.

Fig. 3. Discrete set of lines. Dots are grid vertices.
Discretization with 2 directions considers only
horizontal and vertical lines (in black). Discretization
with 4 directions also considers diagonals (in orange).
Line density is higher in the diagonal directions.

For instance, the perimeter expressed as the
integral (Eq. 3) is approximated by:

π
n ∑

k

χ (Lk)

λ (Lk)
, (12)

where k = 0, ...,n− 1 are indices of the n directions,
and λ (Lk) is the density of the lines parallel to the line
Lk. This density depends on the pixel sizes and may
vary with the line orientation.

Similarly, the set of lines (resp. planes) in the 3D
space can be discretized into lines parallel to (resp.
planes normal to) the 3 main directions of the grid.
Each discrete direction is associated with a weight
ck = 1/3, k = 1,2,3. A more precise solution is to
use 13 directions, following the (undirected) directions
between 2 vertices of the unit cube. Note that this
discretization is not isotropic. The choice of Ohser
and Mücklich (2000) was used: each direction is
represented by a point on the sphere, and weights ck,
k = 1, ...,13 are chosen according to the relative area of
the corresponding spherical Voronoi cell, normalized
such that ∑ck = 1 (Fig. 4). Note that line and plane
densities vary with the direction.

(a) (b)

Fig. 4. Partition of the unit sphere into 6 areas (a),
and 26 areas (b), corresponding to the directions of
the 6 or 26 neighbours of the central voxel. The areas
of the spherical sectors are the same in the case of 6-
neighbourhood.

The full discretization of Crofton formula requires
the computation of the Euler-Poincaré measure
restricted to lines or planes. Let us consider the
first approximation (Eq. 12) for the perimeter. For
each direction k, let Xr,k be the one-dimensional
reconstruction of X ∩Lk. This reconstruction consists
of vertices of Xd ∩ Lk and edges joining neighbour
vertices. The measures χ(Lk) are approximated by
the Euler-Poincaré measures χd,k associated with the
envelops Xr,k. The final approximation of the perimeter
measure can be written:

Ud(x) =
π
n ∑

k

1
λ (Lk)

∑
C∈Xr,k(x)

(−1)dimC α(C,x)
2π

,

(13)
where λ (Lk) is the distance between two pixels on a
discrete line oriented in the k-th direction. The final
approximations for the surface area measure and the
mean breadth measure in 3D are given by:

Sd(x) = 4∑
k

ck

λ (Lk)
∑

C∈Xr,k(x)
(−1)dimC α (C,x)

4π
, (14)

b̄d(x) = ∑
k

ck

a(Pk)
∑

C∈Xr,k(x)
(−1)dimC α (C,x)

4π
, (15)

where λ (Lk) is the density of lines in the k-th direction,
i.e., 1/λ (Lk) is the area of a tile of the lattice formed by
the intersection of the lines with a plane perpendicular
to them. The term a(Pk) corresponds to the density
of planes with the k-th direction, i.e., 1/a(P,k) is the
distance between 2 neighbour plates. The coefficients
ck are the weights given to each direction, and are
proportional to the area of Voronoi cells computed on
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the unit sphere, with germs depending on the discrete
directions (Ohser and Mücklich, 2000).

Note that for approximations of perimeter and
surface area measures, there is a choice on the number
of directions to use. For the mean breadth measure, one
must choose the number of plane directions and the
adjacency type for each plane.

ALGORITHMIC IMPLEMENTATION

The Minkowski measure approximations can be
computed from the global reconstructions Xr or Xr,k.
For large images, the reconstruction of the entire set,
and the computation of normal angles for each cell,
can lead to huge computation time. In practice, for
each pixel (resp. voxel) x, the computation of Xr(x)
in Eq. 9 or Xr,k(x) in Eqs. 13–15 is based only on the
3×3 (resp. 3×3×3) neighbourhood of x.

Each 3 × 3 (resp. 3 × 3 × 3) neighbourhood is
decomposed in 2×2 (resp. 2×2×2) tiles. A cell may
belong to several tiles. In 2D, a pixel belongs to 4 tiles,
an isothetic edge (parallel to one of the main directions
of the grid) to 2 tiles, a diagonal edge to 1 tile, and a
face to 1 tile (Fig. 5). In 3D, a voxel belongs to 8 tiles,
an edge to 1, 2, or 4 tiles, depending on its direction,
a face to 1 or 2 tiles, and a solid cell to 1 tile. The
contribution of each cell is weighted according to the
number of tiles it belongs to.

Fig. 5. (a) 3 × 3 neighbourhood of a pixel (b) its
decomposition in 4 2 × 2 tiles. The central pixel
belongs to the 4 tiles. Vertical edges belong to 2
tiles, the diagonal edge belongs to only one tile. The
triangular face belongs to only 1 tile.

Thus, approximations (Eq. 9, Eqs. 13–15) are
decomposed as sums of 4 (resp. 8) tile contributions.
The whole computation is achieved by linear filtering
and look-up table transformations. The objective of
the linear filtering is to identify each tile configuration
as described in Lang et al. (2001). Tile contributions
are computed from the filtered image using 4 (resp. 8)
look-up table transformations.

APPROXIMATION ACCURACY

First we provide numerical results about the
accuracy of the functional approximations. Then
we focus on the convergence of the measure
approximations.

In two dimensions, three types of shapes were
generated and digitized: disks with radius equal to
40 pixels, rings composed of the difference of two
concentric disks with radii 40 and 20 pixels, and
rotated squares with side length 30 pixels. The
comparison of approximations with exact values is
given in Table 1.

Table 1. Differences between exact and approximated
values for perimeter of planar shapes: a disk, a ring, a
square rotated with 0,10...45 degrees. Approximations
are computed using 2 and 4 directions.

shape U U2
d U4

d
disk 251.33 251.31 251.32
ring 376.99 376.99 377.02

square 0 120.00 94.24 112.66
square 10 − 109.96 120.51
square 20 − 120.95 122.68
square 30 − 127.23 120.82
square 40 − 130.38 115.73
square 45 − 131.95 113.18

For three-dimensional shapes, spheres with
constant radius of R = 30 voxels, and cubes with
side length L = 30 were used. The discretization of
a torus obtained by rotating a 10-radius disk along
a perpendicular 15-radius circle was also considered.
Comparison of true values and their approximations is
given in Tables 2 and 3. If differences are small in the
case of the ball, it can be bigger for cubes or torus. In
these cases, the effect of the directions discretization
is important. Note that for the considered structures, it
is reduced when using 13 directions instead of 3.

Table 2. Differences between exact and approximated
values for surface area of 3D shapes: a ball, a cube
and a torus. The orientation of the shapes is given by
the colatitude θ and the azimut ϕ .

shape ϕ θ S S3
d S13

d
ball 0 0 5026.5 5024.5 5023.6
cube 0 0 2400.0 1600.0 2160.4
cube 45 0 − 1989.3 2146.8
cube 45 45 − 2489.3 2249.0
torus 0 0 5921.7 5713.3 5895.8
torus 45 0 − 5893.3 5878.2
torus 45 45 − 6028.0 5906.2
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Table 3. Differences between exact and approximated
values for the mean breadth of 3D shapes.

shape ϕ θ b̄ b̄3
d b̄13

d
ball 0 0 40.0 39.9 39.9
cube 0 0 30.0 20.0 27.2
cube 45 0 − 25.0 27.2
cube 45 45 − 31.3 28.4
torus 0 0 47.1 40.0 46.2
torus 45 0 − 48.0 46.2
torus 45 45 − 48.7 47.0

Results about area and volume measure
approximations are already available (see, e.g., Kiêu
and Mora 2005; 2006). For a large class of planar
structures, the approximation error for Ad tends to 0
as fast as (∆1∆2)

3
4 . Concerning spatial structures, the

approximation error for Vd tends to zero as fast as
(∆1∆2∆3)

2
3 .

The convergence of the Euler-Poincaré
characteristic was established for the 2D case by Serra
(1982), and extended to the 3D for different types of
adjacencies (Nagel et al., 2000; Ohser et al., 2002;
Rataj, 2004).

In order to assess the asymptotic behaviour of the
Euler-Poincaré measure in 2D, the special case where
X is a disk has been considered. A function ϕ on
the plane has been chosen, and the convergence of
χd(ϕ) towards χ(ϕ) has been assessed. The chosen
function ϕ is a triangle function of θ , defined as the
angle between the line joining the origin to x and
the horizontal axis. The support of this function is
a circular sector, whose axis of symmetry is chosen
equal to π/8 and angular extent to π/4. This numerical
experiments shows that χd(ϕ) converges as the grid
resolution tends to 0 to a value which differs from
χ(ϕ) (Fig. 6).

Zähle (1990) provides a criterion which guarantees
that Minkowski measures of a reconstruction converge
towards the true value. This criterion involves the
normals of the reconstruction. For the reconstructions
considered in this paper, normals have a limited
number of directions, which does not increase with
the resolution. The same counter-example can be
considered in 3D space. Hence the 3D approximation
of the Euler-Poincaré measure does not converge
either. More general results on the approximation
errors would be of interest.

The mean breadth measure approximation involves
approximations of 2D Euler-Poincaré measures. In
view of the non-convergence of the latter measure, it
is likely that the mean breadth measure approximation
does not converge.

0 100 200 300 400
0.05

0.1

0.15

0.2

circle radius (pixels)

E
ul

er
−P

oi
nc

ar
é 

m
ea

su
re

Fig. 6. Non-convergence of the 2D Euler-Poincaré
measure approximation. The stars represent χd(ϕ) at
different resolutions computed using the 8-adjacency,
averaged over 100 realizations. See the main text for
description of ϕ . The horizontal line shows the true
value of χ(ϕ). The dashed lines show the interval
containing 95% of the measurements.

The perimeter measure is concerned with 3 levels
of discretization error. At the highest level, the set of
line directions is discretized into 2 or 4 directions.
Next, the set of lines in given direction is discretized by
a series of parallel lines. The line spacing is determined
by the grid resolution. At the lowest level, the number
of intercepts is approximated by configuration counts.
Approximations of the number of intercepts converge
as the grid resolution increases. At the intermediate
level, the approximation error also converges to zero as
the resolution increases. However, the error involved
at the highest level does not depend on the spatial
resolution. The latter error is expressed as follows:

π
n

n

∑
k=1

Hk , (16)

where Hk denotes the total projection length measure
on a line parallel to the k-th direction. As shown by
(Moran , 1966), this error ε is bounded by −0.2146×
U ≤ ε ≤ 0.1107×U for 2 directions and −0.0519×
U ≤ ε ≤ 0.0262×U for 4 directions.

The same types of errors are involved in the surface
area measure approximation. By simple calculation the
directional errors ε can be bounded by −0.3333×S ≤

ε ≤ 0.1547×S for 3 directions and −0.0733×S ≤ ε ≤

0.0227×S for 13 directions.
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GRADIENT PROFILE OF SURFACE
AREA

Many observed structures are not stationary and
exhibit heterogeneity. This heterogeneity can be
described by the variations of a geometric parameter
with the position. Practical solutions often consist in
computing the parameter in a subset of the image,
defined by a window, and to make the position of
the restricted window vary. The use of measures
generalizes this principle and overcomes problems
such as the choice of the window size, by producing
a map of contributions for each pixel or voxel of the
image.

The interpretation of Minkowski measures for
heterogeneity analysis is not straightforward. Spatial
variations at a scale smaller than the size of the objects
of interest are not meaningful. Small scale variations
can be removed by smoothing. When investigating
spatial heterogeneity along a given direction, it is
proposed to plot projections of Minkowski measures
onto the axis direction. Below, such plots are refered
to as gradient profiles.

The interest of gradient profiles in one direction
is shown through a synthetic example of spheres with
heterogeneous distribution and through the application
to a real image of tomato pericarp.

SYNTHETIC STRUCTURE

Fig. 7 shows a synthetic ball process presenting
a strong heterogeneity. The balls are generated with
a density linearly increasing along the x-axis, and by
keeping a minimal distance between centroids such
that balls do not overlap. The radius of the balls are
chosen according to the ball density, such that the
volume occupied by the balls remains theoretically
constant. The structure is discretized such that the
diameter of smaller balls corresponds to 8 pixels.

The approximation of the corresponding surface
area measure is computed from the discrete image
using 3 and 13 discrete directions. Contributions of
voxels with the same x-coordinate are summed in order
to produce a profile of surface area. The profiles for the
true value and the approximations nicely superimpose.
The approximation errors are small and do not disturb
the interpretation of the spatial heterogeneity.
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Fig. 7. (a) An inhomogeneous ball process. The density
decreases from left to right, as the typical ball volume
increases. A minimal distance between centroids is
kept such that the balls do not overlap. (b) The volume
and the surface area profiles are estimated along the
x-axis and compared with the true measures.

TOMATO PERICARP

The construction of gradient profiles is adapted for
describing the changes of morphology in biological
structures organized with respect to a reference
surface, for example epidermis, organs, or fruits.
Tomato pericarp is the fleshy part found around
tomato fruit and is made of cells whose morphology
varies with depth (Cheniclet, 2005). Quantification
of variations of cell morphology is required to
study relations with mechnical or sensorial texture
properties.

Fig. 8 shows a 3D image of tomato pericarp
acquired by confocal microscopy. The image was
obtained after merging several adjacent 3D stacks
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acquired from the external epidermis to the tomato
center. After noise filtering, cells were segmented
by a 3D watershed operation, resulting into two
components: cell interiors and cell walls. Small cells
were observed near the epidermises and large cells
more or less elongated in the pericarp centre.

Fig. 8. A 3D isosurface representation of a binary
image obtained after 3D segmentation of a confocal set
of tomato pericarp images. The surface area measure
is plotted in the radial direction of the pericarp.

The surface measure of cell walls, and the volume
measure of pericarp were computed from the image,
and the gradient profile of surface area density was
extracted according to the distance to the external
epidermis (Fig. 8).

Surface area density is much higher in the region
close to the external epidermis, has a lower value in
the middle of the pericarp, and increases again near
the internal epidermis. As the volume occupied by the
cells is nearly constant, and cells are nearly convex, the
increase of surface area density can be interpreted as a
decrease of cell mean size, and hence as an increase of
cell number.

CONCLUSION

In this paper, methods for approximating
Minkowski measures of 2D and 3D structures have
been developed. These methods are direct extensions
of previous works on Minkowski functionals. By using
measures, it is possible to compute profiles describing
spatial heterogeneity in a given direction.

Convergence results hold for area measure in 2D
and volume measure in 3D. Asymptotic error bounds
are provided for the perimeter measure in 2D and
the surface area measure in 3D. For most practical
cases their accuracy seems sufficient when 4 directions

in 2D or 13 directions in 3D are used. Based on
numerical counter-examples, it is shown that Euler-
Poincaré measure approximations in 2D and 3D, and
mean-breadth measure approximations in 3D do not
converge.

Further results about the accuracy of these measure
approximations are still lacking, making the use
of these approximations hazardous. An alternative
approach is to consider other types of reconstructions
(Klette and Rosenfeld, 2004), whose advantage is that
the number of normal directions increases with the
spatial resolution.

An implementation of the method for the Matlab
software is proposed. The complete functions, as well
as some examples, are provided as a library, available
on the Internet 1.
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