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We describe the construction of stepped-pressure equilibria as extrema of a multi-region, relaxed

magnetohydrodynamic (MHD) energy functional that combines elements of ideal MHD and Taylor

relaxation, and which we call MRXMHD. The model is compatible with Hamiltonian chaos theory

and allows the three-dimensional MHD equilibrium problem to be formulated in a well-posed

manner suitable for computation. The energy-functional is discretized using a mixed finite-

element, Fourier representation for the magnetic vector potential and the equilibrium geometry;

and numerical solutions are constructed using the stepped-pressure equilibrium code, SPEC.

Convergence studies with respect to radial and Fourier resolution are presented. VC 2012 American

Institute of Physics. [http://dx.doi.org/10.1063/1.4765691]

I. INTRODUCTION

Zero-Larmor-radius, single-fluid magnetohydrodynam-

ics (MHD) is commonly used for modeling the global, long-

time-scale state of plasmas in the magnetic confinement

devices used for fusion power research. It is often reasonable

to approximate the plasma pressure tensor as isotropic and to

ignore inertial effects due to small mass flows. There is no

minimum length scale in this model, so spatial discontinu-

ities are allowed.1 To allow a weak formulation, we write the

equilibrium condition in conservation form

r � p I þ B2

2l0
I � BB

l0

�

¼ 0;

�

(1)

where, using SI units, l0 is the permeability of free space,

pðrÞ � 0 is the pressure as a function of position r¼ xi þ yj
þ zk, and B(r) is the magnetic field, which must obey

r � B ¼ 0. While MHD is a rather crude model for the

physics of a plasma, the Maxwell equations for the magnetic

field and the “dynamics” of field lines are exact.

The problem addressed in this paper is, treating both p

and B as unknown fields within suitable function spaces, find

general, weak solutions of Eq. (1) in an arbitrary, three-

dimensional (3D) toroidal domain, V, under the homogene-

ous boundary conditions,

p ¼ 0; n � B ¼ 0; 8 r 2 @V; (2)

where n is the unit normal at the boundary, @V. We take the

boundary to be fixed, being either the edge of a plasma

confined by a notional, tight-fitting shell, or the boundary of

a surrounding vacuum region.

Our goal is to formulate the 3D equilibrium problem

in a way that is as well-posed mathematically as the

two-dimensional (2D) problem, by which we mean that a

well-defined, unique solution exists. And, to develop an

accurate, robust, and efficient numerical solution method,

where the error between the approximate numerical solu-

tion, e.g., fh, and the exact solution, f, is bounded and

goes to zero as fh ¼ f þOðhnÞ, where h characterizes the

numerical resolution and n depends on the numerical

discretization.

If p and B are assumed to be differentiable within a

subregion of V, then Eq. (1) is locally equivalent to the

force-balance condition

rp ¼ j� B; (3)

where j ¼ r� B is the current density (here, and hereafter,

l0 is ignored). We will not restrict attention to differentiable

solutions in the following, but we will work within the

approximation that B � rp ¼ 0, which follows directly from

Eq. (3). Physically, this approximates the transport of heat

and mass along the magnetic field as infinite compared to

that across the field. This immediately implies that p is invar-

iant along the magnetic field: the spatial dependence of the

pressure and the phase space structure of the magnetic field

are intimately connected.

A specific equilibrium state is characterized by the

pressure, i.e., p is considered to be a supplied, input func-

tion. The computational challenge is to then determine the

magnetic field that is consistent with the given pressure and

boundary. Generically, in 3D, there exist regions within V
where the magnetic field lines are chaotic. To admit

numerically tractable solutions for B, it is necessary to

restrict the class of admissible functions for p; and to guar-

antee that B is consistent with a given p, topological con-

straints on B must be enforced.
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In Sec. II, we review the salient properties of 3D mag-

netic fields, which generally have a fractal phase space, and

we sketch the nature of continuous solutions for p and B.
This is based on the construction of an ergodic partition;

which, being fractal, is impractical from a standpoint of

numerical implementation. So, we describe a discrete parti-

tion that greatly simplifies the equilibrium problem and leads

naturally to stepped-pressure equilibria, where the plasma is

modeled as a set of nested volumes in each of which the field

satisfies the Beltrami equation, r� B ¼ lB, and across the

interfaces that separate these volumes the total pressure is

continuous, ½½pþ B2=2�� ¼ 0.

“Sharp-boundary”2 states and multi-volume3 sharp-

boundary states have been considered previously, and Bruno

and Laurence4 have presented theorems that insure the exis-

tence of sharp boundary solutions, with an arbitrary number

of pressure jumps, for tori whose departure from axisymme-

try is sufficiently small. In Sec. III, we introduce a varia-

tional approach to solving Eq. (1) based on the notion of

multi-region, relaxed MHD (MRXMHD), which is a gener-

alization of Taylor’s5 relaxed-MHD formulation: that a

sufficiently turbulent/chaotic, weakly non-ideal plasma will

evolve so as to minimize the energy subject to the constraint

of conserved magnetic helicity, and in doing so will break

most of the constraints6 of ideal MHD, thus allowing mag-

netic reconnection. In MRXMHD, a plasma with a non-

trivial pressure profile is constructed as a nested collection

of relaxed states, between which the ideal-MHD constraints

apply. By deriving the Euler-Lagrange equations, we see

that the MRXMHD energy functional has stepped-pressure

equilibria as extremizing solutions. A close examination of

the force-balance condition, ½½pþ B2=2�� ¼ 0, reveals that

the rotational transform of the interfaces must be strongly

irrational.

In Sec. IV, the MRXMHD energy functional is discre-

tized using a mixed Fourier, finite-element representation

for the vector potential and geometry. Setting to zero the

derivatives of the energy functional with respect to the

vector-potential in each volume gives a linear system for

the magnetic field, r� B ¼ lB, where l is a Lagrange

multiplier (sometimes called the Beltrami parameter).

This can be adjusted in order to preserve the helicity inte-

gral, or both l and the enclosed poloidal flux can be

adjusted to satisfy the interface rotational transform

constraints.

Assuming the Beltrami fields in each volume have been

computed for an arbitrary interface geometry, the problem of

constructing an equilibrium solution is standard: changes in

the interface geometry are allowed to either minimize the

energy functional using conjugate gradient methods, or to

find a zero of the multi-dimensional gradient � force-

balance vector using a Newton method. To fully constrain

the Fourier representation of the interface geometry, we

employ spectral-condensation7,8 methods to obtain a pre-

ferred poloidal angle coordinate. Illustration of equilibrium

states and convergence studies are then presented.

At appropriate points in the discourse, we contrast our

approach to constructing equilibrium solutions with others in

the literature.

II. HAMILTONIAN CHAOS, PARTITIONED

Magnetic-field-line flow is a Hamiltonian system.9 The

well-developed theory of Hamiltonian dynamical systems

(see, for example, the texts by Wiggins10 and Lichtenberg

and Lieberman,11 and the review by Meiss12) provides a

strong foundation on which to build. We shall sometimes use

general dynamical-systems language rather than the more

specialized plasma terminology; for instance, using “orbit”

and “magnetic field line” interchangeably. To facilitate the

following discussion, we use cylindrical coordinates,

ðR;/; ZÞ, which are orthogonal and right handed, so that

x ¼ R cosð/Þ; y ¼ R sinð/Þ, and z¼ Z, and (x, y, z) are

Cartesian.

Devices of the tokamak and reversed-field-pinch (RFP)9

classes use a large number of identical toroidal field coils

arranged with a discrete rotational symmetry about the z-

axis. In the axisymmetric special case, it is reasonable to

seek solutions that are invariant under rotation.

Axisymmetric magnetic fields are representable as

1-degree-of-freedom (1-dof) autonomous Hamiltonian sys-

tems,9 with /, periodic, playing the role of time. Such sys-

tems are integrable in the dynamical systems sense, and

action-angle coordinates may be constructed. The field lines

lie on nested invariant tori, w ¼ const, which foliate the

extended phase space, ðw; h;/Þ, where w is a toroidal flux

function and h is a poloidal angle that increases linearly

against /. In the terminology of magnetic confinement, the

invariant tori are called magnetic flux surfaces, and action-

angle coordinates are called straight-field-line coordinates.

In the following when we refer to an integrable system we

will assume that the integrable system has shear.

The invariant tori � flux surfaces are characterized by

their rotation number � rotational transform, which is com-

monly denoted in magnetic confinement plasma physics by

-i. (Historically,13 the term rotational transform refers to i,

the average poloidal angle increase in each iteration of the

return map, but in modern usage,9 it is used for -i � i=2p,
and often the “bar” is omitted.) If -i is a rational number,

-i ¼ n=m, where n and m are integers, then the corresponding

surface is foliated by periodic orbits � closed field lines,

which close on themselves after m toroidal transits, having

undergone n poloidal transits. If -i is an irrational number,

then the flux surface is covered ergodically by a single

quasi-periodic orbit, which never closes on itself (but comes

arbitrarily close), and each irrational surface is the closure of

an irrational field line.

In the axisymmetric case, the equilibrium problem can

be reduced to the task of solving a 2D partial differential

equation, the Grad-Shafranov equation,9,14 which is well-

posed (except for bifurcations15). The equilibria are charac-

terized by two free profile functions, e.g., the pressure, pðwÞ,
and the rotational transform, -iðwÞ. Because space is foliated

by flux surfaces, equilibria with continuous, smooth profiles

are admissible; in fact, the only magnetic fields consistent

with B � rp ¼ 0 and globally smooth profiles are integrable

magnetic fields.

Axisymmetry is necessarily always broken to some

extent by the modular nature of the conductors and machine
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imperfection, or by intentionally applied perturbation fields,16

or by equilibrium bifurcations.17 The stellarator family9,18 of

confinement devices is intentionally nonaxisymmetric. This

allows greater freedom in the design of experiments and can

provide enhanced plasma stability. (The nonaxisymmetry of

stellarators, however, generally leads to degraded particle

confinement; this can be ameliorated, somewhat, by the use

of “quasi-symmetric” configurations.19)

The 3D magnetic field-line flow is still analogous to a

Hamiltonian dynamical system but, because there is no lon-

ger a symmetry coordinate, the 3D field-line Hamiltonian is

not autonomous. Such systems, still periodic in /, are called

1 1
2
-dof systems and are generically non-integrable, meaning

that the extended phase space is almost never foliated by

invariant tori.

The periodic orbits are fragile. Resonant magnetic fields

associated with geometric deformation destroy almost all

of the periodic orbits, magnetic islands form, and regions of

chaotic magnetic field lines emerge. The destruction of

rational surfaces is related to the classical problem of small

denominators in the transformation to action-angle coordi-

nates for the perturbed system. The Poincar�e-Birkhoff

theorem12 shows that, for every rational invariant torus pres-

ent in the integrable case, at least two of the periodic orbits

survive. One orbit is hyperbolically unstable, while the other

is elliptically stable or has become hyperbolic through a

period-doubling bifurcation.

These orbits, known as Poincar�e-Birkhoff orbits, form a

robust “skeleton” of invariant sets and provide crucial infor-

mation about the structure of phase space. The existence of a

given Kolmogorov-Arnold-Moser (KAM) surface (described

below) can be inferred from the stability of nearby periodic

orbits using Greene’s residue criterion.20 Associated with

each unstable periodic orbit is an unstable manifold and a cha-

otic sea10 comprised of irregular trajectories without a well

defined rotational transform, i.e., the ratio Dh=D/ does not

converge as D/ ! 1, where Dh and D/ are the increase in h

and / along a field line. Although there is no formal proof,12

it is standard to assume, based on computational evidence,

that the closure of each chaotic sea is a three-dimensional sub-

set of R3, as each irregular trajectory seems to fill a volume.

Associated with the elliptic periodic orbits are local regions of

regular trajectories, the so-called magnetic islands.

The irrational field lines are quite robust to perturbation.

Indeed, they are guaranteed to survive by the Aubry-Mather

theorem; however, a given irrational field line may or may

not come arbitrarily close to every point on a smooth surface.

The KAM theorem, named in honor of Kolmogorov, Arnold,

and Moser,21–25 shows that a finite measure of invariant tori

do exist for sufficiently small, smooth perturbations to an

integrable system, provided that the rotational transform, -i,

is sufficiently irrational, i.e., -i must satisfy a Diophantine

condition: there exists an r > 0 and k � 2 such that, for all

integers n and m, j-i� n=mj > r=mk. About each rational,

n/m, there is an excluded region of width r=mk, which is con-

sistent with the emergence of a chaotic sea about every

unstable periodic orbit. KAM tori are two-dimensional sub-

sets of R3 whose union is of finite measure and forms a par-

tition of phase space.

Typically, as the magnitude of the geometric deforma-

tion increases, the size of the magnetic islands increases, the

volume of the chaotic seas increases, and each given KAM

surface will become more geometrically deformed until a

critical point is reached at which point the surface is continu-

ous but no longer smooth. These critical tori form fractal

boundaries between the chaotic seas associated with differ-

ent island chains. By “fractal,” we simply mean having a

hierarchy of qualitatively self-similar structure on all scales,

with no minimum length scale, and is non-differentiable.

Some KAM tori are more robust than others. The most

robust invariant tori are those that have the “most irrational”

rotational transforms, where “most irrational” means most

difficult to approximate with rationals. Such irrationals are

called noble, and their definition is made precise using the

continued fraction representation.26 The noble KAM tori are

also the smoothest, in that fewer Fourier harmonics are

required for an accurate description of their geometry.

After the destruction of a KAM surface, the closure of

an irrational field line has the structure of a Cantor set27,28

and is called a cantorus29 (hint: Cantor þ torus ¼ cantorus).

Cantori are one-dimensional subsets of R3,30 and constitute

a set of zero measure that does not serve to partition phase

space. The cantori can, however, form effective partial bar-

riers to field-line transport31 and thus also to anisotropic

diffusion.32

Ergodic invariant sets form a fractal hierarchy. The

“primary” chaotic seas and KAM tori are infinitely inter-

twined, and each chaotic sea contains “secondary” island

chains, KAM tori, cantori, and chaotic seas in an “islands

around islands” pattern repeated ad infinitum.12,33–36 The

chaotic seas are infinitely multiply connected, bounded

externally by critical, primary invariant tori, and internally

by the infinite hierarchy of islands.

A. Continuous solution on ergodic partition

To understand the general class of functions for p and B
that admit solutions to the equilibrium problem, we first con-

sider the implications that the non-integrability of the mag-

netic field has on the structure of the pressure; and then,

given a pressure that is consistent with a non-integrable field,

consider the implications this has on the field itself.

To understand the structure of the pressure function that

satisfies B � rp ¼ 0, given a generic magnetic field, it is con-

venient to represent phase space as a collection of pair-wise

disjoint sets that are invariant under the field-line flow map,

u/ : r0 7! r. This map is constructed simply by following a

field line a distance / in toroidal angle from a point, r0, on a

surface of section (for example the / ¼ 0 plane) to arrive at

point r. The return map is generated by following field lines

once around the machine back to the initial surface of sec-

tion. (In the case of the RFP device, this discussion applies

in a subdomain not containing points where B/ reverses

sign—to treat the toroidal field-reversal region a poloidal

surface of section should be used instead.) An invariant set

A � R2 within a surface of section is a set invariant under

the return map, u2pðAÞ ¼ A. An invariant set V � R3

112502-3 Hudson et al. Phys. Plasmas 19, 112502 (2012)
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within phase space may be constructed as the continuous

union of such sets, i.e., V ¼ [/2½0;2pÞu/ðAÞ.
An invariant partition is a union of invariant tori, which

are two-dimensional magnetic surfaces, and three-dimensional

invariant toroidal volumes or toroids bounded by invariant

tori. If an invariant volume contains an invariant surface, e.g.,

a KAM surface, then the volume may be subdivided into two

distinct subvolumes, each of which is invariant under the

return map. An ergodic invariant set is a set with finite mea-

sure that allows no further subdivision, and the ergodic parti-

tion of phase space is its decomposition into ergodic invariant

sets and a nonergodic (periodic) set of zero measure—see defi-

nition 2.1 of Ref. 35.

For the purpose of constructing weak solutions to the

equilibrium problem, we are primarily interested in the sets

of finite measure. We ignore the cantori and periodic orbits

and take our partition as having every chaotic sea, Ca, each
of which has finite volume, and the invariant surfaces, Cb,
the union of which has finite measure, as the only elements

with non-trivial measure, where a and b are elements of

appropriate indexing sets (e.g., a is a rational and b is irra-

tional). As any field line approaches every point arbitrarily

closely in a given ergodic set, the only solution for p consist-

ent with B � rp ¼ 0 is p ¼ pa ¼ const; 8 r 2 Ca, and simi-

larly for Cb. The most general solution for the pressure is

pðrÞ ¼ paIaðrÞ þ pbIbðrÞ; (4)

where Ia is an indicator function on each ergodic component,

i.e., IaðrÞ ¼ 1 if r 2 Ca and IaðrÞ ¼ 0 otherwise, and simi-

larly for Ib.

We now recognize that B(r) is not arbitrary and seek a

similarly general characterization of the constraints that

Eq. (3) places on this function. Each Ca has finite volume,

and we assume that B is differentiable within Ca. That the
pressure is constant in Ca implies that rp ¼ 0. Then force

balance, rp ¼ j� B, implies that r� B ¼ lðrÞB, for some

scalar function lðrÞ. Taking the divergence of this equation,

we find B � rl ¼ 0. Thus, like p, l must be constant within

each ergodic region,37 l ¼ la in Ca, and B must be a linear

force-free field, i.e., it satisfies the Beltrami equation

r� B ¼ laB: (5)

This is a well-studied linear elliptic partial differential

equation, about which much is known.38–43 To construct a

solution in a given domain, it is required to specify (i) the

boundary of the domain; (ii) appropriate boundary condi-

tions, e.g., n � B ¼ 0, where n is the unit normal; and (iii)

homological conditions, i.e., line integrals (fluxes) around

topologically inequivalent loops. To specify a solution in a

simple torus, it is sufficient to specify l and the toroidal flux,

while in a doubly connected annulus the poloidal flux must

also be specified.43

Solving the Beltrami equation in general Ca is, however,
an intractable numerical problem. Because of the topological

complexity resulting from the infinity of islands embedded

in the chaotic sea, there is an infinity of inequivalent closed

loops. The outer boundary of each chaotic sea is presumably

a critical KAM torus, which is not smooth, and the normal to

the fractal boundary is not defined.

Furthermore, a continuous, non-trivial pressure, which

is consistent with a generic non-integrable field, must be

fractal. To see this, we may assume that a finite pressure gra-

dient is supported by the KAM tori. The Diophantine condi-

tion serves as a simple, proxy indicator function describing

the existence of KAM tori in the fractal phase space of a

generic non-integrable field (though the more complicated

Bruno function44 is probably a better approximation). Let us

consider a Diophantine pressure profile, pð-iÞ, defined p0ð-iÞ
¼ 1 if j-i� n=mj > r=mk for all integers n and m, and p0ð-iÞ
¼ 0 otherwise, supplemented with the condition p(0)¼ 0.

The function pð-iÞ is continuous by construction (i.e., the de-

rivative is nowhere infinite), and we assume that r and k

have been chosen so that p0ð-iÞ is non-zero on a set of finite

measure (so that not all the excluded regions overlap) so that

pð-iÞ is non-trivial. Even for this “toy” model, numerically

approximating the function pð-iÞ given p0ð-iÞ is rather

complicated.

An approximation to pð-iÞ may (in the case of continuous

p0) be constructed using a tagged partition, pð-iÞ
	 P

i p
0ðxiÞð-ii � -ii�1Þ, where xi 2 ½-ii�1; -ii� and 0 ¼ -i0

< -i1 < … < -iN ¼ -i. However, because p0ð-iÞ is nowhere con-
tinuous except where p0ð-iÞ ¼ 0, the result depends on the

choice of xi even when j-ii � -ii�1j ! 0; 8i. That is, the Rie-

mann integral of p0ð-iÞ does not exist. The error between this

approximation and the exact solution is not bounded.

More sophisticated numerical discretizations could be

derived; for example, by choosing the xi in the tagged parti-

tion to coincide with the locally most irrational, i.e., by

constructing an “irrational” tagged partition.45 However, a

precise treatment would involve numerically approximating

the Lebesgue integral and complicated measure theory. In

1967, Grad46 made a similar comment, describing the pres-

sure as “pathological.”

Furthermore, the fractal structure of non-integrable

fields in toroidal confinement devices will be far more com-

plicated than that described by the Diophantine condition,

and may not (will not!) be known apriori. There are numeri-

cal diagnostics for determining the structure of phase space,

such as Greene’s residue criterion, but these diagnostics

come at considerable computational cost.

Considering (i) that a nonlinear equilibrium calculation

will inevitably require an iterative approach, in which the

fractal phase space structure of the field may need to be

re-evaluated at each iteration, and (ii) that the critical KAM

tori are fragile, and an infinitesimal change in B can cause an

abrupt, finite change in the volume of any given chaotic sea,

and (iii) that the fractal structure of phase space will need to

be resolved sufficiently accurately in order to guarantee that

an appropriately defined error is below some bound that can

be made arbitrarily small as the numerical resolution is

increased; we may expect that this computational cost would

be excessive.

For our purpose of constructing a robust and efficient

numerical solution of well-defined, 3D MHD equilibria with

non-integrable fields, with a bounded error that can be made

arbitrarily small, it is far better to work with smooth
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functions, and to employ an algorithm that does not depend

on resolving the infinitely complicated structure of phase

space. So, we extend our class of functions for p and B
beyond globally continuous functions, as non-trivial, contin-

uous functions that satisfy force balance are necessarily frac-

tal, and consider instead functions that are continuous, and

smooth, almost everywhere; that is, we consider functions

that are smooth except for a finite set of discontinuities,

which can be easily managed numerically.

B. Weak solution on discrete partition

Continuous pressure profiles are not the most general sol-

utions of Eq. (1). Discontinuous pressure profiles may seem

unphysical, but they are a valid solution class within the zero-

Larmor-radius MHD model we have adopted. If continuous,

globally smooth solutions are required then additional “non-

ideal” physics should be included.47 For example, including a

small, but finite, diffusion of the pressure perpendicular to the

magnetic field will provide solutions with a globally smooth

pressure; and including a small resistivity will prevent the

formation of singular currents. Appropriate source terms are

required to balance dissipative effects.

This is the approach adopted by various codes48–51 that

can approximate an MHD equilibrium as a resistive steady

state, but which are best described as initial-value, time-evo-

lution codes and cannot, strictly, compute an equilibrium

that satisfies B � rp ¼ 0, with the pressure given. The algo-

rithms these codes employ become increasingly ill-

conditioned as the non-ideal terms approach zero.52

We now describe a restriction of the solution class that

greatly simplifies the equilibrium problem. A discrete invari-

ant partition of phase space is constructed. The disjoint,

invariant sets that are surrounded by a given primary chaotic

sea, e.g., the hierarchy of island chains, are absorbed into the

chaotic sea itself, which then becomes either a simply or

doubly connected region; and the outer boundary of these

regions is extended past the adjacent, critical boundary sur-

face to a smooth, noble surface, which also serves as the

boundary for the next “extended” chaotic sea. That is, we

choose a set of smooth, noble KAM tori, I l, where

l ¼ 1; 2;…NV , which partitions phase space into NV invari-

ant toroidal or annular subvolumes, Vl. Each V l is an invari-

ant set under the field line map, but not necessarily an

ergodic invariant set because the field may not be totally

chaotic.

In each region, V l, we equate all the la0 to a single con-

stant ll, and all the pa0 and pb0 to a single constant pl, where

a0 and b0 label all the chaotic seas and invariant tori within

V l. Each V l is simply or doubly connected with a smooth

boundary, and it is a simple computational task to solve

r� Bl ¼ llBl in each Vl. We will enforce the constraint

that n � B ¼ 0 on the I l, but otherwise, the topology of the

field in each V l is unconstrained.

For the pressure, rather than restricting attention to a

globally continuous pressure with finite pressure-gradient on

the uncountably infinite Cb, we instead consider a piecewise

continuous pressure with finite pressure-jumps on the finite

set I l. Intuitively, we imagine that all of the pressure in the

continuous-but-fractal model that is supported by the Cb in

the vicinity of a selected noble KAM torus is placed on the

noble torus itself: all of the pressure is placed on a finite

selection of the most irrational surfaces. The vanishing of the

divergence of the stress tensor, Eq. (1), in a neighborhood of

a surface of discontinuity gives a condition1 that must be sat-

isfied at the interfaces, namely that the total pressure must be

continuous across the I l, i.e., ½½pþ B2=2�� ¼ 0.

We have described the interfaces where there exists a

discontinuity in the pressure and the tangential field as KAM

surfaces, but this is rather loose terminology. Such interfaces

are perhaps “double-sided” KAM surfaces, being covered by

an field line � integral curve with irrational frequency, of

the field, B�, immediately inside the torus, while also being

covered by an integral curve with the same irrational fre-

quency of the perhaps different field, Bþ, immediately out-

side the torus. In Sec. III, where we describe the MRXMHD

energy functional, we shall refer to the I l as ideal interfaces

and the Vl as relaxed volumes, and describe why the I l are

required to have irrational rotational transform.

In the above discussion, we have argued that stepped-

pressure equilibria arise naturally when one seeks a numeri-

cally tractable discretization of the equilibrium problem that

is consistent with the zero-Larmor-radius model of MHD;

satisfies B � rp ¼ 0; and is consistent with what is known

about the fractal phase space structure of non-integrable

fields. The equilibria could also be described as multi-

volume sharp-boundary states. A major motivation for pur-

suing this model is that Bruno and Laurence4 have proven

that such stepped-pressure equilibria exist (provided the de-

parture from axisymmetry is sufficiently small). The number

of volumes, NV , and interfaces may be made arbitrarily large.

We can, depending on the numerical resources available,

consider a sequence of invariant partitions with increasing

NV , so the discontinuities in the pressure are made arbitrarily

small, in order to study the nature of a continuous-but-fractal

equilibrium via a sequence of well-defined, stepped-pressure

equilibria. Stepped-pressure profiles are sufficiently general

to represent observed profiles to within experimental error.

In order to explore the properties of these equilibria in

arbitrary geometry, i.e., to go beyond what may be proved

analytically, this model has been implemented numerically

in the stepped-pressure equilibrium code, SPEC, as will be

described below in Sec. IV. We now show that there is an

multi-region, relaxed MHD energy functional that we call

MRXMHD, which has stepped-pressure equilibria as

extremizing solutions.

III. ENERGY FUNCTIONAL METHOD

The classic MHD energy functional13 is given by the

integral

W �
ð

V

p

c� 1
þ B2

2

� �

dv; (6)

where V is the plasma volume bounded by a toroidal surface,

@V. Ideal equilibria are obtained when the plasma is in a

minimum energy state: more precisely, when the energy

functional is extremized allowing for a restricted class of
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variations, namely ideal variations. The equation of state,

dtðp=qcÞ ¼ 0, where dt � @t þ v � r and v is the “velocity”

of an assumed plasma displacement, v ¼ @tn, may be com-

bined with mass conservation, @tqþr � ðq vÞ ¼ 0, to obtain

an equation that constrains the variation in the pressure,

dp ¼ ðc� 1Þn � rp� cr � ðp nÞ. Faraday’s law, @tB ¼ r
�E, may be combined with the ideal Ohm’s law, Eþ v
�B ¼ 0, where E is the electric field, to obtain an equation

that constrains the variation in the magnetic field,

dB ¼ r� ðn� BÞ. Note that this last constraint does not

allow the topology of the field to change.

The first variation in the energy due to an ideal displace-

ment, n, that is assumed to vanish on the boundary, is given

by

dW �
ð

V
ðrp� j� BÞ � n dv: (7)

Extremizing solutions satisfy the ideal force-balance condi-

tion, rp ¼ j� B. In order to uniquely define an equilibrium,

in addition to the shape of the plasma boundary, it is required

to specify the pressure, and either the rotational-transform or

the parallel current density.9,53 (Note that the constraints of

ideal MHD places a constraint on the differential toroidal

and poloidal fluxes and the rotational-transform, namely

dwp=dwt ¼ -i.)

The VMEC54 and BETAS/NSTAB codes55,56 are based

on this approach. These codes assume that the magnetic field

is integrable and allow for smooth pressure and rotational-

transform profiles.

In general 3D geometry, there is a singularity in the res-

onant harmonic of the parallel current in equilibria with

nested flux surfaces.57 Writing the current as j ¼ rBþ j?,
the quasineutrality condition, r � j ¼ 0, requires that the par-

allel current must satisfy the magnetic differential equation,

B � rr ¼ �r � j?, where we may consider the perpendicular

current to be driven by the pressure gradient, j? ¼ B
�rp=B2. Magnetic differential equations are densely singu-

lar.58 The singularity may be exposed, in the integrable case,

by the use of straight field line coordinates, which allow

the directional derivative along the magnetic field to be

written
ffiffiffi

g
p

B � r � -i @h þ @/. Using a Fourier representa-

tion, e.g., r ¼ P

m;n rm;n expðimh� in/Þ, we derive rm;n
¼ �ið ffiffiffi

g
p r � j?Þm;n=ðm-i� nÞ þ ĵm;n dðm-i� nÞ. The first

term is called the Pfirsch-Schl€uter current and has a 1/x style

singularity at the rational surface, where x � -i� n=m. The
second term, the d-function current, is generally required to

“shield” out resonant magnetic fields that would otherwise

destroy the nested family of flux surfaces (a more precise

discussion of the d-function current is provided in Ref. 59).

In general geometry, the only way to avoid the 1/x sin-

gular currents is to ensure that the pressure gradient is zero

in the vicinity of the rational surfaces (or to ensure that no

rational surfaces are present). As the rational surfaces are

dense in space, to avoid the 1/x singularities, the pressure

gradient must be zero everywhere.

(Despite these concerns near the rational surfaces,

VMEC, in particular, does an impressive job of robustly

constructing global approximations to 3D equilibria

with arbitrary pressure profiles; presumably, this is because

VMEC seeks approximations to minima of the global

energy functional, and does not directly seek solutions to

rp ¼ j� B pointwise.)

A. MRXMHD energy principle

The first step towards constructing the multi-region,

relaxed MHD energy functional is to partition space into

discrete volumes. We introduce a set of nested, toroidal

surfaces, I l, for l ¼ 1; 2;…;NV where I l � @V for l ¼ NV .

The energy local to each volume is

Wl �
ð

Vl

p

c� 1
þ B2

2

� �

dv; (8)

where V1 is the toroid enclosed by I 1, and Vl is the annular

volume enclosed by I l�1 and I l for l ¼ 2;…;NV .

We again assume that the plasma is in a minimum

energy state; however, we allow for the effects of small re-

sistivity: in each V l, the magnetic field may relax and recon-

nect (and so topological constraints between the toroidal and

poloidal fluxes, the rotational-transform, and the helicity are

broken). But, in order to retain some control over the equili-

bria, we consider the I l to be preserved as ideal barriers that

restrict both pressure transport and field transport. Rather

than continuously constraining the topology, the topology is

discretely constrained. This, or something equivalent, is

required in order to avoid trivial solutions.

In each Vl, the mass and entropy constraints usually

used in ideal MHD do not apply to individual fluid elements

but apply instead to the entire volume, giving the isentropic,

ideal-gas constraint,

plV
c
l ¼ al; (9)

where Vl is the volume of V l and al is a constant. The inter-

nal energy in V l is
Ð

Vpl=ðc� 1Þ dv ¼ alV
ð1�cÞ
l =ðc� 1Þ, and

the first variation of this due to a deformation, n, of the

boundary is �p
Ð

@Vn � ds.
To constrain the relaxation of the magnetic field in each

Vl we follow Taylor,60 who argued that the “most con-

served” invariant for a weakly resistive plasma is the

helicity5,61

Kl �
ð

V l

A � B dv; (10)

where A is a vector potential, B ¼ r� A, which we con-

sider to be differentiable and a single-valued function of

position. The helicity is related to the Gauss linking number:

it reflects how “knotted” or “twisted” the magnetic field lines

are.5,42,62 The helicity in Eq. (10) is not gauge-invariant. A

gauge-invariant form is constructed by adding the loop inte-

grals Dwp

Þ

SA � dl and Dwt

Þ

LA � dl, where S is a poloidal

loop on I l�1 and L is a toroidal loop on I l.

In each V l, variations in the pressure and the field, and

the geometry of the interfaces, are allowed in order to extrem-

ize the energy functional. These variations are arbitrary,

except for (i) the mass-entropy constraint, plV
c
l ¼ const;
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(ii) helicity conservation in each V l; (iii) the interfaces must

remain tangential to the magnetic field; and (iv) the magnetic

fluxes are conserved.

The MRXMHD energy functional is

F ¼
X

l

Wl �
ll
2
ðKl � Kl;oÞ

h i

: (11)

The helicity constraint, Kl ¼ Kl;o where Kl;o is a given con-

stant, is enforced explicitly by introducing a Lagrange multi-

plier, ll, in each V l. The flux constraints and the tangentiality

condition at the interfaces will be enforced implicitly by

constraining the representation of the magnetic field.

The most general function space for B in each volume is

space of vector-valued functions whose magnitude is square

integrable, i.e., B 2 L2ðV lÞ, by which it is meant that

B2 2 L1ðV lÞ, and L1ðV lÞ is the standard notation for the space
of integrable scalar functions. More precisely, we follow

Yoshida et al.6,40 and restrict B to L2
rðV lÞ, which they define

as the subspace of L2ðV lÞ occupied by divergence-free fields

that obey B � n ¼ 0 on the boundary. Similarly, the pressure

is required to be integrable, i.e., p 2 L1ðV lÞ. While these are

the least restrictive spaces required for a weak formulation, in

order for the solutions to obey tractable local differential

equations almost everywhere we will, after deriving the Euler

Lagrange equations for states that extremize Eq. (11), further

restrict the allowed function spaces by assuming that p is

piecewise constant and that B piecewise satisfies a simple

elliptic partial differential equation, which is solved numeri-

cally using a mixed Fourier and finite element method.

The variation in the “local” constrained energy func-

tional, Fl � Wl � llðKl � Kl;oÞ=2, due to arbitrary variations

in the field, dB ¼ r� dA, and arbitrary variations, n, in the

interface geometry, is given by

dFl¼
ð

Vl

ðr�B�llBÞ �dAdv�
ð

@Vl

ðplþB2=2Þn �ds: (12)

The variation in the magnetic potential, dA, is free

within V l, and so within each V l the topology of the field is

arbitrary; but at the I l, it must obey

n� dA ¼ �n � nBþ n�rdg; (13)

so that n � B ¼ 0 remains satisfied; and where dgðrÞ is the var-
iation in a single-valued gauge potential, g, required for gener-

ality but physical quantities are invariant with respect to gauge

choice. The line integrals of A along arbitrary loops Lpol and

Ltor are related to the poloidal and toroidal magnetic fluxes.

The enclosed toroidal fluxes in each volume and the poloi-

dal fluxes in each annular region constrain the magnetic field

from being trivial. We use gauge freedom to specify the loop

integrals of
Þ

A � dl on each interface. For gauges satisfying

these conditions, the difference between the gauge-invariant

helicity and the gauge-dependent helicity is a constant.

The Euler-Lagrange equation for F to be stationary with

respect to variations in the magnetic field in each V l is the

Beltrami equation, r� B ¼ llB. The Euler-Lagrange equa-

tion for F to be stationary with respect to variations in

the interface geometry is that the total pressure must be

continuous across the interfaces, ½½pþ B2=2�� ¼ 0. States that

extremize the MRXMHD energy functional are stepped-

pressure equilibria.

The pressure and tangential field are discontinuous

across the interfaces, but these comprise a finite set of mea-

sure zero and so p and B2 are both integrable functions: the

model is consistent with our goal of constructing weak solu-

tions via an energy-integral approach. The discontinuities

are easily accommodated for in the numerical discretization;

within each volume a continuous, smooth representation for

the vector potential is allowed.

To avoid a problem with “small denominators,” as will

be discussed below, we will typically enforce the condition

that the interfaces have irrational transform. The problematic

Pfirsch-Schl€uter currents are eliminated because the pressure

gradient is identically zero across the resonances. The

d-function currents are also not present because the topology

of field is unrestricted at the rational surfaces, i.e., magnetic

islands are allowed to form.

There are, instead, a finite set of surface currents at the

irrational, ideal interfaces, given by j ¼ ½½B�� � n, where

½½B�� is the tangential discontinuity in the field. These are

required to enforce the topological constraint, the topological

constraint in this case being that a noble irrational surface

exists; and the topological constraint is required, so that the

magnetic field matches the given, stepped-pressure profile.

Given the KAM theorem, this topological constraint is

presumably easier to enforce63 than forcing a rational flux

surface. We expect these currents to be dominated by the

discontinuity in p, and may be thought of as a discrete

approximation to the pressure induced currents. These irra-

tional surface currents may be compared to (but are different

from) the d-function currents shielding at the rational surfa-

ces, which are required in the linearly perturbed, ideal-

equilibrium codes IPEC64 and CAS3D.65 The d-function

currents at the rational surface currents do not describe the

pressure driven 1/x singularities.

We invoke multi-region energy minimization with helic-

ity conservation primarily as a mathematical device to

achieve a variational formulation of the restricted equilib-

rium class, namely stepped-pressure equilibria. MRXMHD

is, however, a generalization of the variational principle

enunciated by Woltjer66 to generate linear force-free fields

of interest in astrophysics, and developed by Taylor60 to

model fusion plasma experiments.

The success of the Taylor relaxation theory in describing

experimental data suggests that the MRXMHD approach may

likewise aid physical interpretation of partial relaxation,

reconnection, and self-organization in toroidal plasmas sup-

porting a non-trivial pressure profile. Unlike Taylor’s globally

relaxed model, which gives a constant pressure across the

plasma, MRXMHD is only locally relaxed, i.e., it is partially

constrained; arbitrarily many interfaces may be included,

each with an associated ideal � topological constraint.

B. Transform constraint

A close examination of the interface force-balance

condition, ½½pþ B2=2�� ¼ 0, reveals a Hamiltonian system,
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which we call the pressure-jump Hamiltonian.1 Let p� and

B� be the pressure and field immediately inside a given

interface and pþ and Bþ be the pressure and field immedi-

ately outside. By combining (i) the general, covariant repre-

sentation for the field, B ¼ Bsrsþ Bhrhþ B/r/, with (ii)

r� B ¼ lB, and (iii) the tangentiality condition, B � n ¼ 0;

we may write Bh ¼ @hf and B/ ¼ @/f , and B2 ¼ ðg//fhfh
�2gh/fhf/ þ ghhf/f/Þ=ðghhg// � gh/gh/Þ, where f ðh;/Þ is a

surface potential and ghh; gh/, and g// are metric elements

(local to the interface). Now, consider the case where both

B� and the geometry of the interface are known, and we

seek a solution for Bþ that satisfies H ¼ const, where

H � 2ðp� � pþÞ ¼ B2
þ � B2

�: (14)

We may write H � Kðh;/; fh; f/Þ þ Vðh;/Þ, where V � �B2
�

is assumed known, and fh � @hf and f/ � @/f , where f is an

as-yet-unknown surface potential for Bþ.
To derive the solvability condition, we treat fh and f/ as

independent quantities (generalized momenta) and recognize

H as a 2-dof Hamiltonian with a conserved energy,

2ðp� � pþÞ. Then, H ¼ const along a trajectory given by

Hamilton’s equations: dh=dt ¼ @H=@fh, dfh=dt ¼ �@H=@h,
d/=dt ¼ @H=@f/, and df/=dt ¼ �@H=@/; where t is an arti-

ficial “time.” This system may be reduced to a 1 1
2
-dof system

by using / as the time-like integration parameter (always

possible if dt/ 6¼ 0) and eliminating the integration of f/ in

favor of inverting Kðh;/; fh; f/Þ þ Vðh;/Þ ¼ 2ðp� � pþÞ for
f/, so that f/ is assumed to be a function of h; /, and fh, i.e.,

f/ ¼ f/ðh;/; fhÞ, where the dependence on 2ðp� � pþÞ is

implicit. The trajectory is then described by _h � dth=dt/ and
_f h � dtfh=dt/, which may be integrated in / from an initial

starting point, ðh; fhÞ, on a Poincar�e section, e.g., / ¼ 0. If

the trajectory lies on an invariant surface, then it is possible

to construct fh ¼ fhðh;/Þ, and fh and f/ recover their inter-

pretation as derivatives of a surface function: there exists a

well defined f ðh;/Þ, such that fh ¼ @hf and f/ ¼ @/f . That
is, if the trajectory lies on an invariant surface, then a solu-

tion for Bþ that satisfies 2ðp� � pþÞ ¼ B2
þ � B2

� may be

constructed.

An invariant surface can only exist if it avoids the prob-

lem of small divisors. Note that _h ¼ Bh=B/, so there is a fun-

damental relationship between the pressure-jump

Hamiltonian and the field-line Hamiltonian; and force-

balance can only be satisfied if the rotational transform of

the interfaces is irrational.1

Many authors have considered sharp boundary equilibria

either theoretically or in simplified geometry.2,43,67–77 This

paper, and our earlier paper,78 represents the first numerical

study of toroidal 3D equilibria with multiple Beltrami

regions within the plasma. The only 3D calculation of which

we are aware is the early paper of Betancourt and Garabe-

dian,79 who consider a free-boundary problem with both the

vacuum region and the plasma being Beltrami regions with

l ¼ 0.

A number of 3D MHD equilibrium codes based on

the assumption of continuity and differentiability of p and

B have been written.47,53,54,56,79–89 These have either con-

strained the magnetic field to be globally integrable; have

not employed numerical algorithms that explicitly accommo-

date the singularities in the parallel current at the rational

surfaces; do not constrain the profiles, and allow the pres-

sure, current, and transform profiles to “evolve” during the

calculation in a fashion more akin to initial-value, time-evo-

lution codes rather than what is suitable for an equilibrium

code; have introduced small non-ideal terms, so that the

B � rp 6¼ 0; have ignored the fractal hierarchy of the ergodic

invariant sets; or employ ill-posed numerical algorithms

(e.g., the so-called Spitzer18 iterative approach,85,90 which

attempts to invert densely singular magnetic differential

equations91). While they have produced a variety of results,

their lack of formal foundations leas them to fall short of the

numerical rigor (e.g., demonstration of convergence, quanti-

fication of error, estimate of stability92) available in the axi-

symmetric case.

We will now describe the stepped pressure equilibrium

code (SPEC), and demonstrate that the solutions are well

defined by presenting convergence studies.

IV. NUMERICAL DISCRETIZATION

A Fourier representation is employed for all doubly peri-

odic, scalar functions. Even functions, f ð�h;�fÞ ¼ f ðh; fÞ,
are written

f ¼
X

N

n¼0

f0;n cosð�nNPfÞþ
X

M

m¼1

X

N

n¼�N

fm;n cosðmh�nNPfÞ; (15)

where NP is the field periodicity. The resolution of the

Fourier representation is determined by M and N, and the

total number of Fourier harmonics is NMN � ðN þ 1Þ
þMð2N þ 1Þ. The poloidal, h, and toroidal, f, angles are, as

yet, arbitrary. The Fourier summation will be written con-

cisely as f ¼ P

j fj cosðmjh� njfÞ, where ðm1; n1Þ ¼ ð0; 0Þ,
etc. A similar description is used for odd (i.e., sine) func-

tions, f ð�h;�fÞ ¼ �f ðh; fÞ.
An initial guess for the geometry of a set of NV nested,

toroidal surfaces, I l, is assumed given. For expedience, we

assume stellarator symmetry,93 so that I l may be described

by Rðh; fÞ R̂ þ Zðh; fÞ k̂, with

Rlðh; fÞ ¼
X

j

Rl;j cosðmjh� njfÞ;

Zlðh; fÞ ¼
X

j

Zl;j sinðmjh� njfÞ;
(16)

where R̂ � cos/ î þ sin/ ĵ, and î; ĵ, and k̂ are the Cartesian

unit vectors.

To enforce various boundary conditions, it is convenient

to use toroidal coordinates, ðs; h; fÞ, that are adapted to the

interfaces. These coordinates are defined inversely via

R ¼ Rðs; h; fÞ; / ¼ �f ; Z ¼ Zðs; h; fÞ: (17)

The Jacobian of the ðs; h; fÞ coordinates is
ffiffiffi

g
p ¼ RðRsZh

�RhZsÞ. The “lower” metric coefficients, gab, are given

by gab ¼ RaRb þ ZaZb þ dabR
2, where dab ¼ 1 if a ¼ b

¼ f and dab ¼ 0 otherwise. The coordinate functions are

given by
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Rðs; h; fÞ ¼
X

j

RjðsÞ cosðmjh� njfÞ;

Zðs; h; fÞ ¼
X

j

ZjðsÞ sinðmjh� njfÞ;
(18)

where RjðsÞ; ZjðsÞ are a piecewise-linear interpolation of the

Rl;j and Zl;j. (A piecewise-cubic interpolation would give a

continuous Jacobian across the interfaces, but this is not

required.) If the toroidal flux is monotonic increasing, then

s � wt, normalized to its value at the outermost interface, is

a suitable radial coordinate. In this case, s 
 r2, where r is a

polar-like radial coordinate. More generally, we may use the

interface label itself as the radial coordinate, i.e., sl ¼ l=NV .

In the innermost volume, regularization factors must be

included to prevent the interpolated coordinate surfaces

from overlapping. These factors may be derived by consid-

ering an arbitrary, regular (infinitely differentiable) func-

tion, hðx; yÞ, at the origin, hðx; yÞ ¼ hþ xhx þ yhy þ 1
2
ðx2hxx

þ2xyhxy þ y2hyyÞ þ…. By constructing a Fourier represen-

tation, hðr; hÞ ¼ P

m½hcmðrÞ cosðmhÞ þ hsmðrÞ sinðmhÞ� where
x ¼ r cos h and y ¼ r sin h, we obtain after repeated applica-

tions of double-angle formulae

hmðrÞ ¼ rmða0r0 þ a1r
2 þ a2r

4 þ a3r
6 þ � � �Þ: (19)

So, in the innermost volume, s � s1, we write RjðsÞ
¼ Rj;1s

mj=2=s
mj=2
1 , and similarly for ZjðsÞ, where s 
 r2.

In Vl that is bounded by I l�1 and I l, a general covariant

representation of the magnetic vector potential is

�Al ¼ �As;lrsþ �Ah;lrhþ �Af;lrf: (20)

To this, add a gauge term, rglðs; h; fÞ, where gl satisfies

@sglðs; h; fÞ ¼ � �As;lðs; h; fÞ;
@hglðsl�1; h; fÞ ¼ � �Ah;lðsl�1; h; fÞ þ wt;l�1;

@fglðsl�1; 0; fÞ ¼ � �Af;lðsl�1; 0; fÞ þ wp;l�1;

(21)

for arbitrary constants, wt;l�1 and wp;l�1. Then, Al ¼ �Al

þrgl is given by Al ¼ Ah;lrhþ Af;lrf with

Ah;lðsl�1; h; fÞ ¼ wt;l�1;

Af;lðsl�1; 0; fÞ ¼ wp;l�1:
(22)

For stellarator symmetric equilibria, Ah;l and Af;l may be

represented by cosine series

Ah;lðs; h; fÞ ¼
X

j

Ah;l;jðsÞ cosðmjh� njfÞ;

Af;lðs; h; fÞ ¼
X

j

Af;l;jðsÞ cosðmjh� njfÞ;
(23)

where Ah;l;jðsÞ and Af;l;jðsÞ are represented using finite-

elements, as will be described below.

The toroidal flux is given by

ð

S
B � ds ¼

þ

@S
A � dl ¼ 2pwt;l�1; (24)

where the surface S is that part of the f ¼ 0 plane bounded

by s ¼ sl�1. The poloidal flux is given by

ð

S
B � ds ¼

þ

@S
A � dl ¼ 2pwp;l�1; (25)

where the surface S is that part of the h ¼ 0 plane bounded

by s ¼ sl�1.

The boundary condition that the inner interface is a flux

surface becomes B � rs ¼ 0, which implies

�mjAf;l;jðsl�1Þ � njAh;l;jðsl�1Þ ¼ 0: (26)

Combining Eqs. (22) and (26), we have

Ah;l;jðsl�1Þ ¼
wt;l�1; j ¼ 1;

0; j > 1;

�

(27)

Af;l;jðsl�1Þ ¼
wp;l�1; j ¼ 1;

0; j > 1:

�

(28)

The condition that the outer interface is a flux surface is sat-

isfied by writing

Ah;lðslÞ ¼ @hflðh; fÞ ; Af;lðslÞ ¼ @fflðh; fÞ; (29)

for arbitrary f of the form

fl ¼ wt;lhþ wp;lfþ
X

j

fl;j sinðmjh� njfÞ; (30)

and wt;l � Ah;l;1ðslÞ and wp;l � Af;l;1ðslÞ. We have

Ah;l;jðslÞ ¼
wt;l; j ¼ 1;

mjfl;j; j > 1;

�

(31)

Af;l;jðslÞ ¼
wp;l; j ¼ 1;

�njfl;j; j > 1:

�

(32)

The radial dependence of the vector potential harmonics

is described using finite-elements. A continuous function,

f(x), with x 2 ½0; 1�, may be approximated using the linear

basis functions, uL;0ðxÞ ¼ 1� x and uR;0ðxÞ ¼ x, according

to f ðxÞ ¼ fL;0uL;0ðxÞ þ fR;0uR;0ðxÞ, where fL;0 � f ð0Þ and

fR;0 � f ð1Þ. A piecewise-linear interpolation of the vector

potential gives a discontinuous magnetic field in each V l.

While this is legitimate as far as the energy integral is con-

cerned (the magnetic field remains an integrable function),

we prefer a smoother interpolation.

For piecewise-cubic interpolation, the basis functions

are uL;0ðxÞ ¼ 2x3 � 3x2 þ 1 and uL;1ðxÞ ¼ x3 � 2x2 þ x,

and their “reflections,” uR;pðxÞ ¼ ð�1ÞpuL;pð1� xÞ. An arbi-

trary smooth continuous function is approximated by f ðxÞ
¼ PND

p¼0½fL;puL;pðxÞ þ fR;puR;pðxÞ�, where fL;1 � f 0ð0Þ and

fR;1 � f 0ð1Þ and ND ¼ 1. For piecewise-quintic interpolation,

the same expression applies, but with ND ¼ 2 and uL;0ðxÞ
¼ �6x5 þ 15x4 � 10x3 þ 1; uL;1ðxÞ ¼ �3x5 þ 8x4 � 6x3 þ 1,

and uL;2ðxÞ ¼ � 1
2
x5 þ 3

2
x4 � 3

2
x3 þ 1

2
x2, and their reflections.

In each Vl, a regular, radial sub-grid is established,
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sl;i ¼ sl�1 þ iðsi � sl�1Þ=Nl; (33)

for i ¼ 0; 1;…;Nl. The resolution, Nl, of the radial sub-grid

may be different in each V l. The vector potential harmonics

are written

Ah;l;jðsÞ ¼
X

ND

p¼0

½Ah;l;j;p;i�1uL;pðxÞ þ Ah;l;j;p;iuR;pðxÞ�;

where x ¼ ðs� sl;i�1Þ=Dsl with Dsl ¼ sl;i � sl;i�1.

The vector potential is completely specified by Ah;l;j;p;i

and Af;l;j;p;i, which are the pth derivatives of the ðmj; njÞ har-
monics of Ah and Af on the ith grid-point in the lth annulus.

Except for the subtlety required to ensure the field is tangen-

tial to the outer interface, see Eqs. (31) and (32), these are

the independent parameters that describe the vector poten-

tial, and thus the magnetic field.

In the innermost volume, the condition that the field is

tangential to the inner interface is replaced (because there is

no inner interface) by the condition that the vector potential

is analytic at the coordinate origin. Assuming s 
 r2, we

may enforce regularity at the origin and restrict the gauge by

including smj=2 radial factors with the Ah;l;j;p;i and Af;l;j;p;i,

with the boundary conditions

Ah;1;j;0;0 ¼ 0 for all j; (34)

Af;1;j;0;0 ¼ 0 for mj ¼ 0 and nj 6¼ 0: (35)

The mixed finite-element, Fourier representation of the

magnetic vector potential is inserted into the MRXMHD

energy integral, F ¼ P

l Fl, where the “local” energy func-

tional is given by Fl � Wl � llðKl � Kl;oÞ=2, where Wl

�
Ð

½p=ðc� 1ÞþB2=2�dv and Kl �
Ð

A �Bdv. With A¼ Ahrh

þAfrf, the magnetic field B¼ BsesþBhehþBfef is

ffiffiffi

g
p

B ¼ ð@hAf � @fAhÞes � @sAfeh þ @sAhef; (36)

and

B2 ¼BsBs gss þ 2BsBh gsh þ 2BsBf gsf

þBhBh ghh þ 2BhBf ghf þ BfBf gff;
ffiffiffi

g
p

A � B ¼� Ah@sAf þ Af@sAh:

After substituting these into the local energy and helicity

integrals, the Ah;l;j;p;i and Af;l;j;p;i are multiplied by terms such

as

ðsl;i

sl;i�1

ds

ð2p

0

dh

ð2p

0

dfuL;pðsÞuR;qðsÞf ðs; h; fÞ; (37)

where, for example, f � sinðmjh� njfÞgab cosðmkh� nkfÞ,
and gab are the metric elements (note that the gab depend on

the Rl;j and Zl;j that define the interface geometry). These

integrals are computed by constructing a fast Fourier trans-

form of f ðs; h; fÞ. The integrals over the angles then become

trivial, and we obtain �f ðsÞ � uL;pðsÞuR;qðsÞ
Ð

dh
Ð

dff ðs; h; fÞ.
The remaining radial quadrature is approximated using

Gaussian integration

ð1

0

ds �f ðsÞ 	
X

NG

i¼1

xi
�f ðsiÞ; (38)

where the “weights,” xi and the “abscissae,” si, are chosen

to optimize accuracy, and NG is a numerical resolution pa-

rameter that depends on the order of the polynomial being

integrated, i.e., NG depends on the order of the finite-element

basis expansion for the Ah;l;j;p;i and Af;l;j;p;i, and the order of

the coordinate interpolation of the Rl;j and Zl;j.

In each V l, the local energy functional, Fl � Wl

�llðKl � Kl;oÞ=2, depends on the interface geometry, the

vector potential, and various input parameters. Specifically,

each Fl depends on x � fRl;j; Zl;jg; the enclosed toroidal

flux, Dwt;l � wt;l � wt;l�1; the enclosed poloidal flux,

Dwp;l � wp;l � wp;l�1 (except in the innermost volume);

the required helicity, Kl;o; the vector potential, al � fAh;l;j;p;i;
Af;l;j;p;ig; and the Lagrange multiplier, ll. We may indicate

the dependence of F as

Fl ¼ Fl½Dwt;l;Dwp;l;Kl;o; x; ll; al�: (39)

In the MRXMHD model, the enclosed fluxes and the helicity

in each V l are assumed given, i.e., the Dwt;l; Dwp;l, and Kl;o

are required input parameters. (Note: if the interface

rotational-transform constraint is to be given priority over

the conservation of poloidal flux and helicity, then Dwp;l and

Kl;o must generally be allowed to vary.) The computational

task is to then find extrema of F ¼ P

l Fl with respect to the

interface geometry, x � fRl;j; Zl;jg, and the Lagrange multi-

pliers, ll, and the vector potentials, fAh;l;j;p;i;Af;l;j;p;ig.
The basic algorithm is to consider ll and al � fAh;l;j;p;i;

Af;l;j;p;ig to be functions of the interface geometry and the

Dwt;l; Dwp;l, and Kl;o. That is, first, the Beltrami field,

r� B ¼ llB, in each V l is constructed. We then may write

Fl ¼ Fl½Dwp;l;Kl;o; x�, where the dependence on Dwt;l is

implicit. (Later, for computational expedience, we shall

modify this slightly by using ll to parametrize the solutions

to the Beltrami fields and remove Kl;o, so that

Fl ¼ Fl½Dwp;l; ll; x�.) Then, “global” equilibrium states are

then constructed by extremizing F ¼ P

l Fl with respect to

the interface geometry, x � fRl;j; Zl;jg.

A. Solving $3B5lB for B, given geometry

Assuming that the geometry of the interfaces, x, is given,
there are various numerical methods that may be employed to

construct the extremizing fields. The first method is the stand-

ard Lagrange multiplier approach: a multi-dimensional New-

ton method is used to find an extremum of the local

constrained energy functional. The solution satisfies

@Fl

@al
¼ 0;

@Fl

@ll
¼ 0; (40)

where, in addition to al � fAh;l;j;p;i;Af;l;j;p;ig, the Lagrange

multiplier is explicitly treated as an independent degree of free-

dom and must be adjusted to satisfy the helicity constraint.

This approach cannot distinguish states that minimize Wl

from states which are saddle points or local maxima of Wl.
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When bifurcated solutions exist, i.e., when there exist multi-

ple stationary points of Wl and hence Fl, a gradient-descent

algorithm such as sequential quadratic programming94 may

instead be used to ensure that the constructed solution is

strictly a local minimum of Wl subject to the constraint

Kl ¼ Kl;o.

Another method for constructing the Beltrami fields, on

which we hereafter concentrate, is to assume each Bl is para-

metrized by the enclosed fluxes and ll. The required value

for the helicity, Kl;o, may be dropped from the local energy

functional, to obtain Fl � Wl � llKl=2, and we write

Fl ¼ Fl½Dwp;l; ll; x; al�; (41)

where the dependence on Dwt;l is implicit.

The local energy functional, Fl, is quadratic in the

Ah;l;j;p;i and Af;l;j;p;i, and the “local” equilibrium condition,

@Fl=@al ¼ 0, gives a system of linear equations to be solved

for the vector potential. We call this the Beltrami linear

system, as it is analogous to r� B ¼ llB and can be repre-

sented as

G � a ¼ c; (42)

where the matrix G depends on the geometry, the fluxes and

ll, i.e., G ¼ G½Dwp;l; ll; x�; and similarly for the right-hand-

side vector, c. This system is inhomogeneous (i.e., c is non-

trivial) because of the “driving” terms Ah;1;l;0;0 ¼ wt;l and

Af;1;l;0;0 ¼ wp;l. Given x, there is a two-dimensional family of

solutions; each solution is parametrized by Dwp;l and ll.

There is an abundance of numerical methods and

“canned” numerical routines available for solving linear

equations, and any mathematical structure present can be

exploited. For example, usually the matrix G is positive defi-

nite and it is typically very sparse, and an initial “guess” for

the solution is often available (particularly so during an itera-

tive calculation). Employing numerical methods that exploit

the sparsity and positive definiteness can significantly

improve code performance.

It will be efficient to know how the Beltrami field in a

given volume varies with small variations in both the input

parameters and the interface geometry. In equilibria that are

globally constrained by ideal MHD, variations in the mag-

netic field are related to variations in geometry via

dB ¼ r� ðn� BÞ. In our case, we can compute the change

in the vector potential resulting from an infinitesimal change

in Dwp;l, or in ll, or in the interface geometry, x, using ma-

trix perturbation theory, ðGþ dGÞ � ðaþ daÞ ¼ ðcþ dcÞ, so
that to lowest order

G � da ¼ dc� dG � a: (43)

The infinitesimal variations, dG and dc, resulting from infini-

tesimal variations in Dwl;p and ll are rather simple to write

down because Dwl;p and ll just appear as factors multiplying

various geometric quantities in G and c. The derivatives

with respect to the Rl;j and Zl;j are more complicated as these

involve differentiating Eq. (37).

The Beltrami field in V l depends on the geometry of

both the “inner” interface, i.e., the Rl�1;j and Zl�1;j, and the

“outer” interface, i.e., the Rl;j and Zl;j; giving a total of

4NMN � 2 geometrical degrees of freedom, where NMN

describes the Fourier resolution. In preference over repeat-

edly inverting the Beltrami matrix 4NMN � 2 times, which

would be the case if finite-differences for example were used

to compute the change in the Beltrami fields, we instead first

compute a Cholesky factorization of G, i.e., G ¼ LLT .

Then, the solution to Eq. (43) is efficiently given by

L � y ¼ b, where b � dc� dG � a, and LT � da ¼ y.
The helicity, Kl �

Ð

A � Bdv, depends on the solution to

Eq. (42), which in turn depends on ll. The helicity con-

straint, Kl ¼ Kl;o, can be enforced by suitably adjusting ll.

(This is not always possible; this is only for configurations in

which ll parametrizes states with different helicity.)

B. Transform constraint, noble irrationals

The rotational-transform constraint can similarly be

enforced. If only the Beltrami field within a single annulus is

to be constructed, then there is no constraint on the allowed

values of the transform on the interfaces. Recall however

that if the Beltrami fields in multiple volumes are to be con-

sistently nested together in a fashion that satisfies force bal-

ance, an analysis of the pressure-jump Hamiltonian derived

from ½½pþ B2=2�� ¼ 0 shows that the interfaces should have

irrational transform.

We restrict attention to noble irrationals,26 which play

an important role12 in the theory of chaos as invariant KAM

surfaces with noble transform are most likely to survive

chaos-inducing perturbations.20 A noble irrational is

obtained as the limit of an infinite, alternating path down a

Farey tree, which is constructed as follows. Begin with a pair

of rationals, p1=q1 and p2=q2, which should be neighboring,

i.e., jp1q2 � p2q1j ¼ 1, and without loss of generality we

assume that p1=q1 < p2=q2. A Farey tree is constructed by

successively constructing the mediants, defined as p=q
¼ ðp1 þ p2Þ=ðq1 þ q2Þ. This is guaranteed to lie between the

original “parent” rationals and so splits the original interval

into left, ½p1=q1; p=q�, and right, ½p=q; p2=q2�, sub-intervals.
The mediant is neighboring to both parents, and the con-

struction of the Farey tree proceeds iteratively. An infinite,

alternating path down the Farey tree is a sequence of

mediants for alternately the left and right subintervals.

Sequences of this type converge to noble irrationals, which

have continued fraction representations that terminate in an

infinite sequence of 1’s.12 It is easy to see that alternating

paths give Fibonacci sequences for the numerator and

denominator of the successive rationals. For example, begin-

ning from p1=q1 ¼ 0=1 and p2=q2 ¼ 1=1 and constructing an

alternating path of mediants, we obtain the sequence
0
1
; 1
1
; 1
2
; 2
3
; 3
5
; 5
8
; … This allows noble irrationals to be writ-

ten in the concise form -iðp1; q1; p2; q2Þ ¼ ðp1 þ c p2Þ=
ðq1 þ c q2Þ, where the golden-mean, c ¼ ð1þ

ffiffiffi

5
p

Þ=2, is the
limiting ratio of successive terms, c ¼ Fnþ1=Fn as n ! 1,

of the Fibonacci sequence beginning from F0 ¼ 0 and

F1 ¼ 1.

The poloidal angle parametrization of the interfaces is,

at this stage, arbitrary; it is not required, and will not be

required, that the field lines are “straight.” We may,
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however, construct the straight-field-line angle on the inter-

faces, given the field, by calculating the angle transforma-

tion, hs � hþ kðh; fÞ, such that

B � rhs

B � rf
¼ -i; (44)

where -i is, as yet, an unknown constant to be determined.

We restrict attention to angle transformations of the form

k ¼ P

j kj sinðmjh� njfÞ, which preserves stellarator sym-

metry but is otherwise general. The Fourier resolution of the

angle transformation is independent of the Fourier resolu-

tion, M and N, used to represent the interfaces and Beltrami

fields, and typically we use an enhanced Fourier resolution

for k. With Eq. (36) and using Bs ¼ 0, Eq. (44) becomes

Ah
0@fk� Af

0@hk� Ah
0-i ¼ Af

0, where the prime indicates

radial derivative. By equating coefficients, we obtain a

system of linear equations for the unknowns, k ¼ ð-i; k2;
k3;…ÞT , which is represented as a matrix equation

K � k ¼ d; (45)

where K and d depend on the Ah
0 and Af

0 harmonics at the

interfaces. Solving this linear-system determines k, which

gives the rotational-transform on the interface, namely -i.

Considering the geometry of the interfaces and the

enclosed toroidal flux in each Vl to be fixed, each Beltrami

field depends only on ll and Dwp;l. We thus have two

degrees-of-freedom, and we must satisfy two constraints;

these constraints being that the field in V l provides the

required rotational transform on the inner interface, I l�1,

and on the outer interface, I l. (In the innermost volume, V1,

there is only one degree of freedom, namely l1, and only

one constraint, namely that the field provides the required

rotational transform on I1.) Defining the function

f ðll;Dwp;lÞ ¼ ð-iinn � -il�1; -iout � -ilÞ, where -iinn and -iout are

the transforms determined from solving Eq. (45) on the inner

and outer interface for the magnetic field parametrized by

ðll;Dwp;lÞ, and -il�1 and -il are prescribed input values, we

employ a simple Newton method to set f ðll;Dwp;lÞ ¼ 0.

Typically, if a reasonable guess is provided, this converges

in one or two iterations. Matrix perturbation methods are

used to compute the derivatives: the infinitesimal variation,

dk, resulting from an infinitesimal variation in Dwl or ll is

given by K � dk ¼ dd� dK � k, and dK depends on K and

dG via the chain rule; and similarly for dd. This search is

computationally efficient: the integral metric elements, Eq.

(37), do not need to be recomputed if the geometry does not

change; and the matrix K is very sparse, and sparse linear

algorithms are employed.

In the MRXMHD model, the poloidal flux and helicity

are assumed given. In the stepped-pressure model, the inter-

face rotational transforms are constrained. (In both cases, the

toroidal flux is constrained.) In either case, given the inter-

face geometry, the Beltrami field in each volume that satis-

fies these constraints is unique—except for the possibility of

bifurcations, which we do not consider in this article. So,

with this implicit, the dependence of each Fl on the degrees

of freedom is reduced to Fl ¼ Fl½x�.

The task of constructing global equilibrium solutions is

now the standard mathematical problem of finding extrema

of the global energy functional, F ¼ F½x�. Before describing

the two basic approaches, we have adopted for this, namely a

preconditioned conjugate gradient algorithm for minimizing

the global energy functional and a Newton-style algorithm

for finding a zero of the multi-dimensional force-balance

vector, we first present a convergence study illustrating that

the Beltrami field in each Vl may be constructed to arbitrary

accuracy.

C. Illustration of Beltrami fields

For illustration, we show the Beltrami fields consistent

with a multi-region equilibrium. The equilibrium is defined

by the toroidal flux enclosed by each interface, the pressure

in each Vl, and the interface transforms, and these are

all given in Table I. The outer boundary is given by R ¼ 1

þr cosðhÞ and Z ¼ r sinðhÞ, with r ¼ 0:3þ d cosð2h� fÞ
þd cosð3h� fÞ and d ¼ 10�3. This choice of perturbation

induces “primary” islands at the -i ¼ 1=2 and -i ¼ 1=3
rational surfaces. The interior boundaries are consistent with

force balance. The interface cross sections and Poincar�e plots

of the Beltrami fields are shown in Fig. 1. Because of toroi-

dal and poloidal coupling, magnetic islands (and irregular

field lines) will form at all rational surfaces within the rota-

tional transform range.

With finite resolution, the equation r� B ¼ lB can of

course only approximately be solved. However, given a

smooth boundary, the solution to the Beltrami equation is

well posed, and so the numerical error can be made arbitra-

rily small. Assuming that the Fourier resolution is sufficient

to ensure the numerical error results from the finiteness of

the radial discretization, an nth order approximation to the

vector potential yields an error Oðhnþ1Þ, where h is the radial
sub-grid size. The Fourier harmonics of the contravariant

components of B are ð ffiffiffi

g
p

BsÞm;n ¼ �mAh;m;n � nAf;m;n,

ð ffiffiffi

g
p

BhÞm;n ¼ A0
f;m;n, and ð ffiffiffi

g
p

BfÞm;n ¼ �A0
h;m;n, where the

prime denotes radial derivative. Radial derivatives reduce

the order of the error, and B ¼ r� A is generally an order

less accurate that A itself; with the exception of Bs, which

remains accurate to Oðhnþ1Þ as no radial derivatives are

involved. Before computing r� B, the “contravariant”

components must be “lowered,” Ba ¼
P

b gabB
b, and the

error in Bs; Bh; Bf are each OðhnÞ. The Fourier harmonics of

the contravariant components of j � r� B are computed

similarly, and the error in js; jh and jf are OðhnÞ; Oðhn�1Þ,
and Oðhn�1Þ, respectively. The components of the error,

j� lB, are quantified by

TABLE I. Flux and transform constraints.

l wt;l pl -il

1 0.05950 0.94168 ð5þ c 6Þ=ð6þ c 7Þ ¼ 0:848898…

2 0.35098 0.63872 ð1þ c 2Þ=ð2þ c 3Þ ¼ 0:618034…

3 0.64902 0.25740 ð1þ c 1Þ=ð2þ c 3Þ ¼ 0:381966…

4 1.00000 0.04106 ð1þ c 1Þ=ð9þ c 10Þ ¼ 0:103971…
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jdjaj ¼
X

m;n

½ð ffiffiffi

g
p

jaÞm;n � lð ffiffiffi

g
p

BaÞm;n�
2=NMN

" #1=2

;

for a ¼ s; h, and f. These quantities are shown as a function

of radial sub-grid resolution in Fig. 2, for the field in V3 of

the equilibrium shown in Fig. 1. The expected error scalings,

jdjsj 
 OðhnÞ; jdjhj 
 Oðhn�1Þ, and jdjfj 
 Oðhn�1Þ, are

confirmed for both the cubic, n¼ 3, and quintic, n¼ 5, finite-

element representations.

Note that at no point does the algorithm depend of

resolving the fractal structure of phase space. The vector

potential in each V l is a smooth function, both as a function

of position within a given volume, and as a function of inter-

face geometry.

Before proceeding to the task of piecing together multi-

ple, nested Beltrami fields to obtain global, non-trivial equili-

bria, we must tie down a “loose-end” regarding the Fourier

representation of the interfaces.

D. Spectral condensation

To construct global equilibria, the Rl;j and Zl;j describing

the interface geometry will be varied to extremize the energy

functional and/or satisfy force balance. Tangential geometric

variations merely change the angular parametrization of the

interfaces and do not change the interface geometry, and

so do not affect the energy functional, but do alter the

fRl;j; Zl;jg. This freedom may be exploited to obtain a pre-

ferred angle parametrization.

A numerically insightful choice7,8 is to choose the angle

that minimizes the “spectral width,” and so obtain the most

accurate representation of the interface geometry for a given

Fourier resolution. We define the spectral width as

1

2

X

j

ðmp
j þ n

q
j ÞðR2

j þ Z2
j Þ; (46)

where p and q are arbitrary integers required as input.

The toroidal angle has already been constrained,

f � �/, and the geometry of the interfaces is to be con-

strained by force balance, so we are left to minimize

the spectral width with respect to poloidal variations, dR

¼ @hR du and dZ ¼ @hZ du. To preserve stellarator symme-

try, we restrict attention to odd functions, du ¼ P

j uj
sinðmjh� njfÞ. The variations in the Fourier harmonics, Rj

and Zj, are given by dRj ¼
Þ Þ

Rhdu cosðmjh� njfÞdhdf and

dZj ¼
Þ Þ

Zhdu sinðmjh� njfÞdhdf, where Rh � @hR and

Zh � @hZ. The first variation in the spectral width is

þ þ

dhdfðRhX þ ZhYÞdu; (47)

FIG. 1. Poincar�e plot showing the Beltrami fields in multiple, nested volumes and the ideal interfaces (thick lines) for the perturbed equilibrium on the cross

sections (A) f ¼ 0; (B) f ¼ p=2; and (C) f ¼ p.

FIG. 2. Scaling of components of error, dj � j� lB, with respect to radial resolution. The diamonds are for the n¼ 3 (cubic) basis functions, the triangles are

for the n¼ 5 (quintic) basis functions. The solid lines have gradient �3, �2, and �2, and the dotted lines have gradient �5, �4, and �4.
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where X ¼ P

jðm
p
j þ n

q
j ÞRj cosðmjh� njfÞ and Y ¼ P

j

ðmp
j þ n

q
j ÞZj sinðmjh� njfÞ. The spectral width is decreased

along du ¼ �I, where I � RhX þ ZhY, and is extremized

when I ¼ 0.

E. Illustrations of global equilibria

We have implemented two numerical methods for find-

ing global equilibria. The first is a minimization algorithm:

we seek minima of F½x� � P

l

Ð

V ½pl=ðc� 1Þ þ B2=2�dv using
a preconditioned, conjugate gradient algorithm, where in

each volume plV
c ¼ al is constant, and the field satisfies

r� B ¼ llB. The gradient of F with respect to the Rl;j and

Zl;j, with the fluxes and helicity constrained, can be derived

from Eq. (12) by recalling that the displacement is n

� dR R̂ þ dZ k̂ and the surface element is ds � �RZh R̂

þðZhRf � RhZfÞ /̂ þ RRh ẑ. The derivatives of F are

@F

@Rl;j
¼ �ð½½pþ B2=2��lRZhÞj � ðRhIlÞj; (48)

@F

@Zl;j
¼ þð½½pþ B2=2��lRRhÞj � ðZhIlÞj; (49)

where the ðRhIlÞj and ðZhIlÞj terms are included to reduce the

spectral width.

The second approach for finding global equilibria is a

globally convergent, multi-dimensional Newton method. We

seek a zero of the “force-balance” vector, constructed as fol-

lows. Global force balance is satisfied when the total pres-

sure discontinuity across each interface is zero,

½½pþ B2=2�� ¼ 0. The Fourier representation of the interfaces

minimizes the spectral width when I is zero. Thus, we con-

struct a “constraint” vector, f(x), by collecting together the

harmonics ½½pþ B2=2��l;j and Il;j.

Within the stellarator symmetric representation we have

employed, R is an even function of ðh; fÞ, and Z is odd.

Force-balance, ½½pþ B2=2��, and the spectral minimization

condition, I, are similarly even and odd functions. So, after

suitably truncating ½½pþ B2=2�� and I to match the truncated

Fourier representation of the interface geometry, the number

of constraints equals the number of degrees-of-freedom.

Expanding about an arbitrary point, fðxþ dxÞ 	 fðxÞ
þrfðxÞ � dx, the Newton correction required to find the

equilibrium point, f¼ 0, is given by dx ¼ �rf�1 � f . The Ja-
cobian matrix, rf, describes how the Beltrami fields change

when the geometry is changed (more precisely, how B2 on

the interfaces changes when the I l change) and is computed

in parallel using matrix perturbation methods as described

above.

In the following, we use this method for constructing

global solutions. In all calculations presented, either explic-

itly or implicitly, for any given Fourier and radial sub-grid

resolution, the error in force balance, jf j, and the error in

“position,” jdxj, are less than 10�12.

Before presenting illustrations of non-axisymmetric

global equilibria, we first present a comparison of stepped-

pressure equilibria to axisymmetric MHD equilibria with

smooth profiles, the latter computed by VMEC.84 SPEC is

intended for computing equilibria with partially chaotic

fields and only admits stepped-pressure profiles. In contrast,

VMEC globally constrains the field to be integrable, and so

admits (and assumes) smooth profiles. As it is the profiles

that define an equilibrium, VMEC and SPEC will differ. To

obtain agreement, it is required to perform a convergence

study in the pressure profile: as the number of steps in the

stepped profile increases, the stepped profile will better ap-

proximate a smooth profile.

We consider an equilibrium with boundary described by

Rðh; fÞ ¼ 1:0þ 0:3 cos h and Zðh; fÞ ¼ 0:3 sin h. For the

(smooth) pressure profile, we take pðwÞ ¼ p0ð1� 2wþ w2Þ,
where w is the normalized toroidal flux and p0 is a scaling

factor chosen to give a Shafranov shift about one-third

the minor radius. For the (smooth) transform profile, we

take -i ¼ -i0 � -i1w, where -i0 ¼ ð8þ 9cÞ=ð9þ 10cÞ and

-i1 ¼ -i0 � ð1þ 1cÞ=ð9þ 10cÞ. We use high Fourier resolu-

tion, M¼ 16, and high radial sub-grid resolution; this will

ensure that any discrepancy results from finite NV , and so the

error will decrease as NV is increased.

As input to SPEC, we must “discretize” the pressure and

transform profiles. Earlier, we recalled that invariant surfaces

of Hamiltonian systems with noble rotational transform are

the most likely to survive chaos-inducing perturbations, and

so the interface transforms should be strongly irrational;

however, in the axisymmetric and, therefore, integrable case,

the interface transforms may be chosen arbitrarily. For con-

vergence studies, it is preferable to have interfaces regularly

spaced in radius, and we choose the interface rotational

transforms -il ¼ -iðwlÞ, where
ffiffiffiffi

w
p

l
¼ l=NV . We discretize the

pressure profile in such a way as to piecewise conserve the

integrated pressure

pl

ðwl

wl�1

dw ¼
ðwl

wl�1

pðwÞdw: (50)

For illustration, the SPEC interfaces and the correspond-

ing surfaces (identified by toroidal flux) of a high radial reso-

lution VMEC equilibrium are shown for a low NV case in

Fig. 3. Despite the fact that a smooth profile was supplied to

VMEC but a stepped-pressure profile was supplied to SPEC,

the agreement is reasonable. This may be expected: the Sha-

franov shift depends95 primarily on the integral of the pres-

sure profile and not, to lowest order, on the precise details of

the pressure profile itself. To quantify the discrepancy, we

compare the location of the magnetic axes. As shown in Fig.

4, as NV is increased the agreement improves. The stepped

pressure profile approximation and the smooth pressure pro-

file are shown in Fig. 5.

Indeed, it may be shown that the infinite interface limit

of MRXMHD (i.e., assuming continuously nested magnetic

flux surfaces) reduces to rp ¼ j� B and j � n ¼ 0, where n
is normal to the flux surfaces. These are the equations that

define ideal MHD equilibria. The details of this derivation

will be presented in a forthcoming paper.

To illustrate a non-axisymmetric global equilibrium,

we return to the “perturbed” equilibrium shown in Fig. 1.

Assuming that the radial sub-grid resolution is sufficiently

high so that the error is dominated by finite Fourier resolution,
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we now confirm that the error in the interface geometry

decreases asM and N increase.

Let the exact solution for the lth interface be described

by Rðh; fÞ and Zðh; fÞ. The error between this and an approx-

imation, RM;Nða; fÞ and ZM;Nða; fÞ, with a potentially differ-

ent poloidal angle, a, on the f0 plane is quantified by

D �
Ð

DðhÞ dl, where dl2 � dx2 þ dy2 is the arc-length of the

curve xðhÞ � Rðh; f0Þ and yðhÞ � Zðh; f0Þ, and D is the dis-

tance between this reference curve and the curve described

by xM;NðaÞ � RM;Nða; f0Þ and yM;NðaÞ � ZM;Nða; f0Þ, i.e.,

D2 � ½xðhÞ � xM;NðaÞ�2 þ ½yðhÞ � yM;NðaÞ�2. The comparison

is made at the same polar angle, so that yðhÞ=½xðhÞ � x0�
¼ yM;NðaÞ=½xM;NðaÞ � x0�, where x0 is a reference point (e.g.,
the magnetic axis).

As the exact solution is not known apriori, we take as

the reference configuration the highest resolution approxima-

tion available. The error in the interface geometry, for each

of the internal interfaces, is shown as a function of (M, N) in

Fig. 6, where we see that the error decreases as the Fourier

resolution is increased.

All properties of the equilibrium are defined by the

interface geometries: if the interface geometry has con-

verged, then so too have the Beltrami fields, and the location

and size of the magnetic islands and chaotic seas—well, it is

difficult to resolve the infinitely complicated structure of

phase space, but B itself and all integral properties are

converged.

The good convergence properties of the interface geom-

etry with Fourier resolution is because (i) the interfaces are

chosen to have the most noble transform, and so are “as far

away as possible,” so to speak, from the lowest order islands

and associated chaos, and so are the smoothest surfaces (this

is in contrast to flux surfaces adjacent to a separatrix, or flux

surfaces that are nearly critical); and (ii) that the Fourier rep-

resentation exploits a preferred angle parametrization that

minimizes the spectral width. More importantly, perhaps, is

that convergence is obtained because there is a well defined,

exact solution, and that the numerical discretization is capa-

ble of resolving all the structure of the solution.

As a final illustration, we present a stepped-pressure

equilibrium consistent with the boundary and profiles

obtained via a 3D STELLOPT reconstruction96 of an up-

down symmetric DIIID experimental shot with applied reso-

nant magnetic perturbation (RMP) fields. The reconstruction

process seeks to infer the experimental configuration by

adjusting the MHD equilibrium (presently, STELLOPT is

built around VMEC) by varying the plasma boundary and

the pressure and current profiles, so that derived quantities

(such as Thomson scattering, motional Stark effect polarime-

try, and magnetic diagnostics) match the experimental meas-

urements. Because of the applied error fields, and the plasma

response to these error fields, the reconstructed boundary is

slightly, but significantly, perturbed from axisymmetry. The

FIG. 4. Location of magnetic axis as computed by SPEC against resolution,

NV , of stepped-pressure approximation to smooth pressure profile. The dotted

line is the location of magnetic axis for a high resolution VMEC calculation.

FIG. 5. Stepped pressure approximation, with NV ¼ 64, to smooth pressure

profile.

FIG. 3. Comparison between the SPEC interfaces, with NV ¼ 6, and the cor-

responding VMEC surfaces (thick lines and upper half); and the SPEC radial

sub-grid (lower half).

FIG. 6. Difference between finiteM, N approximation to interface geometry,

and a high-resolution reference approximation (with M¼ 13 and N¼ 8),

plotted against Fourier resolution.

112502-15 Hudson et al. Phys. Plasmas 19, 112502 (2012)

Downloaded 20 Jan 2013 to 130.56.65.35. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



pressure and q-profiles, where q is the safety-factor q � 1=-i,
derived from the reconstruction are shown in Fig. 7. It is

interesting to observe that the reconstructed pressure profile

appears quite flat across the lowest order rational surfaces.

Furthermore, the locations of locally maximum pressure gra-

dient appear to coincide with strongly irrational surfaces.

We compute the stepped-pressure equilibrium using the

reconstructed boundary, a stepped, NV ¼ 32 approximation

(Fig. 7) to the reconstructed pressure profile, and the recon-

structed q-profile. The rotational transforms of the interfaces

are chosen by selecting the most noble irrationals that are

within range. The Fourier resolution is M¼ 10 and N¼ 6,

and the total radial sub-grid resolution is 279. A Poincar�e

plot is shown in Fig. 8; most visible is a q¼ 2 island at where

VMEC has the q¼ 2 rational surface. In this “fixed-

boundary” calculation, the boundary is constrained to remain

a fixed, good flux surface. To determine to what extent the

RMP fields and the plasma response ergodize the field in the

vicinity of the plasma edge, a “free-boundary” calculation is

required. This is left for future work.

V. COMMENTS, FUTURE WORK

The fact that stepped-pressure equilibria can be derived

as minima of an energy functional is a great convenience

numerically, as this allows employment of minimization

methods to construct the Beltrami fields and interface geo-

metries that satisfy force balance. Furthermore, the

MRXMHD energy functional provides a self-consistent

approach for determining the stability of partially chaotic

equilibria.75–77 In future work, we hope to explore whether

the suppression of edge localized modes by resonant mag-

netic perturbations,16 which result in a stochastic plasma

edge, may be understood through an MRXMHD stability

analysis.

In the above text, we have distinguished MRXMHD

equilibria, for which the algorithm allows l to vary to force

the helicity constraint, from stepped-pressure equilibria, for

which the algorithm allows both l and the poloidal flux to

vary to force the transform constraint and for which the self-

consistent helicity is computed aposteori. The distinction is,

however, superficial. The profiles could also be specified by

keeping l and the poloidal flux as fixed input parameters.

That the profiles can be prescribed and constrained in a vari-

ety of ways illustrates the flexibility of the theoretical and

numerical method. (Note that because ideal MHD is not

applied globally, there is no explicit relationship between the

toroidal and poloidal fluxes and the rotational-transform pro-

file, for example.) To decide how the profiles should be

described, one must depart from equilibrium theory and de-

velop a self-consistent model of transport, which may sug-

gest how, for example, the poloidal flux, the parallel current,

and the helicity should vary in time to preserve the transform

constraint.

Given that the MRXMHD equilibria do not have 1/x and

d-function currents at the rational surfaces, and that, in a pres-

sure transport model that includes a small perpendicular dif-

fusion, maximum pressure gradients will appear at the most

irrational locations32,97—and so too will, perhaps, the pres-

sure driven currents—then it would seem that MRXMHD

equilibria are smoothly connected (e.g., as the perpendicular-

diffusion coefficient j? ! 0) to nearly ideal steady-state

equilibria, and so it may be advantageous to initialize resis-

tive MHD initial value codes such as NIMROD51 or

M3DC150 with SPEC equilibria. Local flattening of the pres-

sure gradient across the resonances can provide increased sta-

bility and can allow access to higher plasma beta.98,99

The equilibrium model considered in this article does

not include plasma flow, which can impact both the equilib-

rium and island healing phenomena.100,101 Extended MHD

modeling of plasmas98,99,102–104 is crucial for understanding

FIG. 7. Pressure profile (smooth) from a DIIID reconstruction using STEL-

LOPT and stepped-pressure approximation. Also, shown is the inverse rota-

tional transform � safety factor.

FIG. 8. Poincar�e plot of a DIIID equilibrium with perturbed boundary, cal-

culated using SPEC.
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some key experimental observations. Perhaps, by extending

a stepped-pressure equilibrium, an equilibrium with a

continuous-pressure profile could be constructed by replac-

ing the pressure jump interfaces with finite-width ideal-

MHD layers,76 each topologically constrained to avoid

resonances and to avoid ideal instabilities,76 and, perhaps,

capable of supporting extended MHD behavior. A varia-

tional principle based on minimizing the generalized enstro-

phy,105,106 F ¼
Ð

jr � ðVþ AÞj2dx, may better describe

self-organization in two-fluid plasmas.

In addition to the incremental code improvements that

are inevitably required, the following in particular will be

pursued. In this paper, it was assumed that the plasma bound-

ary, @V, is a given, fixed toroidal surface. More generally,

the magnetic field is part generated by external currents, and

the free-boundary problem could be solved with a little extra

work, where @V is to be determined as part of the solution.

Also, most modern tokamaks are not up-down symmetric, so

it will be required to relax the stellarator symmetry

constraint.

It is worth exploring more efficient numerical methods

for computing the Beltrami fields. In a closed domain P
inR3, in general multiply connected, the solutions of r� B
¼ lB can be represented38,39 by

B ¼ ðr �þlÞ
ð

@P
Gðr; r0ÞB0 � n0 dS0; (51)

where n is the outward unit normal on @P and Gðr; r0Þ satis-
fies ðr2 þ l2ÞGðr; r0Þ ¼ �dðr� r0Þ, with dð�Þ being the 3D

Dirac d function.

Given the geometry of an interface, the maximum pres-

sure jump that an interface can support can be quickly deter-

mined by an analysis of the pressure-jump Hamiltonian: the

pressure discontinuity, 2ðpþ � p�Þ, is increased until the

appropriate irrational surface of the pressure-jump Hamilto-

nian is critical. Looking beyond our present task of con-

structing an equilibrium consistent with a given pressure that

is not changed, this gives an efficient method for distributing

the pressure, so that the most robust interfaces support the

most pressure. As the pressure across any interface is altered,

there will be a global response that requires re-computation

of the equilibrium.
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