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Computation of molecular spectra on a quantum processor with an error-resilient
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Harnessing the full power of nascent quantum processors requires the efficient management of
a limited number of quantum bits with finite coherent lifetimes. Hybrid algorithms, such as the
Variational Quantum Eigensolver (VQE), leverage classical resources to reduce the required number
of quantum gates. Experimental demonstrations of VQE have resulted in calculation of Hamiltonian
ground states, and a new theoretical approach based on a Quantum Subspace Expansion (QSE) has
outlined a procedure for determining excited states that are central to dynamical processes. We use
a superconducting-qubit-based processor to apply the QSE approach to the H2 molecule, extracting
both ground and excited states without the need for auxiliary qubits or additional minimization.
Further, we show that this extended protocol can mitigate the effects of incoherent errors, potentially
enabling larger-scale quantum simulations without the need for complex error-correction techniques.

I. INTRODUCTION

Quantum computing, the field of physics dedicated to
harnessing quantum phenomena to process information,
is rapidly progressing along the path from theoretical
curiosity to practical technology. Recent experimental
progress has been swift, with successful demonstrations
of proof-of-concept algorithms on a range of fledgling
quantum processors comprised of natural or engineered
quantum spins [1–5]. However, even in leading archi-
tectures such as superconducting circuits and trapped
ions, state-of-the-art systems comprise only few to tens
of qubits—the quantum analog of classical bits—and are
difficult to control with high precision. For gate-based
quantum processors to be competitive with, or outper-
form their classical counterparts, both qubit number and
gate fidelity must increase significantly [6, 7]. Indeed,
much of the field is currently focused on the design of a
multi-qubit architecture capable of demonstrating an un-
ambiguous quantum speedup over classical computers.

Recent theoretical advances suggest that a hybrid
approach—judiciously dividing a computation between
quantum and classical resources—will likely find utility
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in specific applications prior to the emergence of univer-
sal quantum computation [8–11]. One such example is
calculating the ground-state energy of complex chemical
systems, such as is often required in photovoltaics, biolog-
ical reactions, and catalyst design. Based on the quan-
tum variational principle—that the ground-state wave-
function of any Hamiltonian minimizes the expected en-
ergy [12]—an iterative protocol, known as the Variational
Quantum Eigensolver (VQE) was developed [13]. This
approach uses a classical optimization routine to min-
imize the expected energy of candidate wavefunctions,
using the quantum hardware to evaluate the expected en-
ergy. Essentially the VQE leverages the unique capacity
of shallow quantum circuits to prepare entangled states
from which efficient classical sampling is not known to
be possible.

Essential ingredients of the VQE algorithm have re-
cently been demonstrated on a variety of experimental
platforms [13–19]. These initial experiments indicate a
robustness to systematic control errors (so-called coher-
ent errors) which would preclude fully quantum calcula-
tions, as well as a manageable scaling of quantum circuit
depth with Hamiltonian complexity [18, 19]. However,
work to date has focused primarily on calculating molec-
ular ground-state energies; while extending the VQE ap-
proach to find excited states has been demonstrated in
the optical domain, it required additional qubits, com-
plicated multi-qubit control, and additional variational
searches [18]. The characterization of excited states is
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crucial for the description of all phenomena involving sig-
nificant electronic dynamics, which encompasses a broad
class of systems of interest [20]. For example, charge
transfer excited states in battery or photovoltaic materi-
als or excitonic excited states in photosynthetic systems
are required for the accurate description of dynamics and
performance. Moreover, even in the case of more stan-
dard chemical reactions, the involvement of electronic
excited states may be required for an accurate descrip-
tion of the process, with traditional examples such as
photo-dissociation relying critically on this characteriza-
tion [21, 22].

Using a quantum processor comprising two supercon-
ducting transmon qubits in a 3D geometry with real-
time classical optimization, we diagonalize the electronic
structure Hamiltonian of the hydrogen molecule over a
wide range of nuclear separations using a variational al-
gorithm. We demonstrate, for the first time within such
an architecture, the ability to calculate the full energy
spectrum of a given Hamiltonian beyond just the ground
state. In addition, we implement a recently developed
theoretical extension to the VQE approach based on a
Quantum Subspace Expansion (QSE), establishing it’s
ability to at least partially mitigate stochastic, incoher-
ent errors [23], allowing us to attain near chemical accu-
racy (1.6 × 10−3 H) in the calculated energy spectrum.
Our work shows how errors can be suppressed via addi-
tional measurements, potentially offering an alternative
to more advanced error-correction techniques, which are
typically difficult to implement and require large resource
overhead. These methods can be directly transferred to
other systems, such as planar superconducting platforms
and ion traps, where significant numbers of qubits can
be routinely controlled and read out [1, 2, 24–26], poten-
tially paving the way for larger more complex quantum
simulations in the near future.

II. GENERAL APPROACH

The electronic structure Hamiltonian, an operator on the
space of electronic wavefunctions, is first cast into a form
suitable for evaluation on a quantum processor. Specif-
ically, the Hamiltonian is first projected onto a discrete
set of molecular orbitals—we use the conventional STO-
3G basis set [27], which constitutes a so-called minimal
set in that it represents the minimum number of orbitals
required to represent a given atomic shell. The result-
ing fermionic Hamiltonian HF is finally mapped onto a
two-qubit Hamiltonian HQ (SI Mapping of the H2 Hamil-
tonian to Qubits). The correspondence between qubit
states and chemical basis states is shown in Fig. 1A. For
the hydrogen molecule, HQ takes the form

HQ = g0 +g1σ
1
z +g2σ

2
z +g3σ

1
zσ

2
z +g4σ

1
yσ

2
y +g5σ

1
xσ

2
x, (1)

where σik is the kth Pauli operator on the ith qubit, and
the coefficients {gm}, and thus the total Hamiltonian, are

functions of R, the separation between the two hydrogen
nuclei. For a given two-qubit state |ψ〉, prepared on the
quantum processor, the expectation 〈HQ〉 is evaluated
through repeated measurements of Pauli correlators.

An outline of the VQE algorithm is depicted in Fig. 1B

and consists of parameterizing a quantum circuit U(~θ)

to prepare an ansatz wavefunction |ψ(~θ)〉, evaluating the

expectation 〈ψ(~θ)|HQ|ψ(~θ)〉 term-wise using a quantum
processor, and then using a classical minimization algo-

rithm to update parameters until a minimum, ~θmin is

found. The quantum state |ψ(~θmin)〉 then constitutes an
approximation to the ground state of HQ, with an esti-

mated energy of 〈ψ(~θmin)|HQ|ψ(~θmin)〉.
Once the VQE algorithm has converged on an estimate

of the ground state wavefunction, the quantum subspace
expansion can be applied by measuring additional Pauli
correlators that form an approximate matrix representa-
tion of HQ within an expanded subspace. This matrix
can then be diagonalized classically to yield both low-
lying excited-state energies and a refined ground-state
energy estimate (Fig. 1C). If the expansion is chosen
such that its dimension scales polynomially with system
size, this classical matrix calculation is efficient [23]. The
effectiveness of the QSE thus requires the existence of
such a subspace which captures a significant amount of
the excited state support.

We expect that molecular excited energy levels differ
from the ground state primarily by excitations which pro-
mote a single electron from an occupied to an unoccupied
orbital. Therefore to a good approximation, these states

are linear combinations of {S1 : a†iaj |ψGS〉}, where aj
(a†i ) are fermionic annihilation (creation) operators for
the electronic orbitals. While S1 could serve as a sub-
space, a more natural choice when working with qubits
involves the set of single Pauli flips {P1 : σkα|ψGS〉 | α ∈
{x, y, z}, k ∈ {1, 2}}, which we refer to as a linear re-
sponse expansion. To calculate the matrix elements Hij

in the P1 basis, we use the quantum processor to evaluate
the inner products

Hij = 〈ψGS |σ†iHσj |ψGS〉, (2)

where |ψGS〉 is taken to be the initial approximate ground

state |ψ(~θmin)〉, found via the VQE routine.
While the non-linear nature of the ansatz selected dic-

tates that there may exist local minimum within the
variational search portion of the procedure, in practice
we utilize an initial guess that is thought to be within
the basin of attraction for standard local minimizers of
a high quality minimum and multi-modality is often not
observed in practice [28]. In the case of excited states,
we benefit from the linear construction of the problem,
in that once the minimum and excitation operators have
been selected, the solution of the linear subproblem is ex-
act (within the subspace). Thus for our procedure, local
minima that can plague variational excited state searches
are less likely to be an issue.
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FIG. 1. Description of the variational quantum eigensolver algorithm and associated quantum subspace expansion. (A) Mapping
between qubit states and electronic states of the hydrogen molecule in the STO-3G basis. As the molecular Hamiltonian
preserves total spin projection, the four states with sz = 0 (dashed box) decouple from the other two. These four are mapped
to the four two-qubit basis states. (B) Flowchart outline of the algorithm with classical resources colored in blue and quantum
resources colored in yellow. Inset shows a cartoon example of the swarm minimization process with equal-energy contours
shown in gray scale and 5 swarm particle trajectories (colored). (C) Cartoon of the QSE protocol; operators from Oi are used
to expand about the variational solution provided by the VQE, allowing for the mitigation of incoherent errors that otherwise
render the true ground state inaccessible. (D) Typical qubit preparation and measurement sequence consisting of a projective
heralding measurement (on which we later postselect so that the qubits start in the state |00〉), single-qubit and two-qubit
pulses, tomography pulses, and finally a projective readout.

Beyond providing a means of calculating molecular ex-
cited state energies, it was conjectured in ref. [23] that
the inclusion of specific measurement operators expand-
ing the number of states under consideration, the QSE
could improve the accuracy of the initial VQE ground
state estimate. While the VQE can in principle cor-
rect for the presence of coherent gate errors, the QSE
was thought to additionally correct for incoherent errors,
such as dephasing or amplitude damping (SI QSE with
Errors). As discussed in the results section, we find ex-
perimental support for this conjecture.

III. EXPERIMENTAL METHODS

A. Quantum

The quantum processor we use to evaluate expectation
values consists of two superconducting qubits of the
transmon variety [29, 30], one of the leading types of

superconducting qubits in terms of design simplicity and
coherence time. The qubits are initialized in the joint
ground state |00〉 via a heralding measurement [31]. A

generating circuit U(~θ) is then used to prepare the de-

sired trial wavefunction (with ~θ specified by the classical
hardware—see next section).

U(~θ) consists of three microwave pulses resonant with
the desired qubit transition (shown in Fig. 1D). First,
two single-qubit rotations take place, parameterized by
amplitudes (θ1, θ3) and phases (θ2, θ4). Second, an entan-
gling operation, known as the bSWAP gate [32], performs
a rotation within the subspace spanned by {|00〉, |11〉},
parameterized by a length (θ5) and a phase (θ6).

Single-qubit pulses on qubit A and B last 50 and 70
ns respectively, and achieve fidelities of ∼99%. The two-
qubit pulse takes up to 310 ns and approaches a fidelity

of ∼96%. After state preparation via U(~θ), tomographic
reconstruction is used to evaluate 〈H〉 =

∑
ij

hij 〈σiσj〉.

Note that in future implementations of VQE on larger
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quantum systems, full tomography will be impossible
(due to an exponential scaling of the number of required
measurements). Instead, only the necessary correlators
will be directly measured. For this reason, our recon-
struction of the two-qubit density matrix from the tomo-
graphic measurements did not use any method such as
maximum-likelihood estimation which enforces physical-
ity (positivity and trace-normalization) on the result (see
(SI Experimental Details).

A near-quantum-limited traveling wave parametric
amplifier [33, 34] enables high-fidelity single-shot mea-
surement of the joint qubit state (SI Experimental De-
tails). The entire sequence, including both state prepa-
ration and measurement, comprises less than ∼1.5 µs,
below the coherence times of the qubits: 16 µs T1A, 13.5
µs T ∗2A, 12 µs T1B , 3.5 µs T ∗2B .

B. Classical

With the two-qubit processor providing a means to ef-

ficiently evaluate 〈H〉(~θ), the classical computer uses a
particle-swarm optimizer (PSO) to find parameter values
~θmin which minimize this objective function, as shown in
Fig. 2A. Input parameters to the PSO are normalized
to lie between 0 and 1. Amplitudes for each individual
qubit are scaled by that required for a pulse between the
|0〉 & |1〉 state and for the bSWAP pulse by the equiva-
lent amplitude for a pulse between the |00〉 & |11〉 state.
Pulse phases are normalized to lie between 0 and 2π ra-
dians.

The PSO approach has two properties useful for this
work: it is likely to avoid getting trapped in local min-
ima and it is more robust to noisy objective-function
calls [35]. The optimization treats a single point in pa-
rameter space as a particle, which has a velocity and po-

sition. A swarm of n such particles {|ψ(~θs,i)〉, i ∈ [1, n]}
(with s the swarm iteration number) is first randomly
initialized and then at each iteration, the particles’ posi-
tions are updated based on both their own energy evalu-
ation and those of others in the swarm (SI Experimental
Details). Figure 2B shows how iterating through this
loop allows the particles to converge on a set of control
parameters that prepares the best approximation of our

system’s ground state
∣∣∣ψ(~θg)

〉
and its associated energy.

IV. RESULTS

We apply our algorithm to the H2 molecule for 45 inter-
nuclear distances between 0.05 Å and 3.85 Å. As shown
in Fig. 2A for a internuclear distance of 1.55 Å and a

random initialization of 20 swarm particles over ~θ, we ob-
serve good convergence of the control parameters within
12 swarm iterations. Each function evaluation consists
of 10,000 acquisitions and lasts on the order of a minute,

FIG. 2. Control parameter convergence as a function of classi-
cal optimizer iteration. (A) Median (solid line) and standard
deviation (shaded region) for all 6 normalized parameter val-
ues as a function of swarm iteration number at an internuclear
bond distance of 1.55 Å. A swarm of 20 particles demonstrates
convergence after approximately 12 iterations or equivalently
240 function evaluations. See SI VQE and Coherent Errors
for convergence details. (B) Median energy (solid line) and
standard deviation (shaded region) of swarm particles as a
function of iteration number for the corresponding data in
(A). Monotonic convergence of median energy towards the
theoretical value is observed followed shortly thereafter by
a rapid decrease in swarm energy variance. Trace distance
(dots) of the variationally prepared ground state as a func-
tion of swarm iteration shows reasonable convergence to the
theoretically expected ground state. The small remaining dis-
crepancy is most likely due to the flat nature of the energy
landscape and unavoidable decoherence during state prepara-
tion and readout.

resulting in a total algorithm run time of approximately
four hours. Experimentally optimized parameters show
deviation from those that would be expected in the case
of idealized gates (SI VQE and Coherent Errors). In par-
ticular, while the experimental single-qubit gate ampli-
tudes and two-qubit bSWAP length agree with numerical
simulations, the phase of the bSWAP differs significantly,
most likely due to an unaccounted for Stark shift during
application of the gate. The successful convergence of the
algorithm despite this mis-calibration thus provides ad-
ditional proof of the protocols intrinsic ability to correct
for coherent errors.

Plotting the median energy of the swarm as a function
of iteration number, we observe a large initial energy er-
ror due to the random nature of the particle initialization,
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FIG. 3. H2 energy spectrum as a function of internuclear distance. Swarm particle energies for each bond length are his-
togrammed after application of a linear response expansion and Gaussian filter. Energy estimates obtained by a peak finding
routine are indicated by dots with theoretically predicted energy levels shown as solid lines. An unphysical spurious state
emerges at internuclear distances greater than ∼ 1.2 Å due to uncorrected incoherent errors. Inset shows errors in the esti-
mated ground and excited state energies as compared to chemical accuracy (1.6× 10−3 Ha).

followed by an almost monotonic decrease towards the ex-
act theoretical value. When calculating an estimate for
a new internuclear distance, we exploit the smoothness
of the parameter landscape and re-initialize the swarm
particles around the minimum found in the preceding
run, allowing them to vary by only 5% from their previ-
ous optimum values. This technique allows us to reduce
the resources required to achieve convergence from the
initial 50 particles and 25 iterations used at 3.85 Å to
only 20 particles and 6 swarm iterations for subsequent
runs. Once each internuclear separation of interest has
been processed, we have an initial approximation for the
ground state energy function of the H2 molecule.

To derive excited states from this approximate ground
state, we apply the linear-response QSE to each
individually-reconstructed density matrix recovered dur-
ing the minimization process. The results of applying
this expansion are plotted in Fig. 3 where data are binned
with 1.5 mHa resolution before convolution with a Gaus-
sian filter (standard deviation of 7.5 mHa). Peak-finding
routines are then used to estimate the mean energies for
both the corrected ground and excited states. This shows
improved robustness for small numbers of swarm itera-
tions as it is less affected by outlying particles in the
swarm yet to reach the global minimum. Extracting all
four states reliably requires the use of the full linear-
response expansion (SI QSE and Choice of Expansion
Operators).

Errors between experimentally predicted energies for

FIG. 4. Comparison of errors in the ground-state energy esti-
mate when applying the QSE protocol using various combina-
tions of expansion operators. The linear response expansion
(dark blue dots) provides an improvement of more than an
order of magnitude over the bare VQE estimate (yellow dots)
for the majority of internuclear distances computed.

the ground and excited states and their true values are
plotted in the inset of Fig. 3. Chemical accuracy, the
level required to make realistic chemical predictions, is
achieved for the ground and highest excited state across
a wide range of internuclear distances. Estimates of
the second and third excited state energies are generally
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within an order of magnitude of this level. It is interesting
to note that although the ground electronic state wave-
function near equilibrium requires little entanglement to
accurately represent, the same is not true of the excited
states. The QSE is able to approximate these states with
only additional local measurements and efficient classical
computation, without an increase in required entangle-
ment on the quantum state of the qubits.

Figure 4 shows the deviations from the theoretically
expected values for the corrected ground-state energies
when using different underlying measurement operators
for the applied QSE. Those involving just a single Pauli
operator offer sporadic improvement over the uncorrected
case, with the σz operator achieving best results at
smaller internuclear separations while the σx operator is
most useful at larger ones. The complete linear-response
expansion is able to mitigate incoherent errors for which
that the bare VQE algorithm is unable to compensate
and produces a reduction in the energy estimate error
of almost two orders of magnitude over the entire range.
By expanding the set of QSE operators (SI QSE beyond
Linear Response), it is possible to further improve the
ground-state estimate. However, such an expansion in-
curs increased computational cost. Going forward, it will
be important to explore the tradeoff between accuracy
and QSE subspace size in extracting the spectra of larger
molecules.

Note that ideally, the total number of extracted en-
ergy levels should be upper-bounded by the dimension of
the Hamiltonian. However, if the extant error channels
cause the prepared VQE ground state to be sufficiently
mixed (for a given set of QSE operators), it is possible
to extract additional “spurious” energy levels. Such a
spurious state is observed as indicated in Fig. 3 for inter-
nuclear distances between ∼ 1.2Å and ∼ 1.7Å. In some
cases, these states may be discarded on the basis of conti-

nuity of the energy as a function of internuclear distance.
Alternatively, these states can be removed by increasing
the span of the QSE operators (at the cost of an increased
tomographic measurement overhead). The exact condi-
tions for the presence of a spurious state are currently
being investigated.

V. CONCLUSION

We have experimentally implemented an augmented vari-
ational quantum eigensolver that uses a polynomial num-
ber of additional tomographic measurements to extract
molecular excited-state energies and mitigate incoherent
errors on the ground-state estimate. With the hydro-
gen molecule as a test case, we additionally confirm the
intrinsic ability of the algorithm to correct for coherent
gate errors when pulse properties are optimized directly.
Used with classical particle swarm minimization routines
well suited to high-dimensional noisy environments, these
techniques yield energy estimates with near-chemical ac-
curacy. Our results highlight the potential of QSE to
significantly reduce the need for more advanced error
correction techniques, thereby facilitating practical ap-
plications of near-term quantum hardware.
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